Programming Language Technology

Exam, 6 April 2016 at 08:30-12:30 in M

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150, TIN321 and DIT229/230.
Teacher: Fredrik Lindblad, will visit around 09:30 and 11:00.
Grading scale: $\mathrm{Max}=60 \mathrm{p}, \mathrm{VG}=5=48 \mathrm{p}, 4=36 \mathrm{p}, \mathrm{G}=3=24 \mathrm{p}$.
Allowed aid: an English dictionary.
Please answer the questions in English. Questions requiring answers in code can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.
For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following constructs in a C-like imperative language: A program is a list of statements. Statement constructs are:

- if statements with non-optional else branch.
- block statements (lists of statements surrounded by curly braces)
- expression statements (E;)

Expression constructs are:

- identifiers/variables
- integer literals
- assignments of identifiers ($\mathrm{x}=\mathrm{E}$)
- addition (E + F)
- multiplication (E * F)

Operator precedences and associativity should follow the C standard. You can use the standard BNFC categories Integer and Ident as well as list shorthands, and terminator, separator and coercions rules. (10p)

SOLUTION:

```
PStms. Prg ::= [Stm] ;
terminator Stm "" ;
SIf. Stm ::= "if" "(" Exp ")" Stm "else" Stm ;
SBlock. Stm ::= "{" [Stm] "}" ;
SExp. Stm ::= Exp ";" ;
EId. Exp3 ::= Ident ;
EInt. Exp3 ::= Integer ;
EMul. Exp2 ::= Exp2 "*" Exp3 ;
EAdd. Exp1 ::= Exp1 "+" Exp2 ;
EAss. Exp ::= Ident "=" Exp ;
coercions Exp 3;
```

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the statement
if (b) $\{\mathrm{x}=\mathrm{y}+5 * \mathrm{z}$; \} else $\mathrm{x}=0$;
in the grammar that you wrote in question 1. In the parse tree show the coercions explicitly. (10p)

SOLUTION: Parse tree:

Abstract syntax tree:

Question 3 (Typing and evaluation):

A. Write standard typing rules or syntax-directed type-checking code (or pseudocode) for the expression constructs (5 constructs) of the grammar in question 1. The variable context must be made explicit. (5p)

SOLUTION:

$$
\begin{gathered}
\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \\
\frac{\overline{\Gamma \vdash i: \text { int }}}{x: T \in \Gamma \quad \Gamma \vdash e: \mathrm{T}} \\
\frac{\Gamma \vdash x=e: \mathrm{T}}{\Gamma \vdash e_{1}: \text { int } \quad \Gamma \vdash e_{2}: \text { int }} \\
\Gamma \vdash e_{1}+e_{2}: \text { int } \\
\frac{\Gamma \vdash e_{1}: \text { int } \quad \Gamma \vdash e_{2}: \text { int }}{\Gamma \vdash e_{1} * e_{2}: \text { int }}
\end{gathered}
$$

B. Write big-step operational semantic rules or syntax-directed interpretation code (or pseudocode) for the expression constructs of the grammar in question 1. The environment must be made explicit. (5p)

SOLUTION:

$$
\begin{gathered}
\frac{x:=v \in \gamma}{\gamma \vdash x \Downarrow\langle v, \gamma\rangle} \\
\frac{\gamma \vdash i \Downarrow\langle i, \gamma\rangle}{\gamma \vdash e \Downarrow\left\langle v, \gamma^{\prime}\right\rangle} \\
\frac{\gamma \vdash x=e \Downarrow\left\langle v, \gamma^{\prime}(x:=v)\right\rangle}{\gamma \vdash e_{1} \Downarrow\left\langle v_{1}, \gamma^{\prime}\right\rangle \quad \gamma^{\prime} \vdash e_{2} \Downarrow\left\langle v_{2}, \gamma^{\prime \prime}\right\rangle} \\
\gamma \vdash e_{1}+e_{2} \Downarrow\left\langle v_{1}+v_{2}, \gamma^{\prime \prime}\right\rangle \\
\frac{\gamma \vdash e_{1} \Downarrow\left\langle v_{1}, \gamma^{\prime}\right\rangle \quad \gamma^{\prime} \vdash e_{2} \Downarrow\left\langle v_{2}, \gamma^{\prime \prime}\right\rangle}{\gamma \vdash e_{1} * e_{2} \Downarrow\left\langle v_{1} * v_{2}, \gamma^{\prime \prime}\right\rangle}
\end{gathered}
$$

Question 4 (Regular expressions):

A. Write a regular expression the recognizes the following language (and only this): A string in the language is a sequence of tokens separated by one or more space-characters. A token is either of these two forms:

- Identifier: Any letter (a-z or A-Z) followed by any number of characters which are either a letter or a digit.
- String literal: A double quote ("), followed by any sequence of characters except double quote, followed by a double quote.

Do not use any short-hand regular expression constructs for letters and digits. You may refer to char as a short-hand for any character and - for which A - B represents the characters in A but not i B. (5p)

SOLUTION:

```
eps |
((()"A"|..|"Z"|"a"|..|"z")
    ("0"|...|"9"|"A"|.. |"Z"|"a"|...|"z")*) |
        ('", (char - '"')* '"'))
        (', , '*
        ((("A"|..|"Z"|"a"|..|"z")
            ("0"|..|"9"|"A"|..|"Z"|"a"|..|"z")*) |
        ('"' (char - '"')* '"'))
)*)
```

B. Write a deterministic finite-state automaton (DFA) for the same language as in part A. (5p)

SOLUTION:

Question 5 (Compilation):

A. Write compilation schemes for each of the constructs (statement and expression, 8 in total) of the grammar in question 1 . It is not necessary to remember exactly the names of the JVM instructions - only what arguments they take and how they work. (6 p)

SOLUTION:

compile (if (exp) stm1 else stm2) :
FALSE := newLabel()
TRUE := newLabel()
compile (exp)
emit (ifeq FALSE)
compile(stm1)
emit (goto TRUE)
emit(FALSE:)
compile(stm2)
emit(TRUE:)
compile(\{stms\}) :
newBlock()
foreach stm : stms
compile(stm)
exitBlock()
compile (exp;) :
compile(exp)
emit(pop)
compile(x) :
emit(iload lookup(x))
compile(i) :
emit(ldc i)
compile (x = exp) :
compile (exp)
emit(dup)
emit(istore lookup(x))
compile (exp1 + exp2) :
compile(exp1)
compile(exp2)
emit(iadd)

```
compile(exp1 * exp2) :
    compile(exp1)
    compile(exp2)
    emit(imul)
```

B. Give the small-step semantics of the JVM instructions you used in the compilation schemes in part A. (4p)

SOLUTION: For each command, we give a transition $(P, V, S) \rightarrow$ $\left(P^{\prime}, V^{\prime}, S^{\prime}\right)$ from old program counter P to its new value P^{\prime}, old variable store V to new store V^{\prime}, and old stack state S to new stack state S^{\prime}. Stack $S . v$ shall mean that the top value on the stack is v, the rest is S. Jump targets L are used as instruction addresses, and $P+1$ is the instruction address following P.

instruction	state before		state after	
goto L	(P, V, S)	\rightarrow	(L, V, S)	if $v=0$
ifeq L	$(P, V, S . v)$	\rightarrow	(L, V, S)	if $v \neq 0$
ifeq L	$(P, V, S . v)$	\rightarrow	$(P+1, V, S)$	
iload a	(P, V, S)	\rightarrow	$(P+1, V, S . V(a))$	
istore a	$(P, V, S . v)$	\rightarrow	$(P+1, V[a:=v], S)$	
ldc i	(P, V, S)	\rightarrow	$(P+1, V, S . i)$	
iadd	$(P, V, S . v . w)$	\rightarrow	$(P+1, V, S .(v+w))$	
imul	$(P, V, S . v . w)$	\rightarrow	$(P+1, V, S .(v * w))$	
dup	$(P, V, S . v)$	\rightarrow	$(P+1, V, S . v . v)$	
pop	$(P, V, S . v)$	\rightarrow	$(P+1, V, S)$	

Question 6 (Functional languages): Show the big-step operational semantics rules (not as code) for a functional language with the expression constructs function application, λ-abstraction, variables, addition and multiplication. The evaluation strategy should be call-by-value. Use closures and explicit environment. (6p)

SOLUTION:

$$
\begin{gathered}
\frac{\gamma \vdash f \Downarrow(\lambda x . e)\{\delta\} \quad \gamma \vdash a \Downarrow u \quad \delta, x:=u \vdash e \Downarrow v}{\gamma \vdash f a \Downarrow v} \\
\frac{\gamma \vdash \lambda x . e \Downarrow(\lambda x . e)\{\gamma\}}{\overline{\gamma \vdash x \Downarrow v} x:=v \in \gamma} \\
\frac{\gamma \vdash e_{1} \Downarrow i_{1} \quad \gamma \vdash e_{2} \Downarrow i_{2}}{\gamma \vdash e_{1}+e_{2} \Downarrow i_{1}+i_{2}} \\
\frac{\gamma \vdash e_{1} \Downarrow i_{1} \quad \gamma \vdash e_{2} \Downarrow i_{2}}{\gamma \vdash e_{1} * e_{2} \Downarrow i_{1} \cdot i_{2}}
\end{gathered}
$$

Show the derivation tree (using your operational semantics) of the evaluation of the expression
$(\backslash f->x+f x)(\backslash y->x * y)$
in the environment $\{\mathrm{x}:=3\}$. (4p)

$$
\text { SOLUTION: Let } \gamma \text { be short-hand for } x:=3, f:=(\lambda y \cdot x * y)\{x:=3\} \text {. }
$$

$$
\frac{\overline{x:=3 \vdash \lambda f . x+f x \Downarrow(\lambda f . x+f x)\{x:=3\}} \overline{x:=3 \vdash \lambda y \cdot x * y \Downarrow(\lambda y \cdot x * y)\{x:=3\}}}{x:=3 \vdash(\lambda f \cdot x+f x)(\lambda y \cdot x * y) \Downarrow 12} \quad \frac{\text { sub derivation }}{\gamma \vdash x+f x \Downarrow 12}
$$

sub derivation:
$\frac{\gamma \vdash x \Downarrow 3}{} \frac{\overline{\gamma \vdash f \Downarrow(\lambda y \cdot x * y)\{x:=3\}}}{} \frac{\overline{\gamma \vdash x \Downarrow 3} \quad \frac{x:=3, y:=3 \vdash x \Downarrow 3}{} \overline{x:=3, y:=3 \vdash y \Downarrow 3}}{x:=3, y:=3 \vdash x * y \Downarrow 9}$
$\gamma \vdash f x \Downarrow 9$

