
Programming Languages

Exam, 14 January 2008

Course codes: Chalmers TIN321 and TIN 320, GU INN130

Teacher: Aarne Ranta (tel. 1082)

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p. (For
TIN 320: 5 = 42p, 4 = 30p, 3 = 20p)

Aids: an English dictionary.

Instructions

This exam has three groups of questions, one easy, one intermediate, and
one advanced. Points are distributed in such a way that doing the easy
questions is enough to pass the exam (mark 3 or G). All the easy and at
least half of the intermediate are needed to get mark 4. In addition to all
the easy and the intermediate, about half of the advanced is needed to get
the highest mark (5 or VG).

From another perspective, the easy questions can be answered by anyone
who has managed to do the labs without any further reading. The intermedi-
ate question may require any material from the lecture notes. The advanced
questions may also require material from the book, chapters 1-6.

You can get points for the more difficult parts without doing the easier ones.

The bonus points from exercises are added to the total score by the teachers.

Questions requiring answers in code can be answered in any of: BNFC, C,
C++, Haskell, Java, or precise pseudocode.

Text in the answers can be in any of: Danish, Dutch, English, Estonian,
Finnish, French, German, Italian, Norwegian, Spanish, and Swedish.

For any of the six questions, an answer of less than one page should be
enough.

1



Group 1: easy questions

1. Write a BNF grammar that covers the following kinds of constructs in
C/C++/Java:

• variable declarations, consisting of a type followed by a comma-separated
non-empty list of variables, each of which can optionally have an ini-
tializing expression

• addition and multiplication expressions, both left-associative

• atomic expressions that are identifiers or integer literals

• the types int and double

It is enough to consider three precedence levels of expressions (from lowest to
highest): additions, multiplications, atomic. Parentheses are used, as usual,
to lift an expression to the highest level.

You can use the standard BNFC categories Integer and Ident, and the
precedence conventions of BNFC (including coercions).

(10p)

2. Show the parse tree (5p) and the abstract syntax tree (5p) of the decla-
ration

int x, y = 2, z = x + y * 3

in the grammar that you wrote in Question 1. Don’t forget to show prece-
dence coercions in the parse tree!

3. Write typing rules or syntax-directed type checking rules for variable
declarations as specified in Question 1 (4p).

Also write syntax-directed interpretation rules or operational semantic rules
for declarations as specified in Question 1. (4p).

What error is there in the example of Question 2? How is it detected by the
type checker and/or the interpreter? (2p).

Group 2: intermediate questions

4. Write a regular expression that recognizes a sequence of tokens that are
of one of these two forms, and may be separated by spaces (and doesn’t
recognize anything else):

2



• string literal: begins and ends with a double quote ", between which
it can contain any characters except the double quote itself (so there
are no escapes)

• comment: begins with /* and ends with */; in between, any characters
except the sequence */ are allowed; the mark /* cannot be inside a
string literal

For instance, the automaton should recognize

/* comment */ "a string" "/*" /* a comment "*/ "last string"

(5p),

Write a finite-state automaton that recognizes a list of tokens that are of
one of these two forms. You get 3p if the automaton is non-deterministic
(NFA), and 5p, if it is deterministic (DFA).

Group 3: advanced questions

5. Explain a set of machine instructions that are used in JVM (Java Virtual
Machine) to perform additions, multiplications, constants, variables, and as-
signments, all this for integers only. You need not remember the exact names
of these instructions: give just their syntax (3p) and small-step operational
semantics (4p).

Show the code corresponding to the declaration of Question 2 built by using
your machine instructions, and assuming that this declaration is the first
one in a 0-place function (3p).

6. Give operational semantic rules that show the difference between call-by-
name and call-by-value lambda calculus (6p).

Show an example of a lambda expression that has different termination
behaviours in these two kind of calculi. Give a few evaluation steps to show
what this behaviour is in each case (4p).

3


