
N a t u r a l S e m a n t i c s

G. Kahn
INRIA, Sophia-Antipolis

06565 Valbonne CEDEX, FRANCE

A b s t r a c t

During the past few years, many researchers have begun to present semantic
specifications in a style that has been strongly advocated by Plotkin in [19].
The purpose of this paper is to introduce in an intuitive manner the essential
ideas of the method that we call now Natural Semantics~ together with its
connections to ideas in logic and computing. Natural Semantics is of interest
per se and because it is used as a semantics specification formalism for an
interactive computer system that we are currently building at INRIA.

1. I n t r o d u c t i o n

During the past few years, many researchers have begun to present semantic specifications in a style
that has been strongly advocated by Plotkin in [19]. The purpose of this paper is to introduce in an intuitive
manner the essential ideas of the method that we call now Natural Semantics, together with its connections
to ideas in logic and computing. Natural Semantics is of interest per se and because it is used as a semantics
specification formalism for an interactive computer system that we are currently building at INRIA.

1.1. Aim of work

It is interesting and illuminating to present several aspects of the semantics of programming languages
in a unified manner: static semantics, dynamic semantics, and translation. It has been shown in earlier
work [10]that it is possible to use denotational semantics to give a satisfactory account of all these semantic
aspects. What is more, several researchers, following [16]process the resulting formal descriptions to obtain
actual type-checkers, interpreters, and translators. One may wonder why it should be necessary to investigate
yet another semantics specification formalism.

Several difficulties come up in a purely denotational definition.

- Coding up static semantics as semantics in a domain of types turns out to be a subterfuge. Since type-
checking aims at characterizing legal programs, the domain of type values has to include one (or several)
values for ~wrong type". In the presence of overloading, an identifier may a priori have several possible
types. Should the overloading resolution algorithm be part of the formal specification? As discussed in
[9], writing static semantics in this way is more akin to programming in a functional language than to
writing a formal specification.

- A similar lack of abstraction and expressive uneasiness is felt when specifying translations. The need to
have an extra parameter just for the purpose of generating new symbols in a denotational way and the
lack of an elegant way to do backpatching are examples. A consequence is that specifying translators
is again considered a programming activity and proving properties of translations is made considerably
harder.

- Denotational semantics is of course much better suited to express dynamic semantics. Two techniques
of denotational semantics, known as currying and continuations, are notationally difficult for most lan-
guage designers, but following the ideas of Mosses [16]this difficulty could be overcome. In the case of
parallelism and non-determinism, denotational semantics becomes substantially more difficult. Some-
how an operational definition is easier to understand and more convincing. The semantic definitions
of many new proposals for parallel languages involve axiomatizing atomic transitions, or transactions,
and are easily expressed in Natural Semantics. But this is not to say that Natural Semantics should be
identified with operational semantics.

This research is partially supported under ESPRIT, Project 348.

23

The general idea of this sort of semantic definition is to provide axioms and inference rules that char-
acterize the various semantic predicates to be defined on an expression E. To paraphrase Prawitz 118],
%he inferences are broken down into atomic steps in such a way that each step involves only one language
construct".

For example in s ta t ic semantics, one wants to s ta te tha t expression E has type r in the environment p.
Hence one axiomatizes

pl-E:r

where the environment p is a collection of assumptions on the types of the variables of E. To specify a
translat ion from language Lz to language L2, on gives rules of the form

p t- E1 ---*]~2

where p records assumptions on identifiers, expression ~.1 is in the source language and E2 is in the target
language. In dynamic semantics, there is a much greater variance in style, depending on the propert ies of the
language to describe. In the simplest languages, it is sufficient to express tha t the evaluation of expression
~. in s ta te Sl yields a new sta te s2. This predicate is wri t ten

where s l records the values of the identifiers involved in s .

A semantic definition is a list of axioms and inference rules tha t define one of the predicates above.
In other words, a semantic definition is identified with a logic, and reasoning with the language is proving
theorems within tha t logic. Computing (e.g. type-checking, intepreting) is seen as a way to solve equations.
For example, given s ta te s l and program z, is there a s ta te s2 s.t. sz b z =~ s2 holds? Or given an initial
type-environment P0, is it possible for expression E to be assigned a type r such tha t P0 ~- E : r holds?

This formulation suggests several remarks.

- Other kinds of equations could be of interest. For example, given E and r , does there exist some p such
tha t p I- E : r? This is a type-inference problem.

- Since the presentat ion is inherently relational, ra ther than functional, non-determinist ic computat ion
will be the general case. Similarly, overloading in type-checking will arise naturally.

- Since several logics will be defined on the same object language (e.g one assigning types to programs
and another assigning values to them), it will be interesting to examine relationships between these
logics.

Now there are many ways of presenting a logic. In our experiments , on the left of the turnsti le symbol
~- we always have a collection of assumptions on variables, not arbi t rary formulae. This is most reminiscent
of Natural Deduction. Rules for dealing wi th block structure, type-checking, or evaluating applications are
very close to certain rules in Natural Deduction, except for the fact tha t our collections of assumptions or
environments are not necessarily sets. Hence the name Natural Semantics was coined, ra ther than the more
restrictive and less informative "Structural Operat ional Semantics" of Plotkin.

1.2. Comparison with syntax

The way we look at Natural Semantics is proof-theoretic: we think of axioms and rules of inferences
as a way of generating new facts from existing facts. Inference rules allow the construct ion of new proof-
trees from existing proof-trees. In this regard, our view is very close to the tradi t ional use of context-free
grammars in computer science.

A grammar is presented as a collection of grammar rules. The rules define legal parse trees, and as
a consequence legal sentences. Analogously, axioms and inference rules serve in defining legal proof-trees,
and hence the facts tha t may be derived from axioms using inference rules. A grammar may be used either
as a generator or as a recognizer. There exist general algori thms to find a parse tree for a given sentence.
Likewise, a semantic description may be thought of in two ways: as a generating facts or as a description
of possible computat ions. Corresponding to the general recognizers of context-free grammars , we have the
general interpreters of semantic descriptions. Grammars may be ambiguous, and this often considered a
nuisance. But we want to model nondeterminist ic computat ions , and in a logical sys tem it is generally the
case tha t there are several proofs of the same fact.

24

There is however a major technical difference between grammars and logical systems. In a grammar,
the non-terminals stand for sets of words. In an inference rule, or rule scheme, the variables stand for
individuals (terms), and all occurrences of the same variable in the rule should be substituted with the same
term.

2. The formalism

2.1. Rules

A semantic definition is an unordered collection of rules. A rule has basically two parts, a numerator
and a denominator. Variables may occur both in the numerator and the denominator of a rule. These
variables allow a rule to be instantiated. Usually, typographical conventions are used to indicate that the
variables in a rule must have a certain type.

The numerator of a rule is again an unordered collection of formulae, the premises of the rule. Intuitively,
if all premises hold, then the denominator, a single formula, holds. More formally, from proof-trees yielding
the premises, we can obtain a new proof-tree yielding the denominator, or conclusion, of the rule.

2.2. Sequents and conditions

Formulae are divided in two kinds: scquents and conditions. The conclusion of a rule is necessarily a
sequent. On the numerator, sequents are distinguished from conditions, that are placed slightly to the right
of the inference rule. Conditions convey in general a restriction on the applicability of the rule: a variable
may not occur free somewhere, a value must satisfy some predicate, some relation must hold between two
variables. As boolean predicates, conditions are built with the help of logical connectives from atomic
conditions. One may wish to axiomatize atomic conditions, for example in a separate set of rules,

A sequent has two parts, an antecedent (on the left) and a consequent (on the right), and we use the turnstile
symbol ~- to separate these parts. The consequent is a predicate. Predicates come in several forms, indicated
by various infix symbols. These infix symbols carry no reserved meaning, they just help us in memorizing
what is being defined. The first argument of the consequent is called the subject of the sequent. Naturally,
the subject of a rule is the subject of its conclusion.

A rule that contains no sequent on the numerator is called an aziom. Thus an axiom may be constrained
by a condition.

2.3. Judgements

In a single semantic definition, sequents may have several forms depending on the syntactic nature
of their subject. For example, in a typical Algol-like language, there are declarations, statements and
expressions. The static semantics will contain sequents of the form

Pl l- DECL : P2

for the elaboration of declarations, of the form

p F STM

to assert that statements are well typed, and also of the form

p ~- EXP:r

to state that expression ExP has type r. The various forms of sequents participating in the same semantic
definition are called judgements. One reason for the elegance of the formalism is that several judgements
are used without being given explicit names. In programming, overloading is used to the same end. Note
that in our context like in programming, abuse of overloading leads to obscurity.

2.4. Rule sets

Some structure must be introduced in a collection of rules, if only to separate different semantic con-
cerns. For example, in static semantics, one wishes to distinguish structural rules of consistency from the
management of scope and the properties of type values. To this end, rules may be grouped into sets, with
a given name. Sets of rules collect together rules or, recursively, rule sets. When one wishes to refer to a
sequent that is nxiomatized in a set of rules other than the textually enclosing one, the name of the set is
indicated as a superscript of the sequent's turnstile.

25

2.5. Abstract syntax, Use clauses

Semantics tells us facts about the constructs of a language. These constructs taken together form
the abstract syntax of the language, technically an order-sorted algebra. Intuitively, each construct has
arguments and results belonging to syntactic categories, and some syntactic categories may be included in
others. We indicate that language L is concerned with a definition by the declaration use L. In a translation,
two languages are involved and we have to import two algebras. Other objects, such as environments or
stores are often elements of algebras, and we will naturally modularize our definition by importing these
algebras as well. When analyzing mechanically semantic rules, we will identify the various abstract syntax
constructors. Ambiguity may arise if two algebras use the same name for an operator. Most of the time
the context will be sufficient to resolve the ambiguity, but we may have to specify what operator we really
mean.

Abstract syntax terms may occur in rules. They should of course be valid terms w.r.t their abstract
syntax. Every such term is typed with a syntactic category (such as L.ezpression, or L.statement, or
L.declaration). A language L includes all of its syntactic categories, and it is possible for two languages to
share a given syntactic category. For example PASCAL and MODULA can share the category ezpression.

With an abstract syntax, we also import conventions on how to write abstract syntax trees in a linear
fashion. Except where the notation is too ambiguous, we use systematically this readable way of denoting
terms. For example, we will write

while COND do STM

rather than use the general notation for terms

while(toaD, STM)

but the reader should be aware that the subject of a rule is never a string but a tree.

2.6. Assigning types to rules

The scope of variables is limited to the rule where they appear. Nevertheless, it is necessary to follow
certain naming conventions to make a definition readable. For example, we want to assert that variables
called p, possibly with indices or diacritical signs, are environments. For this we allow variable declarations.
The scope of such declarations is the set of rules where they appear. It is not necessary to declare in this
way all variables, because often their type may be inferred. In particular, it is practically never useful to
declare variables that stand for abstract syntax fragments because these variables occur in the subject of
rules. There, a language constructor dictates their type. Declarations and abstract syntax definitions serve
then in typing sequents. It might also be wise to declare judgements, rather than merely infer how many
judgement forms are involved in a definition.

2.7. Typographical conventions

In accordance with standard mathematical practice, it is convenient to associate different fonts to
different types of variables. But it would be extremely painful to indicate these font changes as we enter the
semantic definitions in a computer, with a keyboard that has a limited character set. Instead, we associate
font information to types, and our type-checker is set-up to generate a text that is fully decorated with font
changes. This text is then processed by TEX and either printed or examined on a high resolution display.
It is clear that a sober use of fonts enhances the readability of semantic definitions.

2.8. General strategy]or ezeeution

As mentioned earlier, we want to use a computer to solve various kinds of equations on sequents.
Typically, our unknown will be type values~ states or generated code. But environments, or program
fragments may also be unknown. To turn semantic definitions into executable code, there are probably
many approaches. One is to compile rules into Prolog code, taking advantage of the similarity of Prolog
variables and variables in inference rules. Roughly speaking, the conclusion of a rule maps to a clause head,
and the premises to the clause body. Distinct judgements map to distinct Prolog predicates. Conditions,
although written to the right of rules, are placed ahead of the rule body.

An equation is turned into a Prolog goal. Since pure Prolog attacks goals in a left to right manner,
proofs of premises will also be attempted from left to right. This is not always reasonable, so that we
need to use a version of Prolog that may postpone attacking goals until certain variables are instantiated.
Conditions should be evaluated as soon as possible, to avoid building useless proof-trees. In our experiments,
we have used Mu-Prolog [17]with success to that end.

26

2.9. Actions

It is useful to attach actions to rules, in a manner that is reminiscent of the way actions are associated
to grammar-rules in YACC. Actions are triggered only after an inference rule is considered applicable. An
action needs to access the rule's variable bindings, but it cannot under any circumstance interfere with
the deduction process. Typically, actions are used to trace inference rules, to emit messages, to perform a
variety of side effects. It is important to understand that searching for a proof may involve backtracking~
so that if an inference has been used in a computation at some point, it does not necessarily participate in
the final proof.

In terms of style, actions should be used with parsimony. For example, when specifying a translation,
it is mandatory to aziomatize it rather than have actions generate output code. On the other hand, in the
context of type-checking, it is more appropriate to have actions filter error messages, rather than introduce
strange type values to handle various erroneous situations.

A significant use of actions is in debugging inference rules. We want to follow what inference rules
are applied, but also where they are applied. In other words, when a rule is used we want to know where
the subject of the rule is, with respect to the subject of the initial equation. When executing a dynamic
semantics specification~ we follow execution very precisely in this way.

To solve this problem, we imagine that each variable that stands for an abstract syntax tree is in fact a
pair made of tree and a tree address. Our rule compiler then keeps track of the tree-offsets of the variables
introduced in the subject of the rule, relative to the tree address of the subject. Within actions, the user
can refer to the tree-address of the rule's subject via a standard variable.

3. A smal l func t iona l l anguage

As an example, we are going to write semantic specifications in Natural Semantics for a very small
functional language. This language, called Mini-ML, is a simple typed A-calculus with constants, products,
conditionals, and recursive function definitions. Of ML [11], it retains call-by-value. The language is strongly
typed, but there are no type declarations, types are inferred from the context. It is possible to define functions
that work uniformly on arguments of many types: one construct introduces ML-polymorphism.

The dynamic semantics of ML is fairly simple to describe. The only difficulty resides in handling
elegantly mutually recursive definitions. To illustrate compilation, we use as target code the the Categorical
Abstract Machine (CAM) of Cousineau and Curien [4]. It is interesting to see how convenient Natural
Semantics is to specify such a translation and some of its properties. ML typechecking is the object of
numerous discussions in the literature, e.g. [6]. Using an inference system to describe typing goes back at
least to Curry [5]. Reynolds [20]is a remarkable presentation in this spirit.

We begin with an intuitive presentation of the language.

3.1. Sample programs

To illustrate mini-ML, we introduce several examples in concrete syntax. First of course is how to write
the factorial function:

l e t r ec fac t= Ax. i f x = 0 t h e n 1 e l sex • fact(z - 1)
in fact 4

Next, we define and use the higher order function twice:

le t succ= Ax.x + 1
in let twice = Af .Ax . (f (f x))

in ((twice s~cc) 0)

The language has block structure, so that the following expression evaluates to 6:

let i -- 5
in let i = i + l i n i

Here we have both simultaneous definitions and block structure:

let ($, y) = (2, 3)
in let (x, 9) = (9, x) in

27

and th is las t example involves s imul taneous recursive definitions:

letrec(even, odd)-- (Ax. t f x = 0 t h e n true e lse odd(z - 1),
Ax. i f x = 0 then false e lse even(x - 1))

ha even(3)

3.2. Abstract Syntax of Mini-ML

An abs t rac t s y n t a x is an order-sorted algebra. It is given by a set of sorts , a descript ion of their
inclusion relations, and the list of all language constructors , together wi th their syntac t ic types. The
abs t rac t syn tax of Mini-ML is given 1 on Fig. 1. It defines a A-calculus ex tended wi th le t , l e t r e c , if, and
products . Fur thermore , in an expression AP.e, P m a y be ei ther an identifier or a (tree-like) pa t te rn . For
example k(z , y).e is a valid expression and so is A(x, ((V, z) , t)) .e ' . T h e cons t ruc to r mlpair bui lds p roduc t s of
expressions, while the pairpat cons t ruc tor serves in bui lding pa t t e rn s of identifiers. The nulIpat cons t ruc tor
is used for the uni t object 0 , which is bo th a pa t t e rn and an expression.

s o r t s

EXP, IDENT, PAT, NULLPAT

s u b s o r t s
EXPD NULLPAT, IDENT

c o n s t r u c t o r s

Patterns
pa i rpa t : PAT × PAT --*
nul lpat : --*

Expressions
number
false
t rue
ident
l a m b d a
if
mlpai r
apply
let
letrec

PAT × EXP

EXP X EXP × EXP

EXP × EXP

EXP × EXP

PAT × EXP x EXP

PAT X EXP X EXP

PATD NULLPAT, IDENT

PAT
NULLPAT

--~ EXP
---* EXP
---* EXP
---* IDENT
---* EXP
--4 EXP
---* EXP
---+ EXP
---* EXP
--* EXP

Figure 1. Abs t r ac t Syn tax of min i -ML

4. D y n a m i c S e m a n t i c s

In Mini-ML, the evaluat ion of a sub-expression always yields a value, so t ha t we have to axiomat ize the
single j udgemen t

where B is a Mini-ML expression, p is an env i ronment and a is the result of the evaluat ion of z: in p.
Funct ions can be man ipu la t ed as any other object in the language. For example a funct ion m a y be passed
as pa rame te r to ano ther funct ion, or re turned as the value of an expression. Thus the domain of semant ic
values is slightly more complicated t h a n for a t radi t ional Algol-like language.

4.1. Semantic values, environments

Values in Mini-ML are either:

- integer values in

- boolean values true and false, in italics to d is t inguish t h e m from the li terals t rue and false.

1 An abs t rac t s y n t a x m a y also be presented as a set of inference rules. Sort inclusions give then rise to
inheritance rules.

28

- closures of the form ~AP.l~,p L where s is an expression and p is an envi ronment . A closure is jus t a
pair of a A-expression denot ing a funct ion and an envi ronment .

- opaque closures, i.e. closures whose conten ts cannot be inspected. These closures are associated to
predefined funct ions.

- pairs of semant ic values of the form (¢*, fl) (which m a y in tu rn be pairs, so tha t trees of semant ic values
m a y be cons t ruc ted) .

Natura l ly the value of an expression E depends on the values of the identifiers tha t occur free in it. These
values are recorded in the envi ronment . A Mini -ML environment p is an ordered list of pairs P ~-~ a where P
is p a t t e r n and a a value. The symbol • separates the e lements of th is list. Here is an example of environment:

(Z, y) ~-~ (true, 5) . x ~ 1

The env i ronment is intui t ively scanned f rom right to left so t h a t in th is example , x is associated to 1, y is
associated to 5, and no other identifier has a value associated to it. The typical equat ion we want to solve
wi th the formal s y s t e m in Fig. 2. is

p o F - ~ = ~ a

where ¢~ is the unknown and P0 is an initial envi ronment . The initial env i ronment associates opaque closures
to a few predefined opera tors , such as + , - , etc.

4.2. Semant ic rules

The semant ic rules of Mini-ML are shown on Figure 2. Axioms 1 to 3 s ta te t ha t integer and boolean
li terals are in no rma l form, i.e. yield immedia te ly a semant ic value.

p I- n u m b e r N :=~ S (1)

p 1- t rue =~ true (2)

p ~- false =~ false (3)

p ~- AP.E ~ A P . E , p] (4)

val-of
p ~- i d e n t I ~ a

p ~- ident I =~ a (5)

p ~- E~ ::~ true p l- E2 :::~ a

p k" i f ~ then ~ else as ==~ a (6)

p ~- El =~ false p }" Es :=~ cx
p ~- i rE, then I~ else Es :=~ a (7)

p b E1 :=:~ Ot p 0- E2 =~/~

. ~ , E , ~ (9)

p I- E~ =~.C¢ p • p ~---* a b" El =~]~
p ~- let P = E2 in zx :¢,/~ (i0)

p • P ~"+ Ot[" E2 =:b" O~ p . Pr---+O~'Ex=eefl

p ~" letrec P = Z~ in E1 =:~ fl (11)

Figure 2. The dynamic semant ics of min i -ML

Axiom 4 asser ts t h a t an expression of the form AP.E is also in normal form. The value obtained is a
closure, pair ing th is expression wi th the envi ronment . This is in sha rp cont ras t wi th A-calculus, where E
would be fur ther reduced. Ax iom 5 s imply says t h a t the value associated to an identifier is to be looked up

29

in the environment. But since the environment is somewhat complex, we choose to axiomatize this process
with auxiliary rules, the set VAL-OF. These rules are described later. Evaluation of conditional expressions
is specified in the next two rules 6 and 7. Note that these rules have the same conclusion but that they are
mutually exclusive. They are also exhaustive provided, as we shall assume, we evaluate only expressions
that are type correct. The rules show that evaluation of a~, as and •s takes place in the same environment,
and has no side effect. Hence it could be done in parallel.

In Natural Deduction terminology, rules 2 and 3 are introduction rules for the boolean values true and false.
Rules 6 and 7 are elimination rules, they tell how boolean values may be consumed. Pu t t ing together rule
2 and 6 (resp. 3 and 7)we obtain two unexciting derived inference rules

p ~- if true then z2 else as =~ a

p ~ a~ ~ ~ (7')
p ~- if false then E2 else as =~ a

Rule 8 is the introduction rule for pairs of values. Both components of the pair must be evaluated. The
lack of rules for value-pair elimination (left projection, right projection) might indicate a weakness in the
design of Mini-ML. But a rule in the set VAL_OF serves that purpose.

The next rule 9 deals with function application. Because of type-checking, the operator of an application
can only evaluate to a functional value, i.e. a closure. This closure is taken apart. The closure's body is
evaluated in the closure's environment, to which the parameter association P ~-~ a has been added. Since ~.2
is evaluated, Mini-ML uses call-by-value. The rule is valid whether P is a pattern or a single variable. Note
that the rule is departing from denotational semantics in that a is not a subexpression of a~ or E2. It is a
closure elimination rule, whereas rule 4 was the closure introduction rule. From rule 4 and 9 we deduce an
interesting rule:

p F- E2=~a p " P ~"* O~]- El =~']~
p [- AP.EI E~ :¢" ~ (9')

This rule can be added, as an optimization, to the semantics of mini-ML. In the case where the operator
of an application is syntactically a A-term, it is not necessary to build a closure tha t is to be taken apart
immediately thereafter. If we compare this new rule with rule 10, we see tha t , at evaluation t ime,

AP.EI E2 = (letP = a~inax).

Rule 10 is typical of Natural Deduction, as we can see in a logical presentation where p is implicit and
emphasis is placed on discharging hypotheses:

a, ::~ cz zx =t, fl (10)
le tP = a2in zx =~/~

The last rule, rule 11, defines in one and the same way the
recursive ones such as

l e t r e c (f , (g, h)) = (Ax f .

(A ~ f .

Az f .
i n E

simple recursive functions and the mutually

. . g . . . h . . . ,

•,g...h...~
. .g. . .h.. .))

The rule is very similar to rule 10, except tha t expression a~ is evaluated in the same environment as El,
ra ther than in p. We should keep in mind tha t in Mini-ML only functional objects may be defined recursively,
so tha t ~ is ei ther a closure, or a tree of closures. In bo th cases, i t will contain a reference to itself and may
be unders tood as a regular infinite tree.

For clarity, we had omit ted the rule dealing with predefined function symbols:

eva!
p F- s~ =~ opaque OP p F- E2 = ~ ~- OP, O~ :~/~ (12)

30

This rule is an e l iminat ion rule for opaque closures. When the opera tor of an appl icat ion evaluates to
an opaque closure, we a s s u m e t h a t there is an evaluator ~VAI, t ha t is capable of re turn ing a value fl
corresponding to the a r g u m e n t c~. Here, we could be a little more realistic and have opaque closures contain
bo th the n a m e of an operator and t he n a m e of an evaluator, to be invoked in th is rule. There is no
in t roduct ion rule for opaque closures: we assume tha t they come solely f rom the initial envi ronment .

4.3. Searching the environment

The separa te set VAL_OF (see Fig. 3.) gives rules to associate values to identifiers, given some environ-
ment . There are two problems to solve. First , we m u s t traverse the envi ronment f rom right to left to take
into account block s t ructure . This is achieved by the rules 1 and 2. Rule 1 could be called a tautology rule,
and rule 2 is a thinning rule. The second problem is t h a t the env i ronment contains associat ions of the form
P ~ a where P is a pa t t e rn , i.e. a tree of identifiers. From typechecking we know t h a t P is bound to a
value of the same shape , and rule 3 traverses P .

s e t V A L _ O F is

end VAL_OF

p . ident I ~ a k- ident I ~-* a (1)

p b- ident I~--~ a (x # I) (2)
p . ident x ~ fl ~- ident I H a

p ' P I ~ ~ ' P 2 ~-* fl I- ident I~-~')'

P" (P, , P2) ~'4 (O~,fl) ~- ident I~-~'/ (3)

Figure 3. The ML envi ronment rules

Rule 3 is a sort of pair e l iminat ion rule. It is an astonishingly simple me thod to keep rules 10 and 11
valid when P is a pa t te rn .

4.4. Executing the definition

To solve the equat ion in the unknown a

we search for the las t s tep of the proof of th is fact. The s t ruc tu re of z forces th is s tep in general. Rules 6
and 7 on the one hand , rules 9 and 12 on the other can lead to backtracking. This s i tua t ion is very general
and analyzed in I2]. It is in teres t ing to remark t h a t the derived inference rules 6 ~ 7 ~ and 9 ~ can be added to
the definition, since they can only infer valid facts. But they should sys temat ical ly be preferred to 6 and 7,
or to 9 and 12 because they are "faster". Intuitively, they should be preferred because their subject is more
specific.

Non- te rmina t ion in Mini-ML m a y occur because of rule 11. In the process of solving the initial equation,
it is possible to grow the candida te proof tree endlessly f rom the b o t t o m up. T h e n the equat ion will have
no solution. Remark also t h a t the Mini-ML we have described uses call-by-value. It is no t difficult to write
rules for a lazy Mini-ML, along the lines of [15]. The idea is to create new in t roduct ion rules for a different
kind of closure cMled suspensions, and new el iminat ion rules for these suspensions .

The fact t h a t we used a funct ional language to i l lustrate dynamic semant ics should not leave the
impression tha t imperat ive languages cannot be described. Several exper iments wi th Algol-like languages
are reported in [13].

5. T r a n s l a t i o n

Trans la t ion f rom one language to another is heavily guided by the s t ruc ture of the source language.
Hence it is clear t h a t our formMism is well sui ted for specifying t rans la t ions .

Recently, Cous ineau and Curien have proposed a very ingenious abs t rac t m~chine for the compilat ion
of ML [4]. The complete semant ics of the machine is described first. Then we specify the t rans la t ion f rom
Mini-ML to CAM.

5.1. Specifying the Categorical Abstract Machine (CAM)

3]

The Categorical Abstract Machine has its roots both in categories and in De Bruijn 's notation for
lambda-calculus. It is a very simple machine where, according to its inventors, "categorical terms can
be considered as code acting on a graph of values". Instructions are few in number and quite close to real
machine instructions. Instructions car and cdr serve in accessing data in the stack and the special instruction
rec is used to implement recursion. Predefined operations (such as addition, subtraction, division, etc.) may
be added with the op instruction.

5.1.1. Machine code and Machine state

The abstract syntax of CAM code is given in Fig. 4.

s o r t s

VALUE, OOM, PROGRAM~ OOMS

s u b s o r t s
COMDCOMS

c o n s t r u c t o r s

Programs
program : COMS -~ PROGRAM
corns : OOM* --~ COMS

Commands
quote : VALUE --~ COM
car : --~ COM
cdr : --* COM
cons : -~ COM
push : -~ OOM
swap : --* OOM
op : --+ COM
branch : COMS×COMS -+ OOM
cur : COMS --~ COM
app : -~ COM
rec : COMS -~ OOM

Values
int : --* VALUE
bool : --* VALUE

Figure 4. Abstract syntax of CAM code

The state of the CAM machine is a stack, whose top element may be viewed as a register. If s is a
stack and a is a value, then pushing c~ onto s yields s • c~. Several kinds of values may be pushed on the
stack. Atomic values

- integers in ~ ,

- t ru th values true and false,

but also closures and environments since the machine is designed for higher-order functional languages

- closures of the form ~c,p~ where (3 is a fragment of CAM code and p is a value that is meant to
denote an environment,

- pairs of semantic values, and hence recursively trees of such values.

The pair constructor is used in particular to build environments. A special value () denotes the empty
environment.

5.1.2. Transition rules

The rules describing the transit ions of the CAM machine appear in Fig. 5. Two judgements are used.
Only rule 1 involves the judgement

s t - c =~ c~

32

meaning tha t program o, s tar ted in s ta te s returns a as result. All other rules involve only sequents of the
form

s ~ - o = ~ s '

where c is CAM-code and s and s ' are s ta tes of the CAM machine. The sequent may be read as execut ing

code o when the m a c h i n e is in s tate s takes i t to s tate s' .

i n i t _ s tack ~- ooMs =~ s • a

~" program(OOMS) =~ a

s F ¢ ~ s

S ~- COM ~ 81 s 1 ~- OOMS ::~ 8 2

8 ~" OOM; COMB :~ 8 2

s . a F q u o t e (v) ~ s . v

s . (a , f l) t- c a r : * s . a

s . (a , f l) • c a r s s . f l

s . a . f l ~- c o n ~ ~ s . C a , f l)

s . a } - p u s h ~ s . a . a

s . c~ . 19 ~- s w a p =~ s . t9. a

eval
~- OP, a ~ 1 9

S . a F- op OP ==~ S . f l

S F- O~ =C, s 1

(1)

(2)

(3)

(4)

(5)

(o)

(7)

(8)

(9)

(10)

8 " t~'ue ~- branca~l(Ol, 02):::h-81 (11)

8 I'- c~ :='~ Sl
8" fa lse ~- branch(c!., oz) ::~ 81 (12)

s" p ~- cur(o) ::~ s" EC, P],a,~ (13)

s. (p,a) ~- o ~ s l (14)
s. (l[o, p] a) ~- app ~ sl

s . (p , p l) ~- c=* s . p ,

s . p I- rec(o) =~ s* Pl
(15)

Figure 5. The definition of the Categorical Abstract Machine

Rule 1 says tha t evaluating a program begins with an initial stack and ends wi th a value on top of
the stack tha t is the result of the program. The initial stack in i t_s tack contains a single element, the
initial environment. This environment includes the closures corresponding to the predefined operators. For
example, we might have

i n i t_s taek = (((0 , ~cdr; op + , ()]~, ,~), ~cdr; op - , ()]¢,,~), ~cdr; o p * , ()] ¢ ~) .

Rules 2 and 3 specify sequential execution for a sequence of commands. Axioms 4 to 7 show tha t
elementary instructions overwrite the top of the stack with their result. Instructions p u s h and swap, de-
scribed in rules 8 and 9 are useful to save the top of the stack. Rule 10 switches to an external evaluator
~.VAL for predefined operators. The external evaluator must be aware that it receives a single tree-stuctured
argument .

Rule 11 and 12 define the branch instruction. It takes i ts (evaluated) condition from the top of the
stack, and continues with either the t rue or the false part . The cur instruct ion is described in rule 13:
cur(c) builds a closure wi th the code o and the current environment (top of the stack) placing it on top of

33

the stack. Rule 14 says tha t the app instruction must find on top of the stack a pair consisting of a closure
and a parameter environment. Then the code of the closure is evaluated in a new environment: tha t of the
closure prefixed by the parameter environment.

The last rule is the less intuitive one. The rec instruction is used to build the self referencing environment
pl- Such an environment is necessary for the evaluation of recursive definitions. Notice the remarkable
simplicity of rule 15.

5.1.3. Remarks

- Given some program P wri t ten in CAM code, to run it is to find an a such tha t b- P =~ a . The general
execution s t ra tegy works well and there are never any choices to build a proof. Rule 3 is the only one
wi th two premises, and they must be t reated from left to right.

- The Natural Deduction point of view does not seem to bring much insight here, but it is convenient to
specify an abs t rac t machine in the same formalism as a semantic definition. The equivalence of certain
sequences of code can be proved easily and this is useful for optimisat ion [3].

5.2. Generating CAM code for Mini-ML

We are now ready to generate CAM code for mini-ML. Here is what we will produce for the factorial
example in paragraph 3.1, laid out like an assembly code listing:

push;
rec (cur

c o n s

push;
swap;
cons;

le trecfact =
(push Az. i f

push; car (z
swap; quote(O) ,0
cons; op ----) =

branch (quote(l), then I else
push; cdr (x
swap; push; car; cdr , (fact

swap; push; cdr , (x
swap; quote(l) ,1
cons; op -) -

cons; app)call
cons; op ,)))),

in
car (fact
quote (4) ,4
app)call

The rules for t ranslat ing Mini-ML to CAM 1 are given in Fig. 6. In these rules, except for rule 1, all
sequents have the form:

p ~ E - - * c

where p is an environment, E is an expression in Mini-ML, and c is its t ranslat ion into CAM-code. In words,
the sequent reads: in environment p, expression E is compiled into code e. The notion of environment used
in this t ranslat ion is exactly the notion of a pa t te rn in Mini-ML, i.e. a binary tree wi th identifiers at the
leaves. The environment is used to decide wha t code to generate for variables.

Translation of an ML program is invoked, in rule 1, with an initial environment init_pat tha t is merely
a list of predefined functions. The environment builds up whenever one introduces new names (rules 6, 10,
and 11). It is consulted when one wants to generate code for an identifier (rule 5). Then an access pa th
is computed in the ACCESS rule set. The access pa th is a sequence of car and cdr instruct ions (a coding
of the De Bruijn number associated to tha t occurrence of the identifier) t ha t will access the corresponding
value in the stack of the CAM.

Rules 2, 3, and 4 generate code for literal values. Rule 5 generates an access p a t h for an identifier. In rule
6, the body of a A-term is compiled and then wrapped in a cur instruction. To unders tand the next rules,
the following inductive assertion is useful: the code for an expression expects its evaluation environment on

* The proof of correctness of this t ranslat ion is given in [7]

34

init _pat ~- E --* c

~- E -'* program(c)

p f- number N --~ quote(N)

p [- t rue --~ quote(true)

p F- false --+ quote(false)

access
p F- i d e n t I : c

p t- ident I ---* c

(p ,e) e E - ~ c
p ~- ~P.E ~ cur(c)

p ~- El ~ Cl p ~- E~ ~ C 2 p ~- Es --~ CS

p i- if E1 then E~ else Ea --* push ; cl; branch(c:, Ca)

p }- E1- '* Cl p }- E2- '* C2

p }- (El, E~) --*push; cl; swap; e2; cons

p }- EI -.* C 1 p]- E~ ---+ C 2

p F- El E2 --~ push; Cl; swap; c2; cons; app

p ~- E1 --* cl (p, p) F- E: --+ e2

p J- le tP = E~inE2---~push;cl;cons;c2

p ~- letrec P = E~ in E2 --~ push ; rec(cl); cons; c2

(1)

(2)
(~)

(4)

(5)

(6)

(7)

(s)

(9)

(lO)

(11)

Figure 6. Trans la t ion f rom min i -ML to C A M

top of the stack, and it will overwrite this environment with its result. Thus the envi ronment mus t be saved
by a push ins t ruc t ion whenever necessary. If a t empora ry result is obtained, the swap ins t ruc t ion will push
it on the stack, while br inging back on top the envi ronment necessary for fur ther computa t ion . Now rule 7
and 8 become quite clear. Rule 9 builds a pair of values, the operator and the operand, and then generates
an app. Rules 10 and 11 are very similar, j u s t the way rules 10 and 11 were in dynamic semantics . A
simple pa rame te r binding is added to the envi ronment in rule 10, while rule I1 adds a recursive binding. As
indicated before, at execut ion t ime the rec ins t ruc t ion will build a self-referencing envi ronment .

F rom the ident i ty t h a t is valid a t run - t ime

AP.E~ El ~ (let P = E~ in E2)

we deduce t h a t the following inference rule should be valid

p ~- E, --* cl (p, P) ~- E~ -~ ~ (12)
p ~- AP,E~ El " ¢ p u s h ; Cl; cons ; c 2

Indeed, it is shown in [3]that rule 12 m a y be deduced f rom rules 6 and 9, once a few basic l emmas on CAM
code have been established. Rule 12 is a code opt imizat ion rule. It should be added to the other rules and
preferred when applicable.

To generate code for identifiers, t he set ACCESS in Figure 7. is used. Here again, we assume the the
p rog ram t h a t is to be t rans la ted type-checks, and in pat icular tha t it conta ins no undeclared variables. The
rules in th is set are s imilar to the rules in the set VAL_OF, except t h a t while searching for an identifier, one
cons t ruc t s s imul taneous ly i ts access path .

6. T y p e - c h e c k i n g M i n i - M L

6.1. General framework

35

se t A C C E S S is

e n d A C C E S S

p ~-* ¢ }- ident x : c

p ~- ident x : c

p- ident x ~-* c ~- ident x : c

p I- ident x : c
p . ident v ~ c t 1- ident x : c (Y 5£ x)

p • p~ ~-~ c; car . p2 ~-~ c; cdr ~- ident x : c ~

P ' (Pl,P2) H c ~- ident x : c'

(o)

(0

(2)

(3)

Figure 7. Generating access paths for identifiers

The semantic specifications of the previous sections rely on the hypothesis tha t they are applied to
well-typed program fragments. From that angle, being well typed is a constraint on abstract syntax trees -
what is sometimes called context-sensitive syntax. But if an expression E has type r, it also means that the
possible values tha t E may take during execution are characterized by r. When axiomatizing

p ~ - E : r

where p is a type environment, both viewpoints are present. If the sequent has no proof, then z does not
type-check. If it can be proved, then E has type r. The relationship between the type system and the
dynamic semantics must be established, by showing a variant of the Subject Reduction Theorem of [5].

Before introducing an inference system that assigns types in Mini-ML, the type language has to be
explained. In typed A-calculus every object has a type. Thus the type language must be able to express
basic types as well as functional types. For example, the type of the successor function Ax.x + 1 is int --* int.
In the same way the identity function Ax.z for integers has type int ---* int, but for booleans it has type
bool --* bool. It is clear that the identity function may be defined without taking into account the type of its
present parameter . To express this abstraction on the type of the parameter , the type variable a is bound
by a quantifier: the polymorphic identity function has type Va.a --* a.

6.2. The Type Language

The type language contains two syntactic categories, types and type schemes.

T y p e s : a type r is either

i. a basic type int, bool,

ii. a type variable a ,

iii. a functional type r --* r I, where ~ and r t are types,

iv. a product type r x r I, where r and r ~ are types.

T y p e s c h e m e s : a type-scheme a is either

i. a type r,

ii. a type-scheme Va.a, where a is a type-scheme.

Remark: quantifiers may occur only at the top level of type-schemes, they do not occur within type-schemes.

A type expression in this language may have both free and bound variables. Let us write F V (a) for
the set of free variables of a type expression a. We now define two relations between type expressions that
contain type variables.

De f in i t i on . A type zcheme a' is called an instance o f a type scheme a i f there exists a substi tution S of
types for free type variables such that:

U I = S (T .

36

Ins tan t ia t ion acts on free variables: if S is wr i t ten [a~ ~-- ri] wi th c~i E FV(a) t hen S a is obtained by
replacing each free occurrence of a l in a by ri (renaming the bound variables of a if necessary). The domain
of S is wr i t t en D(S).

D e f i n i t i o n . A type scheme a = V a t . . . ar~.r has a generic instance a' : V f i l ° . . f i n . r ' , and we shall write
a ~ a ' , it" there exists a substitution S such that

r ' = S r with D(S) C_ (o q . . * a m }

and the fii are not free in a , i.e,
fli C FV(a) l < i < n.

Generic ins tan t i a t ion acts on bound variables. Note tha t if cr _~ a ~ then for every subs t i tu t ion S, S a _>- S a ~.
Note also t h a t if r and r ' are types ra ther t h a n type-schemes, t hen r >- C implies r = C.

6.3. The typing rules

T h e rules for typ ing Mini -ML p rograms are given in Figure 8. Two j u d g e m e n t s are used. The main
judgement has the form

pl - I~ : r

where the env i ronment p is a list of a s sumpt ions of the form z : a . The env i ronment is to be scanned
f rom r ight to left. Conca tena t ion of two envi ronments p and p~ is noted p + p~. An auxil iary judgement is
necessary to handle the declarat ion of pa t t e rns correctly:

~-P , r :p .

This fo rmula m e a n s t h a t declaring P wi th type r creates the type envi ronment p. For example we have:

(~, Cy, ~)), (r~ × (r2 × r s)) : z : r l . ~ : ~2. ~ : rs

The first three ax ioms are the in t roduct ion rules for basic types. Rule 4 is the in t roduct ion rule for --*. The
envi ronment m a y associate a generic type cr to an identifier, bu t in ML an occurrence of an identifier has a
type r. So the condit ion in rule 5 specifies to create a generic ins tance of r of the type scheme or.

Rule 6 is the e l iminat ion rule for the basic type booL It is in teres t ing to note t h a t there are two occurrences
of r in the premises, so t h a t the rule unifies the types of the two expressions E2 and Es. Rule 7 introduces
product types. Rule 9 is the e l iminat ion rule for ---~. It performs unification on r ~ in the same way as rule 6.

From rules 4 and 8 we deduce

~-P, r 2 : p t p ~ - E 2 : r 2 p + f l t ~ - E t : r 1

p ~- AP.E~ ~2 : rl
(9')

which differs f rom rule 9. So f rom the point of view of types,

XP.I~ 1~2 ~ (letP = E~ inEx).

Rule 9 is the source of po lymorph i sm in Mini-ML: the envi ronment p" is obta ined f rom p' by generalization
wi th respect to p. It is i m p o r t a n t to unders tand t h a t generalizing p' creates several independent type
schemes, while generalizing r2 would give a single type scheme. Rule 10 defines recursively r2 in t e rms of
itself and i t exhibi ts the usua l s imilar i ty wi th rule 9 ~. There is no point in t ry ing to generalize ps wi th
respect to p + p l

The last two rules concern declarat ions. Rule 11 builds a s ingleton envi ronment , rule 12 concatenates envi-
ronments~ while checking t h a t they do not intersect. This is to exclude pa t t e rns wi th repeated occurrences
of the same variable.

To search the type env i ronment , the familiar rules of tau to logy and th inn ing are shown again in Figure 9.

37

p F- number N : i t t t

p ~- true : bool

p ~- false : bool

~ - P , r s : p I p + p ~ - E : r

p J- AP.Z : r t --* r

type-of

p ~- i d e n t x : a (r = i n s t (a))
p F- ident x : r

p F- E~ : bool p ~- E2 : r p ~- Es : r

p F- if El then E2 else E3 : r

p[-E1 :r I pF-z2:r 2

p ~- (~.,, z~) : ~ x r2

p I- l~ : rl ---* r p F - E 2 : r I

p ~ - E 1 E ~ : r

}-P, r 2 : p I p} -E~ : r2 p-}-ptl}-E1 : r l

p F- l e t P = E 2 i n E ~ : rI

~- p, r2 : p t p A- pt ~- E2 : .¢2 p + pt ~- E~ : r l

p F- letrecP = z2ins~ : rl

I- ident x, r : ident x : r

~- Pl~rl : pl ~- P2~r2 : p2
(Pl A P2 = ¢)

~-(P1,P2),rl x r2: Px +P2

Figure 8. Rules for type assignment in Mini-ML

set T Y P E _ O F is

(p" = gen(p, p'))

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(s)

(9)

(io)

(n)

(12)

e n d T Y P E _ O F

p . ~ : a l - z : ,~ (1)

p ~ x : o (y # x) (2)
p . y : a t F - x : ~

Figure 9. Searching the type environment

6.4. R e m a r k s

- Strictly speaking, the definition above is too generous. It computes recursive types for certain Mini-ML
expressions that are not supposed to have any type, such as A z . x x.

- In Mini-ML, the Subject Construction Theorem is valid [5]. Consider the proof tree for

p F - B : r .

If we label each inference step with the constructor of its subject, we see tha t this proof tree is isomorphic
to E. This result does not seem specific of Mini-ML.

- Many interesting ideas in type systems such as inheritance, overloading, coercions etc.., are not present
in Mini-ML. It is our experience tha t such ideas can be described fairly simply wi th Natural Semantics.

- The type-checker obtained from a definition in Natural Semantics is correct but not readily usable: it
fails to type-check as soon as there is one type error. It is shown in [12]how to t ransform mechani-

38

cally such a definition into a friendly type-checker that emits error messages and carries on. Further
mechanical transformations yield in certain conditions an incremental type-checker.

7. Conclus ion

In this presentation of Natural Semantics, we hope to have shown a simple and mathematically tractable
method of writing semantic descriptions. At the present time, we investigate how to incorporate these ideas
in a most faithful way in the construction of a complete interactive environment [13]. Much work is still
needed of course, but the results of the first few years indicate that it is possible to create an elegant and
reasonably efficient system.

A C K N O W L E D G M E N T S

This paper owes much to earlier contributions of D. Clement and J. Despeyroux. Th. Despeyroux has
built a large part of the system that permits testing semantic definitions. G. Berry, G. Cousineau and G.
Huet have given sound advice in various discussions.

R E F E R E N C E S

[1] CARDELLI L. , "Basic Polymorphic Type-checking", Polymorphism, January 1985.

[2] CLEMENT D. "The Natural Dynamic Semantics of Mini-Standard ML", to appear in Proceedings
CFLP, Pisa, March 1987.

[3] CLEMENT D. , J . DESPEYROUX, TH. DESPEYROUX, G. KAHN, "A simple applicative language:
Mini-ML", Proceedings of the ACM Conference on Lisp and Functional Programming 1986.

[4] COUSINEAU G. , P . L . CURIEN, M. MAUNY, "The Categorical Abstract Machine", in Functional
Languages and Computer Architecture, Lecture Notes in Computer Science, Vol. 201, September 1985.

[5] CURRY H.B . , R. FEYS, Combinatory Logic, Volume I, North-Holland Publishing Company, 1958.

[6] DAMAS L., R. MILNER, "Principal type-schemes for functional programs", Proceedings of the ACM
Conference on Principles of Programming Languages 1982, pp.207-212.

[7] DESPEYROUX J . , "Proof of Translation in Natural Semantics", Proceedings of the First ACM Con-
ference on Logic in Computer Science, LICS 1986.

[81 DESPEYROUX T . , "Executable Specification of Static Semantics", Semantics of Data Types, Lecture
Notes in Computer Science, Vol. 173, June 1984.

Igl DESPEYROUX T. , "Sp6cifications s6mantiques dans le syst~me MENTOR", Th~se, Universit6 Paris
XI, 1983.

[1O] D ONZEAU- GOUGE V., "Utilisation de la s6mantique d6notationnelle pour la description d'interpr6tatioi
non-standard: application £ la validation et £ l'optimisation des programmes", Proceedings of the 3rd
International Symposium on Programming, Dunod, Paris, 1978.

[11] GORDON M., R. MILNER, C. WADSWORTH, G. COUSINEAU, G.HUET, L. PAULSON, "The ML
Handbook, Version 5.1", INRIA, October 1984.

[12] HASCOET L. , "Transformations automatiques de sp6cifications s6mantiques. Application: un v6rificateu
de types incr6mental" Thhse , To appear, Universit6 de Nice, 1987.

[13] HEERING J . , J. SIDI, A. VERHOOG (EDS), "Generation of interactive programming environments
- GIPE intermediate report'~ CWI Report CS-R8620~ Amsterdam, May 1986.

[14] MAC QUEEN D . B . , "Modules for standard ML", ACM Symposium on LISP and Functional Program-
ming, 1984, pp.198-207.

[15] MAUNY M. "Compilation des langages fonctionnels dans les combinateurs cat~goriques. Application
au langage ML' , Th~se, Universit~ Paris 7, 1985.

I161 MOSSES P . , "SIS: a compiler generator system using denotational semantics", DAtMI, University of
Aarhus, August 1979.

[17] NAISH L., Negation and Control in Prolog, Lecture Notes in Computer Science, Vol. 238, 1986.

39

[18] Pt~AWITZ D., "Ideas and results in proof theory", Proceedings of the Second Scandinavian Logic
Symposium, 1971, North-Holland.

[19] PLOTKIN G .D., ~A Structural Approach to Operational Semantics", DAIMI FN-19, Computer Science
Department, Aarhus University, Aarhus, Denmark, September 1981.

[20] REYNOLDS J .C . , ~Three Approaches to Type Structure", Proceedings TAPSOFT, Lecture Notes in
Computer Science, Vol. 185, March 1985.

[21] WARREN D.H.D. , "Logic Programming and Compiler writing", Software-Practice and Experience,
10, 1980, pp.97-125.

