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A b s t r a c t  

During the past few years, many researchers have begun to present semantic 
specifications in a style that has been strongly advocated by Plotkin in [19]. 
The purpose of this paper is to introduce in an intuitive manner the essential 
ideas of the method that we call now Natural Semantics~ together with its 
connections to ideas in logic and computing. Natural Semantics is of interest 
per se and because it is used as a semantics specification formalism for an 
interactive computer system that we are currently building at INRIA. 

1. I n t r o d u c t i o n  

During the past few years, many researchers have begun to present semantic specifications in a style 
that has been strongly advocated by Plotkin in [19]. The purpose of this paper is to introduce in an intuitive 
manner the essential ideas of the method that  we call now Natural Semantics, together with its connections 
to ideas in logic and computing. Natural Semantics is of interest per se and because it is used as a semantics 
specification formalism for an interactive computer system that we are currently building at INRIA. 

1.1. Aim of work 

It is interesting and illuminating to present several aspects of the semantics of programming languages 
in a unified manner: static semantics, dynamic semantics, and translation. It has been shown in earlier 
work [10]that it is possible to use denotational semantics to give a satisfactory account of all these semantic 
aspects. What is more, several researchers, following [16]process the resulting formal descriptions to obtain 
actual type-checkers, interpreters, and translators. One may wonder why it should be necessary to investigate 
yet another semantics specification formalism. 

Several difficulties come up in a purely denotational definition. 

- Coding up static semantics as semantics in a domain of types turns out to be a subterfuge. Since type- 
checking aims at characterizing legal programs, the domain of type values has to include one (or several) 
values for ~wrong type". In the presence of overloading, an identifier may a priori have several possible 
types. Should the overloading resolution algorithm be part of the formal specification? As discussed in 
[9], writing static semantics in this way is more akin to programming in a functional language than to 
writing a formal specification. 

- A similar lack of abstraction and expressive uneasiness is felt when specifying translations. The need to 
have an extra parameter just for the purpose of generating new symbols in a denotational way and the 
lack of an elegant way to do backpatching are examples. A consequence is that  specifying translators 
is again considered a programming activity and proving properties of translations is made considerably 
harder. 

- Denotational semantics is of course much better suited to express dynamic semantics. Two techniques 
of denotational semantics, known as currying and continuations, are notationally difficult for most lan- 
guage designers, but following the ideas of Mosses [16]this difficulty could be overcome. In the case of 
parallelism and non-determinism, denotational semantics becomes substantially more difficult. Some- 
how an operational definition is easier to understand and more convincing. The semantic definitions 
of many new proposals for parallel languages involve axiomatizing atomic transitions, or transactions, 
and are easily expressed in Natural Semantics. But this is not to say that Natural Semantics should be 
identified with operational semantics. 

This research is partially supported under ESPRIT, Project 348. 
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The general idea of this sort of semantic definition is to provide axioms and inference rules that char- 
acterize the various semantic predicates to be defined on an expression E. To paraphrase Prawitz 118], 
%he inferences are broken down into atomic steps in such a way that each step involves only one language 
construct". 

For example in s ta t ic  semantics,  one wants  to  s ta te  tha t  expression E has type r in the  environment p. 
Hence one axiomatizes 

pl-E:r 

where the environment p is a collection of assumptions on the types of the variables of E. To specify a 
translat ion from language Lz to language L2, on gives rules of  the  form 

p t- E1 ---* ]~2 

where p records assumptions on identifiers, expression ~.1 is in the source language and E2 is in the target  
language. In dynamic semantics,  there is a much greater variance in style, depending on the propert ies of the 
language to describe. In the simplest languages, it is sufficient to express tha t  the evaluation of expression 
~. in s ta te  Sl yields a new sta te  s2. This predicate is wri t ten 

where s l  records the  values of  the  identifiers involved in s .  

A semantic  definition is a list of  axioms and inference rules tha t  define one of  the  predicates above. 
In other  words, a semantic  definition is identified with a logic, and reasoning with the language is proving 
theorems within tha t  logic. Computing (e.g. type-checking, intepreting) is seen as a way to solve equations. 
For example,  given s ta te  s l  and program z,  is there  a s ta te  s2 s.t. sz b z =~ s2 holds? Or given an initial 
type-environment P0, is it possible for expression E to be assigned a type r such tha t  P0 ~- E : r holds? 

This formulation suggests several remarks. 

- Other  kinds of equations could be of interest.  For example, given E and r ,  does there exist some p such 
tha t  p I- E : r? This is a type-inference problem. 

- Since the  presentat ion is inherently relational, ra ther  than functional,  non-determinist ic  computat ion 
will be the general case. Similarly, overloading in type-checking will arise naturally. 

- Since several logics will be defined on the same object language (e.g one assigning types  to programs 
and another  assigning values to them),  it will be interesting to examine relationships between these 
logics. 

Now there are many ways of presenting a logic. In our experiments ,  on the left of the turnsti le symbol 
~- we always have a collection of assumptions on variables, not  arbi t rary formulae. This  is most  reminiscent 
of Natural  Deduction. Rules for dealing wi th  block structure,  type-checking, or evaluating applications are 
very close to certain rules in Natural  Deduction, except for the fact tha t  our collections of  assumptions or 
environments are not  necessarily sets. Hence the name Natural  Semantics was coined, ra ther  than  the more 
restrictive and less informative "Structural  Operat ional  Semantics" of Plotkin. 

1.2. Comparison with syntax 

The way we look at Natural  Semantics is proof-theoretic: we think of axioms and rules of inferences 
as a way of generating new facts from existing facts. Inference rules allow the construct ion of new proof- 
trees from existing proof-trees. In this regard, our view is very close to the tradi t ional  use of context-free 
grammars  in computer  science. 

A grammar  is presented as a collection of  grammar  rules. The rules define legal parse trees, and as 
a consequence legal sentences. Analogously, axioms and inference rules serve in defining legal proof-trees, 
and hence the facts tha t  may be derived from axioms using inference rules. A grammar  may be used either 
as a generator or as a recognizer. There exist general algori thms to find a parse tree for a given sentence. 
Likewise, a semantic  description may be thought  of in two ways: as a generating facts or as a description 
of possible computat ions.  Corresponding to the general recognizers of context-free grammars ,  we have the 
general interpreters of semantic descriptions. Grammars  may be ambiguous, and this often considered a 
nuisance. But we want to  model  nondeterminist ic  computat ions ,  and in a logical sys tem it is generally the 
case tha t  there  are several proofs of the same fact. 
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There is however a major technical difference between grammars and logical systems. In a grammar, 
the non-terminals stand for sets of words. In an inference rule, or rule scheme, the variables stand for 
individuals (terms), and all occurrences of the same variable in the rule should be substituted with the same 
term. 

2. The formalism 

2.1. Rules 

A semantic definition is an unordered collection of rules. A rule has basically two parts, a numerator 
and a denominator. Variables may occur both in the numerator and the denominator of a rule. These 
variables allow a rule to be instantiated. Usually, typographical conventions are used to indicate that the 
variables in a rule must have a certain type. 

The numerator of a rule is again an unordered collection of formulae, the premises of the rule. Intuitively, 
if all premises hold, then the denominator, a single formula, holds. More formally, from proof-trees yielding 
the premises, we can obtain a new proof-tree yielding the denominator, or conclusion, of the rule. 

2.2. Sequents and conditions 

Formulae are divided in two kinds: scquents and conditions. The conclusion of a rule is necessarily a 
sequent. On the numerator, sequents are distinguished from conditions, that are placed slightly to the right 
of the inference rule. Conditions convey in general a restriction on the applicability of the rule: a variable 
may not occur free somewhere, a value must satisfy some predicate, some relation must hold between two 
variables. As boolean predicates, conditions are built with the help of logical connectives from atomic 
conditions. One may wish to axiomatize atomic conditions, for example in a separate set of rules, 

A sequent has two parts, an antecedent (on the left) and a consequent (on the right), and we use the turnstile 
symbol ~- to separate these parts. The consequent is a predicate. Predicates come in several forms, indicated 
by various infix symbols. These infix symbols carry no reserved meaning, they just help us in memorizing 
what is being defined. The first argument of the consequent is called the subject of the sequent. Naturally, 
the subject of a rule is the subject of its conclusion. 

A rule that contains no sequent on the numerator is called an aziom. Thus an axiom may be constrained 
by a condition. 

2.3. Judgements 

In a single semantic definition, sequents may have several forms depending on the syntactic nature 
of their subject. For example, in a typical Algol-like language, there are declarations, statements and 
expressions. The static semantics will contain sequents of the form 

Pl l- DECL : P2 

for the elaboration of declarations, of the form 

p F STM 

to assert that  statements are well typed, and also of the form 

p ~- EXP:r 

to state that expression ExP has type r. The various forms of sequents participating in the same semantic 
definition are called judgements. One reason for the elegance of the formalism is that several judgements 
are used without being given explicit names. In programming, overloading is used to the same end. Note 
that  in our context like in programming, abuse of overloading leads to obscurity. 

2.4. Rule sets 

Some structure must be introduced in a collection of rules, if only to separate different semantic con- 
cerns. For example, in static semantics, one wishes to distinguish structural rules of consistency from the 
management of scope and the properties of type values. To this end, rules may be grouped into sets, with 
a given name. Sets of rules collect together rules or, recursively, rule sets. When one wishes to refer to a 
sequent that is nxiomatized in a set of rules other than the textually enclosing one, the name of the set is 
indicated as a superscript of the sequent's turnstile. 
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2.5. Abstract syntax, Use clauses 

Semantics tells us facts about the constructs of a language. These constructs taken together form 
the abstract syntax of the language, technically an order-sorted algebra. Intuitively, each construct has 
arguments and results belonging to syntactic categories, and some syntactic categories may be included in 
others. We indicate that language L is concerned with a definition by the declaration use L. In a translation, 
two languages are involved and we have to import two algebras. Other objects, such as environments or 
stores are often elements of algebras, and we will naturally modularize our definition by importing these 
algebras as well. When analyzing mechanically semantic rules, we will identify the various abstract syntax 
constructors. Ambiguity may arise if two algebras use the same name for an operator. Most of the time 
the context will be sufficient to resolve the ambiguity, but we may have to specify what operator we really 
mean. 

Abstract syntax terms may occur in rules. They should of course be valid terms w.r.t their abstract 
syntax. Every such term is typed with a syntactic category (such as L.ezpression, or L.statement, or 
L.declaration). A language L includes all of its syntactic categories, and it is possible for two languages to 
share a given syntactic category. For example PASCAL and MODULA can share the category ezpression. 

With an abstract syntax, we also import conventions on how to write abstract syntax trees in a linear 
fashion. Except where the notation is too ambiguous, we use systematically this readable way of denoting 
terms. For example, we will write 

while COND do STM 

rather than use the general notation for terms 

while(toaD, STM) 

but the reader should be aware that the subject of a rule is never a string but a tree. 

2.6. Assigning types to rules 

The scope of variables is limited to the rule where they appear. Nevertheless, it is necessary to follow 
certain naming conventions to make a definition readable. For example, we want to assert that  variables 
called p, possibly with indices or diacritical signs, are environments. For this we allow variable declarations. 
The scope of such declarations is the set of rules where they appear. It is not necessary to declare in this 
way all variables, because often their type may be inferred. In particular, it is practically never useful to 
declare variables that  stand for abstract syntax fragments because these variables occur in the subject of 
rules. There, a language constructor dictates their type. Declarations and abstract syntax definitions serve 
then in typing sequents. It might also be wise to declare judgements, rather than merely infer how many 
judgement forms are involved in a definition. 

2.7. Typographical conventions 

In accordance with standard mathematical practice, it is convenient to associate different fonts to 
different types of variables. But it would be extremely painful to indicate these font changes as we enter the 
semantic definitions in a computer, with a keyboard that has a limited character set. Instead, we associate 
font information to types, and our type-checker is set-up to generate a text that  is fully decorated with font 
changes. This text is then processed by TEX and either printed or examined on a high resolution display. 
It is clear that a sober use of fonts enhances the readability of semantic definitions. 

2.8. General strategy ]or ezeeution 

As mentioned earlier, we want to use a computer to solve various kinds of equations on sequents. 
Typically, our unknown will be type values~ states or generated code. But environments, or program 
fragments may also be unknown. To turn semantic definitions into executable code, there are probably 
many approaches. One is to compile rules into Prolog code, taking advantage of the similarity of Prolog 
variables and variables in inference rules. Roughly speaking, the conclusion of a rule maps to a clause head, 
and the premises to the clause body. Distinct judgements map to distinct Prolog predicates. Conditions, 
although written to the right of rules, are placed ahead of the rule body. 

An equation is turned into a Prolog goal. Since pure Prolog attacks goals in a left to right manner, 
proofs of premises will also be attempted from left to right. This is not always reasonable, so that we 
need to use a version of Prolog that may postpone attacking goals until certain variables are instantiated. 
Conditions should be evaluated as soon as possible, to avoid building useless proof-trees. In our experiments, 
we have used Mu-Prolog [17]with success to that  end. 
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2.9. Actions 

It is useful to attach actions to rules, in a manner that is reminiscent of the way actions are associated 
to grammar-rules in YACC. Actions are triggered only after an inference rule is considered applicable. An 
action needs to access the rule's variable bindings, but it cannot under any circumstance interfere with 
the deduction process. Typically, actions are used to trace inference rules, to emit messages, to perform a 
variety of side effects. It is important to understand that searching for a proof may involve backtracking~ 
so that if an inference has been used in a computation at some point, it does not necessarily participate in 
the final proof. 

In terms of style, actions should be used with parsimony. For example, when specifying a translation, 
it is mandatory to aziomatize it rather than have actions generate output code. On the other hand, in the 
context of type-checking, it is more appropriate to have actions filter error messages, rather than introduce 
strange type values to handle various erroneous situations. 

A significant use of actions is in debugging inference rules. We want to follow what inference rules 
are applied, but also where they are applied. In other words, when a rule is used we want to know where 
the subject of the rule is, with respect to the subject of the initial equation. When executing a dynamic 
semantics specification~ we follow execution very precisely in this way. 

To solve this problem, we imagine that each variable that  stands for an abstract syntax tree is in fact a 
pair made of tree and a tree address. Our rule compiler then keeps track of the tree-offsets of the variables 
introduced in the subject of the rule, relative to the tree address of the subject. Within actions, the user 
can refer to the tree-address of the rule's subject via a standard variable. 

3. A smal l  func t iona l  l anguage  

As an example, we are going to write semantic specifications in Natural Semantics for a very small 
functional language. This language, called Mini-ML, is a simple typed A-calculus with constants, products, 
conditionals, and recursive function definitions. Of ML [11], it retains call-by-value. The language is strongly 
typed, but there are no type declarations, types are inferred from the context. It is possible to define functions 
that work uniformly on arguments of many types: one construct introduces ML-polymorphism. 

The dynamic semantics of ML is fairly simple to describe. The only difficulty resides in handling 
elegantly mutually recursive definitions. To illustrate compilation, we use as target code the the Categorical 
Abstract Machine (CAM) of Cousineau and Curien [4]. It is interesting to see how convenient Natural 
Semantics is to specify such a translation and some of its properties. ML typechecking is the object of 
numerous discussions in the literature, e.g. [6]. Using an inference system to describe typing goes back at 
least to Curry [5]. Reynolds [20]is a remarkable presentation in this spirit. 

We begin with an intuitive presentation of the language. 

3.1. Sample programs 

To illustrate mini-ML, we introduce several examples in concrete syntax. First of course is how to write 
the factorial function: 

l e t r ec fac t=  Ax. i f x  = 0 t h e n  1 e l sex  • fact(z  - 1) 
in  fact 4 

Next, we define and use the higher order function twice: 

le t  succ= Ax.x + 1 
in let  twice = Af .Ax . ( f  ( f  x)) 

in ((twice s~cc) 0) 

The language has block structure, so that the following expression evaluates to 6: 

let  i -- 5 
in let i = i + l i n i  

Here we have both simultaneous definitions and block structure: 

let  ($, y) = (2, 3) 
in let (x, 9) = (9, x) in 
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and  th is  las t  example  involves s imul taneous  recursive definitions: 

letrec( even, odd)-- ( Ax. t f x  = 0 t h e n  true e lse  odd( z - 1), 
Ax. i f  x = 0 then false e lse  even(x - 1)) 

ha even(3) 

3.2. Abstract Syntax of Mini-ML 

An abs t rac t  s y n t a x  is an  order-sorted algebra. It is given by a set of  sorts ,  a descript ion of their  
inclusion relations,  and  the  list of all language  constructors ,  together  wi th  their  syntac t ic  types.  The  
abs t rac t  syn tax  of Mini-ML is given 1 on Fig. 1. It defines a A-calculus ex tended  wi th  le t ,  l e t r e c ,  if, and  
products .  Fur thermore ,  in an  expression AP.e, P m a y  be ei ther  an  identifier or a (tree-like) pa t te rn .  For 
example  k(z ,  y).e is a valid expression and  so is A(x, ((V, z) , t ) ) .e ' .  T h e  cons t ruc to r  mlpair bui lds  p roduc t s  of 
expressions,  while the  pairpat cons t ruc tor  serves in bui lding pa t t e rn s  of  identifiers. The  nulIpat cons t ruc tor  
is used for the  uni t  object 0 ,  which is bo th  a pa t t e rn  and an expression.  

s o r t s  

EXP, IDENT, PAT, NULLPAT 

s u b s o r t s  
EXPD NULLPAT, IDENT 

c o n s t r u c t o r s  

Patterns 
pa i rpa t  : PAT × PAT --* 
nul lpat  : --* 

Expressions 
number  
false 
t rue 
ident  
l a m b d a  
if 
mlpai r  
apply 
let 
letrec 

PAT × EXP 

EXP X EXP × EXP 

EXP × EXP 

EXP × EXP 

PAT × EXP x EXP 

PAT X EXP X EXP 

PATD NULLPAT, IDENT 

PAT 
NULLPAT 

--~ EXP 
---* EXP 
---* EXP 
---* IDENT 
---* EXP 
--4 EXP 
---* EXP 
---+ EXP 
---* EXP 
--* EXP 

Figure 1. Abs t r ac t  Syn tax  of min i -ML 

4. D y n a m i c  S e m a n t i c s  

In Mini-ML, the  evaluat ion of a sub-expression always yields a value, so t ha t  we have to axiomat ize  the  
single j udgemen t  

where B is a Mini-ML expression,  p is an  env i ronment  and  a is the  result  of  the  evaluat ion of z: in p. 
Funct ions  can be man ipu la t ed  as any other  object in the  language.  For example  a funct ion  m a y  be passed 
as pa rame te r  to ano ther  funct ion,  or re turned  as the  value of an  expression.  Thus  the  domain  of semant ic  
values is slightly more  complicated t h a n  for a t radi t ional  Algol-like language.  

4.1. Semantic values, environments 

Values in Mini-ML are either: 

- integer values in 

- boolean values true and false, in italics to d is t inguish  t h e m  from the  li terals t rue  and false. 

1 An  abs t rac t  s y n t a x  m a y  also be presented as a set  of inference rules. Sort  inclusions give then  rise to 
inheritance rules. 
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- closures of  the  form ~AP.l~,p L where s is an  expression and p is an envi ronment .  A closure is jus t  a 
pair of  a A-expression denot ing a funct ion and an envi ronment .  

- opaque closures, i.e. closures whose conten ts  cannot  be inspected.  These  closures are associated to 
predefined funct ions.  

- pairs  of  semant ic  values of  the  form (¢*, fl) (which m a y  in tu rn  be pairs,  so tha t  trees of semant ic  values 
m a y  be cons t ruc ted) .  

Natura l ly  the  value of an  expression E depends  on the  values of the  identifiers tha t  occur free in it. These 
values are recorded in the  envi ronment .  A Mini -ML environment  p is an  ordered list of  pairs  P ~-~ a where P 
is p a t t e r n  and  a a value. The  symbol  • separates  the  e lements  of  th is  list. Here is an  example  of environment:  

(Z, y) ~-~ (true,  5) .  x ~ 1 

The  env i ronment  is intui t ively scanned f rom right to left so t h a t  in th is  example ,  x is associated to 1, y is 
associated to  5, and  no other  identifier has  a value associated to it. The  typical equat ion we want  to solve 
wi th  the  formal  s y s t e m  in Fig. 2. is 

p o F - ~ = ~ a  

where ¢~ is the  unknown  and P0 is an  initial envi ronment .  The  initial env i ronment  associates  opaque closures 
to a few predefined opera tors ,  such as + ,  - ,  etc. 

4.2. Semant ic  rules 

The  semant ic  rules of  Mini-ML are shown on Figure 2. Axioms 1 to 3 s ta te  t ha t  integer and  boolean 
li terals are in no rma l  form,  i.e. yield immedia te ly  a semant ic  value. 

p I- n u m b e r  N :=~ S (1) 

p 1- t rue  =~ true (2) 

p ~- false =~ false (3) 

p ~- AP.E ~ A P . E ,  p] (4) 

val-of 
p ~- i d e n t I ~ a  

p ~- ident  I =~ a (5) 

p ~- E~ ::~ true p l- E2 :::~ a 

p k" i f ~  then  ~ else as ==~ a (6) 

p ~- El =~ false p }" Es :=~ cx 
p ~- i rE,  then  I~ else Es :=~ a (7) 

p b E1 :=:~ Ot p 0- E2 =~/~ 

. ~ , E , ~  (9) 

p I- E~ =~.C¢ p • p ~---* a b" El =~ ]~ 
p ~- let P = E2 in zx :¢,/~ (i0) 

p • P ~"+ Ot[" E2 =:b" O~ p .  Pr---+O~'Ex=eefl 

p ~" letrec P = Z~ in E1 =:~ fl (11) 

Figure 2. The  dynamic  semant ics  of min i -ML 

Axiom 4 asser ts  t h a t  an  expression of the  form AP.E is also in normal  form. The  value obtained is a 
closure, pair ing th is  expression wi th  the  envi ronment .  This  is in sha rp  cont ras t  wi th  A-calculus, where E 
would be fur ther  reduced. Ax iom 5 s imply says t h a t  the  value associated to an identifier is to be looked up 
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in the environment. But since the environment is somewhat complex, we choose to axiomatize this process 
with auxiliary rules, the set VAL-OF. These rules are described later. Evaluation of conditional expressions 
is specified in the next two rules 6 and 7. Note that these rules have the same conclusion but that they are 
mutually exclusive. They are also exhaustive provided, as we shall assume, we evaluate only expressions 
that are type correct. The rules show that evaluation of a~, as and •s takes place in the same environment, 
and has no side effect. Hence it could be done in parallel. 

In Natural  Deduction terminology, rules 2 and 3 are introduction rules for the  boolean values true and false. 
Rules 6 and 7 are elimination rules, they tell how boolean values may be consumed. Pu t t ing  together  rule 
2 and 6 (resp. 3 and 7)we obtain two unexciting derived inference rules 

p ~- if true then z2 else as =~ a 

p ~ a~ ~ ~ (7') 
p ~- if false then E2 else as =~ a 

Rule 8 is the introduction rule for pairs of values. Both components of the pair must be evaluated. The 
lack of rules for value-pair elimination (left projection, right projection) might indicate a weakness in the 
design of Mini-ML. But a rule in the set VAL_OF serves that purpose. 

The next rule 9 deals with function application. Because of type-checking, the operator of an application 
can only evaluate to a functional value, i.e. a closure. This closure is taken apart. The closure's body is 
evaluated in the closure's environment, to which the parameter association P ~-~ a has been added. Since ~.2 
is evaluated, Mini-ML uses call-by-value. The rule is valid whether P is a pattern or a single variable. Note 
that the rule is departing from denotational semantics in that a is not a subexpression of a~ or E2. It is a 
closure elimination rule, whereas rule 4 was the closure introduction rule. From rule 4 and 9 we deduce an 
interesting rule: 

p F- E2=~a p " P ~"* O~ ]- El =~']~ 
p [- AP.EI E~ :¢" ~ (9') 

This rule can be added, as an optimization,  to the semantics of mini-ML. In the case where the operator  
of an application is syntactically a A-term, it is not  necessary to build a closure tha t  is to be taken apart  
immediately thereafter.  If we compare this new rule with rule 10, we see tha t ,  at evaluation t ime, 

AP.EI E2 = (letP = a~inax). 

Rule 10 is typical of Natural Deduction, as we can see in a logical presentation where p is implicit and 
emphasis is placed on discharging hypotheses: 

a, ::~ cz zx =t, fl (10) 
le tP  = a2in zx =~/~ 

The last rule, rule 11, defines in one and the same way the 
recursive ones such as 

l e t r e c  ( f ,  (g, h ) ) =  (Ax . . . .  f .  

( A ~ . . . . f .  

Az . . . .  f .  
i n  E 

simple recursive functions and the  mutually 

. . g . . . h . . . ,  

•,g...h...~ 
. .g. . .h.. .))  

The rule is very similar to rule 10, except tha t  expression a~ is evaluated in the  same environment  as El, 
ra ther  than  in p. We should keep in mind tha t  in Mini-ML only functional objects may be defined recursively, 
so tha t  ~ is ei ther a closure, or a tree of  closures. In bo th  cases, i t  will contain a reference to  itself and may 
be unders tood as a regular infinite tree. 

For clarity, we had omit ted  the rule dealing with predefined function symbols: 

eva! 
p F- s~ =~ opaque OP p F- E2 = ~  ~- OP, O~ :~/~ (12) 
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This  rule is an  e l iminat ion  rule for opaque closures. When  the opera tor  of an  appl icat ion evaluates to 
an  opaque  closure, we a s s u m e  t h a t  there is an  evaluator  ~VAI, t ha t  is capable of  re turn ing  a value fl 
corresponding to the  a r g u m e n t  c~. Here, we could be a little more  realistic and  have opaque closures contain  
bo th  the  n a m e  of an  operator  and t he  n a m e  of an  evaluator,  to be invoked in th is  rule. There  is no 
in t roduct ion  rule for opaque closures: we assume tha t  they  come solely f rom the  initial envi ronment .  

4.3. Searching the environment 

The  separa te  set VAL_OF (see Fig. 3.) gives rules to associate values to identifiers, given some environ- 
ment .  There  are two problems to solve. First ,  we m u s t  traverse the  envi ronment  f rom right  to left to take 
into account  block s t ructure .  This  is achieved by the  rules 1 and 2. Rule 1 could be called a tautology rule, 
and  rule 2 is a thinning rule. The  second problem is t h a t  the  env i ronment  contains associat ions of the  form 
P ~ a where P is a pa t t e rn ,  i.e. a tree of  identifiers. From typechecking we know t h a t  P is bound to a 
value of the  same  shape ,  and  rule 3 traverses P .  

s e t  V A L _ O F  is  

end VAL_OF 

p .  ident  I ~ a k- ident I ~-* a (1) 

p b- ident  I~--~ a (x # I) (2) 
p .  ident x ~ fl ~- ident I H a 

p ' P I  ~ ~ ' P 2  ~-* fl I- ident I~-~')' 

P" (P, ,  P2) ~'4 (O~,fl) ~- ident  I~-~'/ (3) 

Figure 3. The  ML envi ronment  rules 

Rule 3 is a sort  of pair e l iminat ion rule. It is an astonishingly simple me thod  to keep rules 10 and 11 
valid when  P is a pa t te rn .  

4.4. Executing the definition 

To solve the  equat ion  in the  unknown a 

we search for the  las t  s tep  of the  proof  of th is  fact.  The  s t ruc tu re  of z forces th is  s tep in general. Rules 6 
and 7 on the  one hand ,  rules 9 and  12 on the  other  can lead to backtracking.  This  s i tua t ion  is very general 
and analyzed in I2]. It is in teres t ing to remark  t h a t  the  derived inference rules 6 ~ 7 ~ and  9 ~ can be added to 
the  definition, since they can only infer valid facts.  But  they  should sys temat ical ly  be preferred to 6 and 7, 
or to 9 and  12 because they are "faster".  Intuitively, they should be preferred because their  subject  is more 
specific. 

Non- te rmina t ion  in Mini-ML m a y  occur because of rule 11. In the  process of solving the  initial equation,  
it is possible to grow the candida te  proof  tree endlessly f rom the b o t t o m  up. T h e n  the  equat ion will have 
no solution.  Remark  also t h a t  the  Mini-ML we have described uses  call-by-value. It is no t  difficult to write 
rules for a lazy Mini-ML,  along the  lines of [15]. The  idea is to create  new in t roduct ion  rules for a different 
kind of closure cMled suspensions, and new el iminat ion rules for these  suspensions .  

The  fact t h a t  we used a funct ional  language to i l lustrate dynamic  semant ics  should not  leave the  
impression tha t  imperat ive  languages  cannot  be described. Several exper iments  wi th  Algol-like languages 
are reported in [13]. 

5. T r a n s l a t i o n  

Trans la t ion  f rom one language to another  is heavily guided by the  s t ruc ture  of  the  source language.  
Hence it is clear t h a t  our  formMism is well sui ted for specifying t rans la t ions .  

Recently, Cous ineau  and  Curien have proposed a very ingenious abs t rac t  m~chine  for the  compilat ion 
of ML [4]. The  complete  semant ics  of  the  machine  is described first. Then  we specify the  t rans la t ion  f rom 
Mini-ML to CAM. 

5.1. Specifying the Categorical Abstract Machine (CAM) 
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The Categorical Abstract  Machine has its roots both  in categories and in De Bruijn 's  notation for 
lambda-calculus. It is a very simple machine where, according to its inventors, "categorical terms can 
be considered as code acting on a graph of values". Instructions are few in number  and quite close to real 
machine instructions. Instructions car and cdr serve in accessing data in the stack and the special instruction 
rec is used to implement recursion. Predefined operations (such as addition, subtraction,  division, etc.) may 
be added with the op instruction. 

5.1.1. Machine code and Machine state 

The abstract  syntax of CAM code is given in Fig. 4. 

s o r t s  

VALUE, OOM, PROGRAM~ OOMS 

s u b s o r t s  
COMDCOMS 

c o n s t r u c t o r s  

Programs 
program : COMS -~ PROGRAM 
corns : OOM* --~ COMS 

Commands 
quote : VALUE --~ COM 
car : --~ COM 
cdr : --* COM 
cons : -~ COM 
push : -~ OOM 
swap : --* OOM 
op : --+ COM 
branch : COMS×COMS -+ OOM 
cur : COMS --~ COM 
app : -~ COM 
rec : COMS -~ OOM 

Values 
int : --* VALUE 
bool : --* VALUE 

Figure 4. Abstract  syntax of CAM code 

The state of the CAM machine is a stack, whose top element may be viewed as a register. If s is a 
stack and a is a value, then pushing c~ onto s yields s • c~. Several kinds of values may be pushed on the 
stack. Atomic values 

- integers in ~ , 

- t ru th  values true and false, 

but  also closures and environments since the machine is designed for higher-order functional languages 

- closures of the form ~c,p~ . . . .  where (3 is a fragment of CAM code and p is a value that  is meant  to 
denote an environment,  

- pairs of semantic values, and hence recursively trees of such values. 

The pair constructor is used in particular to build environments. A special value () denotes the empty 
environment. 

5.1.2. Transition rules 

The rules describing the transit ions of the CAM machine appear in Fig. 5. Two judgements  are used. 
Only rule 1 involves the judgement 

s t -  c =~ c~ 
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meaning tha t  program o, s tar ted  in s ta te  s returns a as result. All other  rules involve only sequents of the 
form 

s ~ - o = ~ s '  

where c is CAM-code and s and s '  are s ta tes  of the CAM machine. The sequent may be read as execut ing  

code o when  the m a c h i n e  is in  s tate  s takes  i t  to s tate  s' .  

i n i t _ s tack  ~- ooMs =~ s • a 

~" program(OOMS) =~ a 

s F ¢ ~ s  

S ~- COM ~ 81  s 1 ~- OOMS ::~ 8 2 

8 ~" OOM; COMB :~ 8 2 

s . a F q u o t e ( v )  ~ s . v 

s . ( a ,  f l )  t- c a r  : *  s .  a 

s .  ( a ,  f l )  • c a r s  s .  f l  

s . a .  f l  ~- c o n ~  ~ s . C a ,  f l )  

s . a } -  p u s h ~ s . a . a  

s . c~ . 19 ~- s w a p  =~ s . t9. a 

eval  
~- OP, a ~ 1 9  

S . a F- op  OP ==~ S . f l  

S F- O~ =C, s 1 

(1) 

(2) 

(3) 

(4) 

(5) 

(o) 

(7) 

(8) 

(9) 

(10) 

8 "  t~'ue ~- branca~l(Ol, 02):::h-81 (11) 

8 I'- c~ :='~ Sl 
8" fa lse  ~- branch(c!., oz) ::~ 81 (12) 

s" p ~- cur(o) ::~ s" EC, P],a,~ (13) 

s.  (p,a) ~- o ~ s l  (14) 
s. (l[o, p] . . . .  a) ~- app ~ sl 

s .  ( p , p l )  ~- c=*  s .  p ,  

s .  p I- rec(o) =~ s* Pl 
(15) 

Figure  5. The definition of the Categorical Abstract  Machine 

Rule 1 says tha t  evaluating a program begins with an initial stack and ends wi th  a value on top  of 
the stack tha t  is the result of the program. The initial stack in i t_s tack contains a single element, the 
initial environment.  This environment includes the closures corresponding to the predefined operators.  For 
example, we might  have 

i n i t_s taek  = ( ( ( 0 ,  ~cdr; op  + ,  ()]~, ,~),  ~cdr; op - ,  ()]¢,,~), ~cdr; o p * ,  ( ) ] ¢ ~ ) .  

Rules 2 and 3 specify sequential execution for a sequence of commands.  Axioms 4 to 7 show tha t  
elementary instructions overwrite the top of the stack with their result. Instructions p u s h  and swap, de- 
scribed in rules 8 and 9 are useful to save the top  of the stack. Rule 10 switches to an external evaluator 
~.VAL for predefined operators.  The external evaluator must  be aware that  it receives a single tree-stuctured 
argument .  

Rule 11 and 12 define the  branch  instruction.  It takes i ts  (evaluated) condition from the top of the 
stack, and continues with either the  t rue  or the false part .  The cur  instruct ion is described in rule 13: 
cur(c)  builds a closure wi th  the code o and the current environment (top of the stack) placing it on top of 
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the stack. Rule 14 says tha t  the app instruction must  find on top of the stack a pair consisting of a closure 
and a parameter  environment.  Then the code of the closure is evaluated in a new environment:  tha t  of the 
closure prefixed by the parameter  environment. 

The last rule is the  less intuitive one. The rec instruction is used to build the self referencing environment 
pl- Such an environment  is necessary for the evaluation of recursive definitions. Notice the  remarkable 
simplicity of rule 15. 

5.1.3. Remarks 

- Given some program P wri t ten  in CAM code, to run it is to find an a such tha t  b- P =~ a .  The general 
execution s t ra tegy works well and there are never any choices to build a proof. Rule 3 is the  only one 
wi th  two premises, and they must  be t reated from left to right. 

- The Natural  Deduction point  of view does not  seem to bring much insight here, but  it is convenient to 
specify an abs t rac t  machine in the same formalism as a semantic definition. The equivalence of certain 
sequences of code can be proved easily and this is useful for optimisat ion [3]. 

5.2. Generating CAM code for Mini-ML 

We are now ready to generate CAM code for mini-ML. Here is what  we will produce for the factorial 
example in paragraph 3.1, laid out like an assembly code listing: 

push; 
rec (cur 

c o n s  

push; 
swap; 
cons; 

le trecfact  = 
(push Az. i f  

push; car  (z 
swap; quote(O) ,0 
cons; op ---- ) = 

branch (quote(l), then I else 
push; cdr  (x 
swap; push; car; cdr , (fact 

swap; push; cdr , (x 
swap; quote(l)  ,1 
cons; op - ) -  

cons; app )call 
cons; op , ) ) )  ), 

in 
car (fact 
quote (4) ,4 
app )call 

The rules for t ranslat ing Mini-ML to CAM 1 are given in Fig. 6. In these rules, except for rule 1, all 
sequents have the form: 

p ~ E - - * c  

where p is an environment,  E is an expression in Mini-ML, and c is its t ranslat ion into CAM-code.  In words, 
the sequent reads: in environment p, expression E is compiled into code e. The notion of environment  used 
in this t ranslat ion is exactly the  notion of  a pa t te rn  in Mini-ML, i.e. a binary tree wi th  identifiers at  the 
leaves. The environment  is used to decide wha t  code to generate for variables. 

Translation of  an ML program is invoked, in rule 1, with an initial environment  init_pat tha t  is merely 
a list of  predefined functions. The environment builds up whenever one introduces new names (rules 6, 10, 
and 11). It is consulted when one wants  to generate code for an identifier (rule 5). Then an access pa th  
is computed in the  ACCESS rule set. The access pa th  is a sequence of car  and cdr  instruct ions (a coding 
of  the  De Bruijn number  associated to tha t  occurrence of the  identifier) t ha t  will access the  corresponding 
value in the  stack of the  CAM. 

Rules 2, 3, and 4 generate code for literal values. Rule 5 generates an access p a t h  for an identifier. In rule 
6, the body of a A-term is compiled and then wrapped in a cur instruction. To unders tand the  next  rules, 
the following inductive assertion is useful: the code for an expression expects its evaluation environment on 

* The proof of correctness of this t ranslat ion is given in [7] 
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init _pat ~- E --* c 

~- E -'* program(c) 

p f- number  N --~ quote(N) 

p [- t rue --~ quote(true) 

p F- false --+ quote(false) 

access 
p F- i d e n t I : c  

p t- ident I ---* c 

(p ,e )  e E - ~ c  
p ~- ~P.E ~ cur(c)  

p ~- El  ~ Cl p ~- E~ ~ C 2 p ~- Es --~ CS 

p i- if E1 then  E~ else Ea --* push ;  cl; branch(c:, Ca) 

p }- E1- '*  Cl p }- E2- '*  C2 

p }- (El, E~) --*push; cl; swap; e2; cons 

p }- EI  -.* C 1 p ]- E~ ---+ C 2 

p F- El E2 --~ push;  Cl; swap; c2; cons; app 

p ~- E1 --* cl (p, p) F- E: --+ e2 

p J- le tP = E~inE2---~push;cl;cons;c2 

p ~- letrec P = E~ in E2 --~ push ;  rec(cl);  cons; c2 

(1) 

(2) 
(~) 

(4) 

(5) 

(6) 

(7) 

(s) 

(9) 

(lO) 

(11) 

Figure 6. Trans la t ion  f rom min i -ML to C A M  

top of the stack, and it will overwrite this environment with its result. Thus  the  envi ronment  mus t  be saved 
by a push ins t ruc t ion  whenever  necessary. If a t empora ry  result  is obtained,  the  swap ins t ruc t ion  will push  
it on the  stack,  while br inging back on top the  envi ronment  necessary for fur ther  computa t ion .  Now rule 7 
and  8 become quite clear. Rule 9 builds a pair of values, the  operator  and the  operand,  and then  generates 
an app. Rules 10 and 11 are very similar,  j u s t  the  way rules 10 and 11 were in dynamic  semantics .  A 
simple pa rame te r  binding is added to the  envi ronment  in rule 10, while rule I1 adds  a recursive binding. As 
indicated before, at  execut ion t ime  the rec ins t ruc t ion  will build a self-referencing envi ronment .  

F rom the  ident i ty  t h a t  is valid a t  run - t ime  

AP.E~ El ~ (let P = E~ in E2) 

we deduce t h a t  the  following inference rule should be valid 

p ~- E, --* cl  (p, P) ~- E~ -~ ~ (12) 
p ~- AP,E~ El  " ¢ p u s h ;  Cl; cons ;  c 2 

Indeed, it is shown in [3]that rule 12 m a y  be deduced f rom rules 6 and 9, once a few basic l emmas  on CAM 
code have been established.  Rule 12 is a code opt imizat ion rule. It should be added to the  other  rules and 
preferred when applicable. 

To generate  code for identifiers, t he  set  ACCESS in Figure  7. is used. Here again,  we assume the  the  
p rog ram t h a t  is to be t rans la ted  type-checks,  and  in pat icular  tha t  it  conta ins  no undeclared variables. The  
rules in th is  set  are s imilar  to the  rules in the  set VAL_OF, except t h a t  while searching for an  identifier, one 
cons t ruc t s  s imul taneous ly  i ts  access path .  

6. T y p e - c h e c k i n g  M i n i - M L  

6.1. General framework 
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se t  A C C E S S  is 

e n d  A C C E S S  

p ~-* ¢ }- ident x : c 

p ~- ident x : c 

p-  ident x ~-* c ~- ident x : c 

p I- ident x : c 
p .  ident v ~ c t 1- ident x : c (Y 5£ x) 

p • p~ ~-~ c; car .  p2 ~-~ c; cdr ~- ident x : c ~ 

P '  (Pl,P2) H c ~- ident x : c' 

(o) 

(0 

(2) 

(3) 

Figure 7. Generating access paths for identifiers 

The semantic specifications of the previous sections rely on the hypothesis tha t  they are applied to 
well-typed program fragments. From that  angle, being well typed is a constraint on abstract  syntax trees - 
what  is sometimes called context-sensitive syntax. But if an expression E has type r,  it also means that  the 
possible values tha t  E may take during execution are characterized by r. When axiomatizing 

p ~ - E : r  

where p is a type environment,  both  viewpoints are present. If the sequent has no proof, then z does not 
type-check. If it can be proved, then E has type r. The relationship between the type system and the 
dynamic semantics must  be established, by showing a variant of the Subject Reduction Theorem of [5]. 

Before introducing an inference system that  assigns types in Mini-ML, the type language has to be 
explained. In typed A-calculus every object has a type. Thus the type language must  be able to express 
basic types as well as functional types. For example, the type of the successor function Ax.x + 1 is int --* int. 
In the same way the identity function Ax.z  for integers has type int ---* int, but  for booleans it has type 
bool --* bool. It is clear that  the identity function may be defined without  taking into account the type of its 
present parameter .  To express this abstraction on the type of the parameter ,  the type variable a is bound 
by a quantifier: the polymorphic identity function has type Va.a --* a. 

6.2. The Type Language 

The type language contains two syntactic categories, types and type schemes. 

T y p e s :  a type r is either 

i. a basic type int, bool, 

ii. a type variable a ,  

iii. a functional type r --* r I, where ~ and r t are types, 

iv. a product type r x r I, where r and r ~ are types. 

T y p e  s c h e m e s :  a type-scheme a is either 

i. a type r,  

ii. a type-scheme Va.a, where a is a type-scheme. 

Remark: quantifiers may occur only at the top level of type-schemes, they do not occur within type-schemes. 

A type expression in this language may have both free and bound variables. Let us write F V ( a )  for 
the set of free variables of a type expression a. We now define two relations between type expressions that  
contain type variables. 

De f in i t i on .  A type zcheme a' is called an instance o f  a type scheme a i f  there exists a substi tution S of  
types for free type variables such that: 

U I = S ( T .  
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Ins tan t ia t ion  acts  on free variables: if S is wr i t ten  [a~ ~-- ri] wi th  c~i E FV(a)  t hen  S a  is obtained by 
replacing each free occurrence of a l  in a by ri ( renaming the  bound  variables of  a if necessary).  The  domain 
of S is wr i t t en  D(S).  

D e f i n i t i o n .  A type scheme a = V a t . . .  ar~.r has a generic instance a' : V f i l  ° . .  f i n . r ' ,  and we shall write 
a ~ a ' ,  it" there exists a substitution S such that 

r ' =  S r  with  D(S) C_ ( o q . . * a m }  

and the  fii are not free in a ,  i.e, 
fli C FV(a)  l < i < n. 

Generic ins tan t i a t ion  acts  on bound variables. Note tha t  if cr _~ a ~ then  for every subs t i tu t ion  S, S a  _>- S a  ~. 
Note also t h a t  if r and  r '  are types  ra ther  t h a n  type-schemes,  t hen  r >- C implies r = C.  

6.3. The typing rules 

T h e  rules for typ ing  Mini -ML p rograms  are given in Figure 8. Two j u d g e m e n t s  are used. The  main  
judgement  has  the  form 

pl -  I~ : r  

where the  env i ronment  p is a list of  a s sumpt ions  of the  form z : a . The  env i ronment  is to be scanned 
f rom r ight  to left. Conca tena t ion  of two envi ronments  p and  p~ is noted p + p~. An  auxil iary judgement  is 
necessary to  handle  the  declarat ion of pa t t e rns  correctly: 

~-P , r :p .  

This  fo rmula  m e a n s  t h a t  declaring P wi th  type  r creates the  type  envi ronment  p. For example we have: 

(~, Cy, ~)),  (r~ × (r2 × r s ) ) :  z :  r l .  ~ :  ~2. ~ :  rs 

The first three ax ioms are the  in t roduct ion  rules for basic types.  Rule 4 is the  in t roduct ion  rule for --*. The  
envi ronment  m a y  associate  a generic type  cr to an identifier, bu t  in ML an occurrence of an identifier has  a 
type r.  So the  condit ion in rule 5 specifies to create a generic ins tance  of r of the  type  scheme or. 

Rule 6 is the  e l iminat ion rule for the  basic type  booL It is in teres t ing to note  t h a t  there  are two occurrences 
of r in the  premises,  so t h a t  the  rule unifies the  types  of the  two expressions E2 and Es. Rule 7 introduces 
product  types.  Rule 9 is the  e l iminat ion rule for ---~. It performs unification on r ~ in the  same way as rule 6. 

From rules 4 and  8 we deduce 

~-P, r 2 : p  t p ~ - E 2 : r  2 p + f l t ~ - E t  : r  1 

p ~- AP.E~ ~2 : rl 
(9') 

which differs f rom rule 9. So f rom the point  of view of types,  

XP.I~ 1~2 ~ (letP = E~ inEx). 

Rule 9 is the  source of po lymorph i sm in Mini-ML: the  envi ronment  p" is obta ined f rom p' by generalization 
wi th  respect  to p. It is i m p o r t a n t  to unders tand  t h a t  generalizing p' creates several independent  type 
schemes,  while generalizing r2 would give a single type scheme.  Rule 10 defines recursively r2 in t e rms  of 
itself and  i t  exhibi ts  the  usua l  s imilar i ty wi th  rule 9 ~. There  is no point  in t ry ing  to generalize ps wi th  
respect  to p + p l  

The  last  two rules concern declarat ions.  Rule 11 builds a s ingleton envi ronment ,  rule 12 concatenates  envi- 
ronments~ while checking t h a t  they  do not  intersect.  This  is to exclude pa t t e rns  wi th  repeated occurrences 
of the  same  variable. 

To search the  type  env i ronment ,  the  familiar  rules of tau to logy and  th inn ing  are shown again in Figure 9. 
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p F- number  N : i t t t  

p ~- true : bool 

p ~- false : bool 

~ - P , r s : p  I p + p ~ - E : r  

p J- AP.Z : r t --* r 

type-of 

p ~- i d e n t x : a  (r = i n s t ( a ) )  
p F- ident x : r 

p F- E~ : bool p ~- E2 : r p ~- Es : r 

p F- if El then E2 else E3 : r 

p[-E1 :r I pF-z2:r 2 

p ~- (~.,, z~) : ~ x r2 

p I- l~ : rl ---* r p F - E 2 : r  I 

p ~ - E 1 E ~ : r  

}-P, r 2 : p  I p} -E~ : r2  p-}-ptl}-E1 : r l  

p F- l e t P  = E 2 i n E ~  : rI 

~- p, r2 : p t p A- pt ~- E2 : .¢2 p + pt ~- E~ : r l  

p F- letrecP = z2ins~ : rl  

I- ident x, r : ident x : r 

~- Pl~rl : pl ~- P2~r2 : p2 
(Pl A P2 = ¢) 

~-(P1,P2),rl  x r2:  Px +P2 

Figure  8. Rules for type assignment in Mini-ML 

set  T Y P E _ O F  is 

(p" = gen(p, p')) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(s) 

(9) 

( io)  

( n )  

(12) 

e n d  T Y P E _ O F  

p . ~ : a l -  z : ,~  (1) 

p ~ x : o  (y # x) (2) 
p . y : a t F - x : ~  

Figure  9. Searching the type environment 

6.4. R e m a r k s  

- Strictly speaking, the definition above is too generous. It computes recursive types for certain Mini-ML 
expressions that  are not supposed to have any type, such as A z . x  x. 

- In Mini-ML, the Subject Construction Theorem is valid [5]. Consider the proof tree for 

p F - B : r .  

If we label each inference step with the constructor of its subject, we see tha t  this proof tree is isomorphic 
to E. This result does not seem specific of Mini-ML. 

- Many interesting ideas in type systems such as inheritance, overloading, coercions etc.., are not present 
in Mini-ML. It  is our experience tha t  such ideas can be described fairly simply wi th  Natural  Semantics. 

- The type-checker obtained from a definition in Natural  Semantics is correct but  not readily usable: it 
fails to type-check as soon as there is one type error. It  is shown in [12]how to t ransform mechani- 
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cally such a definition into a friendly type-checker that emits error messages and carries on. Further 
mechanical transformations yield in certain conditions an incremental type-checker. 

7. Conclus ion  

In this presentation of Natural Semantics, we hope to have shown a simple and mathematically tractable 
method of writing semantic descriptions. At the present time, we investigate how to incorporate these ideas 
in a most faithful way in the construction of a complete interactive environment [13]. Much work is still 
needed of course, but the results of the first few years indicate that it is possible to create an elegant and 
reasonably efficient system. 

A C K N O W L E D  G M E N T S  

This paper owes much to earlier contributions of D. Clement and J. Despeyroux. Th. Despeyroux has 
built a large part of the system that permits testing semantic definitions. G. Berry, G. Cousineau and G. 
Huet have given sound advice in various discussions. 
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