Practice problems! Decision problems and estimation

Christos Dimitrakakis: chrdimi@chalmers.se

Time and scoring The numbers indicate expected time to complete the exercise. If you take more time than indicated, please note that. A "!" indicates that it may require some extra thought. A "?" indicates that this is an open question. The exercises count towards your grade.

1 Problems with no observations (30-45 min)

For the first part of exercises, we consider a set of worlds Ω and a decision set \mathcal{D} , as well as the following utility function $U : \Omega \times \mathcal{D} \to \mathbb{R}$:

$$U(\omega, a) = \operatorname{sinc}(\omega - d) \tag{1.1}$$

where $\operatorname{sin}(x) = \frac{\sin(x)}{x}$. If ω is known and $\mathcal{D} = \Omega = \mathbb{R}$ then obviously the optimal decision is $d = \omega$, as $\operatorname{sinc}(x) \leq \operatorname{sinc}(0) = 1$. However, we consider the following case:

$$\Omega = \mathcal{D} = \{-2.5, \dots, -0.5, 0, 0.5, \dots, 2.5\}.$$

Exercise 1 (15). Assume ω is drawn from ξ , with $\xi(\omega) = 1/11$ for all $\omega \in \Omega$, calculate and plot the expected utility $U(\xi, d) = \sum_{\omega} \xi(\omega) U(\omega, d)$ for each d. Report $\max_d U(\xi, d)$

Exercise 2 (5). Assume $\omega \in \Omega$ is arbitrary (but deterministically selected). Calculate the utility $U(d) = \min_{\omega} U(\omega, d)$ for each d. Report $\max(U)$.

Exercise 3 (10 (+ 40!)). Again assume $\omega \in \Omega$ is arbitrary (but deterministically selected). We now allow for stochastic policies π on D. Then the expected utility is $U(\omega, \pi) = \sum_{d} U(\omega, d)\pi(d)$.

- (a) (10) Calculate and plot the expected utility when $\pi(d) = 1/11$ for all d, reporting values for all ω .
- (b) (40!) Bonus question: Find

$$\max_{\pi} \min_{\xi} U(\xi, \pi).$$

Hint: Use the linear programming formulation, adding a constant to the utility matrix U so that all elements are non-negative.

2 Problems with observations (60-90 min)

For this section, we consider a set of worlds Ω and a decision set D, as well as the following utility function $U: \Omega \times D \to \mathbb{R}$:

$$U(\omega, d) = -|\omega - d|^2.$$
(2.1)

In addition, we consider a family of distributions on a sample space $S = \{0, 1\}^n$,

$$\mathscr{F} \triangleq \{ f_{\omega} \mid \omega \in \Omega \} \,, \tag{2.2}$$

such that f_{ω} is the binomial probability mass function with parameters ω (with the number of draws *n* being implied).

Consider the parameter set:

$$\Omega = \{0, 0.1, \dots, 0.9, 1\}.$$
(2.3)

Let ξ be the uniform distribution on Ω , such that $\xi(\omega) = 1/11$ for all $\omega \in \Omega$. Let the decision set be:

$$D = [0, 1]. \tag{2.4}$$

Exercise 4 (2). What is the decision d^* maximising $U(\xi, d) = \sum_{\omega} \xi(\omega) U(\omega, d)$ and what is $U(\xi, d^*)$?

Exercise 5 (40). In the same setting, we now observe the sequence $x = (x_1, x_2, x_3) = (1, 0, 1)$.

- 1. (5) Plot the posterior distribution $\xi(\omega \mid x)$ and compare it with the posterior we would obtain if our prior on ω was $\xi' = Beta(2,2)$.
- 2. (10) Find the decision d^* maximising the a posteriori expected utility

$$\mathbb{E}_{\xi}(U \mid d, x) = \sum_{\omega} U(\omega, d) \xi(\omega \mid x).$$

3. (25) Consider n = 2, i.e. $S = \{0, 1\}^2$. Calculate the Bayes-optimal expected utility in extensive form:

$$\mathbb{E}_{\xi}(U \mid \delta^*) = \sum_{S} \phi(x) \sum_{\omega} U[\omega, \delta^*(x)] \xi(\omega \mid x) = \sum_{S} \phi(x) \max_{d} \sum_{\omega} U[\omega, d] \xi(\omega \mid x), \quad (2.5)$$

where $\phi(x) = \sum_{\omega} f_{\omega}(x)\xi(\omega)$ is the prior marginal distribution of x and $\delta^* : S \to D$ is the Bayes-optimal decision rule.

Hint: You can simplify the computational complexity somewhat, since you only really need to calculate the probability of $\sum_{t} x_t$. This is not necessary to solve the problem though.

Exercise 6 (20). In the same setting, we consider nature to be adversarial. Once more, we observe x = (1, 0, 1). Assume that nature can choose a prior among a set of priors $\Xi = \{\xi_1, \xi_2\}$. Let $\xi_1(\omega) = 1/11 \ \xi_2(\omega) = \omega/5.5$.

1. Calculate and plot our value for deterministic decisions d:

$$\min_{\xi\in\Xi} \mathbb{E}_{\xi}(U \mid d, x).$$

2. Find the minimax prior ξ^*

$$\min_{\xi \in \varXi} \max_{\delta \in \mathscr{D}} \mathbb{E}_{\xi}(U \mid \delta)$$

Hint: Apart from the adversarial prior selection, this is very similar to the previous exercise.