
Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 1 -!

Thursday
•  “Extended Modelling Notations, Experiment”

•  Expressing scenarios that must/must not occur
•  Analysing models (E.g. verification)
•  Non-UML notations

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 2 -!

MSD Demo

param > 0

t = 0

neg

op(param)

t > 4

forbidden()

b: ClassB

0

1

2

a: ClassA

op2()

op(param)

op2()

3

1. Diagram name
2. Lifeline

9. Cut position & number

5. Condition (cold)

6. Time Condition
(hot)

8. Forbidden message

3. Message
(cold)

4. Message
(hot)

7. Clock reset

t:=0, variable_x:=3

s1
s2

variable_x !=3

t<4

false

error

go?

Example Timed Automata

2. Variable assignments

8. State name

1. Transition
3. State

7. Initial state

6. Synchronisation channel

4. State invariant

5. Guard

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 3 -!

What about the Experiment?
•  Second part of the lecture: Experiment
•  Connected to my (Grischa) research:

Are some notations harder/easier to
understand than others?

•  Participation is voluntary…but would really
help me!

•  And: Similar question style as voluntary exam
III. So, it’s a good practice!

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 4 -!

Object-oriented System
Development

Lecture 9

State Machines

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 5 -!

State machines
A group of similar things is abstracted as a class and their
common lifecycle is abstracted as a state machine.	

Parked at
gate

Taxiing to
runway

Taking off

Flying

Touching
down

Taxiing to
gate

• ID
• Altitude
• Speed
• Heading

Airplane

ABSTRACTED	

ABSTRACTED	

Like things	

Class	

State Machine	

Common behavior pattern	

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 6 -!

Statechart

A state machine formalizes a lifecycle in terms of
states, events, transitions and procedures.	

State	

Transition	

Event ���

	

Procedure	

~~~~~	





Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 7 -!

State 

A state represents a condition of an object subject to 
a defined set of rules, policies, regulations and physical 
laws.	



On	

 Off	



Broken	


Number each state 
uniquely within its 
state model.	



Name each state 
uniquely within its 
state model.	



For reference only!���
Numbers do not imply order.	





Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 8 -!

Event 

An event represents something that has happened and 
that may trigger a transition.	



On	

 Off	



Broken	



Power_removed 	



Power_applied 	



Filament_breaks	


Filament_burns_out	



Events	





Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 9 -!

Activity (Oven) 
Activity is an operation executed by an instance when 
it enters a state.	



Activity is 
composed of 
zero or more 
actions.	



Procedure	



Close_door 
 Close_door 

 Press_button 
Open_door 

Timer_expired Press_button 
 Open_door 

Open_door 

Interrupted 

Door Open Door Closed Cooking 

Complete 

Entry// 
turn off light de-energize power tube 
clear timer 
Entry// 
turn on light 

  energize power tube 
set timer for 1 minute Entry// 

turn off light Entry// 
   turn on light 

Entry// 
  turn off light 
 de-energize power tube 
clear timer 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 10 -!

Reflexive transition 

An event may invoke a reflexive transition from one 
state back into the same state.	



Oven3: Press_button	



Cooking	



Entry//	


// turn on light	


//energize power tube	


//request event delayed 
one minute	



Be careful!  The procedure is executed each time the state is 
entered.	





Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 11 -!

Typical lifecycle patterns 

Cyclic	

 Born-and-die	





Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 12 -!

State machines communicate 
Signals are exchanged among objects.	



Ready for
Scanning

Scan Completed

Arrived at Entry
Port

Getting Wafer

Transferring Wafer

Placing Wafer

Retracting to IDLE

IDLE

Wafer Robot Platform 

R2: Transfer to platform	



P6: Wafer placed 

W12: Preparation complete	



W3027	


PLAT1B	



W8021	



ROB17	


PLAT1A	



ROB23	



ROB23	



Applying Vacuum

Aligning

Vacant

In Process



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 13 -!

Collaboration diagram 

Use a class collaboration diagram to illustrate 
interaction among classes.	



:Wafer 

:Robot :Platform 
R2: Transfer to platform W12: Preparation complete 

P6: Wafer placed 

Ready for
Scanning

Scan Completed

Arrived at Entry
Port

Applying Vacuum

Aligning

Vacant

In Process

Getting Wafer

Transferring Wafer

Placing Wafer

Retracting to IDLE

IDLE

Arm <<external entity>> 
DC7: Go to entry slot DC8: Grab 

R7: Arrived 
at slot 

Hand <<external entity>> 
R8: Grab complete 

Device Control <<external entity>> 
DC7: Go to entry slot, 
DC8: Grab R7: Arrived at slot, 

R18: Grab complete 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 14 -!

A signal transmission 

Signals and Events 

On	

 Off	



 Power_applied	



generate L1: Power_applied to my_Light; 

Down	



Action that generates a signal 

Event 

UML Event Types	



•  Signal	


•  Call happened	


•  Time occurred	


•  State changed    	



signal transmission 

Power_applied 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 15 -!

E2 E2 

E1 

Order of arriving events 

A 

Each object has 
its own lifeline 

C B 

•  Clocks cannot be synchronized.	


•  To observe the sequence of signals 

generated by a single object 
synchronization is not necessary.	



•  So the sequence of signals generated by 
the same object can be preserved and 
guaranteed by the architecture.	



E1 from A occurs before E2 from A.  But 
E3 can happen anywhere before, between 
or after E1 and E2.	



E1 E3 
E3 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 16 -!

This time we end up in S3!	



Event sequencing example 

S1 S2 S3 

A C B D 
S1 

S2 

E2 E2 

E3 

E1 

S3 

E2 
E1 

E2 

E3 

Our first test concludes in state S1.	



Objects A, B and C trigger events in object D’s statechart.   
Two signals are sent in sequence from object B. 

S1 

A C B D 
S1 

E1 

S3 
E3 

E2 
S1 

S2 
E2 

S3 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 17 -!

State Charts 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 18 -!

Syntax 

 
      transition 
 
<event> ::= <event> [‘,’event][‘[‘guarded-constraint‘]’] [‘/’action] 

State name 

initial state  

final state  



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 19 -!

Conditions 

Cannot be borrowed Can be borrowed 
 

returned(copy) 

borrowed(copy) 
    [copies->forall( 
         oclInState(Borrowed))] 

returned(copy) 

borrowed(copy)  
  [copies->exist( 
      oclInState(OnShelf))] 

condition  

State chart for Book: 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 20 -!

Action 

Display SetHours SetMinutes 
do/display 
current time 

do/display 
hours 

do/display 
minutes 

modeButton() 

modeButton() modeButton() 

inc()/hours:= 
hours+1 modulo 24 

inc()/minutes:= 
minutes+1 modulo 60 

DigitalWatch 

modeButton() 
inc() 

state  

activity  



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 21 -!

Compartments 
•  Simple state chart describing how a password entry widget works: 

Enter Password 
entry / set echo invisible 
exit / set echo normal 
do / blink cursor 
character / handle character 
help / display help 

Name compartment 

Internal activities  
compartment, 
contain also actions 

Internal transition 
compartment 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 22 -!

Internal Events 

Working on Document 

entry/open document 
exit/close document 

Working on Document 

entry/open document 
exit/close document 
modify/commit modification 

modify/commit modification 

Internal event. Does not 
cause “entry” or “exit”.  



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 23 -!

Events 
•  Call events 
•  Time events 
•  Change events 
•  Signal events 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 24 -!

Time Event 

On  
first floor 

Moving up 
do/moving  
to floor 

Idle, not first fl. 

Moving down 

do/moving to 
floor 

arrived 
arrived [floor>1] 

go down(floor) 

go up(floor) 

after(20 sec)/go down(1) 

go up(floor) 

Time event 

arrived [floor=1] 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 25 -!

Signal  

<<signal>> 
RejectedWithDrawal 

date:Date 
accountNumber:String 
requestAmount:double 
availableBalnace:double 

Some of the following examples are taken from:  
             UML 2 and The Unified Process 
             Arlow and Neustadt 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 26 -!

Signal events(1) 

InCredit 
deposit(m)/balance=balance+m 
balance>=10000/notifyManager()  

RejectingWithdrawal 

entry/ logRejectedWithdrawal() 
AcceptingWithdrawal 

entry/ balance=balance-m 

withdraw(m) 
[balance >= m] 

withdraw(m) 
[balance < m] 

RejectedWithdrawal 

close() 

SimpleBankAccount 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 27 -!

Signal events(2) 

processRejectedWitdrawal(a:RejectedWithdrawal) 

Calling customer 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 28 -!

Connection transition 

OnLoan Terminated 

Overdue FineDue 

after(  
maximumDuration) 

returnBook 

[!extended] 

returnBook 

[extended] 

loan 

payFine 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 29 -!

Branching Transitions 

Unpaid 

OverPaid FullyPaid PartiallyPaid 
makeRefund 

[payment<balance] 

[payment=balance] 

[payment>balance] 

acceptPayment 

BankLoan 

acceptPayment 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 30 -!

Composite states 

Accepted 

Under treatment 

Pre-treatment 

Post-treatment 

accept patient 

treat patient 

Surgery 

incoming call/defer 

Pay bill 

Hospital 

interrupt 

Suspended treatment 

restart 
treatment 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 31 -!

Shallow history 

Accepted 

Under treatment 

Pre-treatment 
Post-treatment 

accept patient 

treat patient 

Surgery 

incoming call/defer 

Pay bill 

Hospital 

interrupt 

Suspended treatment 

continue 
treatment 

H 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 32 -!

States with Substates 
State1 State2 Staten 

a b c 

State1 State2 Staten 
b c 

finish finish finish 

finish 

Can be written as: 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 33 -!

Composite State 

•  If region one finishes, then that region will terminate, but region 
two will continue to execute.  

•  In this case, if region one terminates first, the whole composite 
state will stop executing. 

Region 1 

Region 2 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 34 -!

Constructing State Machines 
§ Draw and name the states you know. 
§ Write a comment: what does this state mean? 
§ Draw the transitions you know, into or out of each state. 
§ Do incomplete transitions suggest missing states? 
§ Define and name the known events. 
§ Assign an event to each transition; any missing events? 
§ Do events need to carry event data? 
§ Check for completeness; add discovered states/transitions. 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 35 -!

Checking for completeness 
 An automatic garage door: two buttons – up & down – and position sensors 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 36 -!

Filling the State Transition Table 

States 

Events Entry Action 

What do the empty cells mean? 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 37 -!



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 38 -!

System Sequence Diagram 
Withdraw Money 

insertCard(card) 

givePin(userPin1) 

giveAmount(amount) 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 39 -!

State Chart for Withdraw 

CardInserted 

gotCardPin 

gotWrongPinOnce 

gotWrongPinTwice 

gotWrongPinThrice 

gotRightPin 

/cardPin=card.getPin() 

givePin(userPin1) 
     [userPin1=cardPin] 

givePin(userPin1) 
     [userPin1<>cardPin] 

givePin(userPin2) 
     [userPin2=cardPin] 

givePin(userPin2) 
     [userPin2<>cardPin] 

givePin(userPin3) 
     [userPin3<>cardPin] givePin(userPin3) 

     [userPin3=cardPin] 

/complain,keep card 

giveAmount 
        (amount) 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 40 -!

Continue 
giveAmount 
        (amount) 

gotRequestedAmount 

gotCustomerID 

gotBalance 

finishedTransaction 

insufficentBalance 

/id:=card.getID() 

/balance:=getBalance(id) 

sufficientBalance 

[balance>=amount] 

Debit(id,amount) 
/giveOutCash(amount) 

[balance<=amount] 

/notifyInsufientBalance() 

/retunrCard() 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 41 -!

State Charts 
Bottle 

capacity:Integer 
contents:Integer 
fill(amount:Integer) 

Cap 
0..1 0..1 

empty partiallyFilled 

filled 

capped 

fill(amount:Integer) 
[amount<capacity] 

fill(amount:Integer) 
[contents+amount<capacity] 

fill(amount:Integer) 
[contents+amount>=capacity] 

fill(amount:Integer) 
[amount>=capacity] 

[contents = capacity] 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 42 -!

empty partiallyFilled 

filled 

capped 

fill(amount:Integer) 
[amount<capacity] 

fill(amount:Integer) 
[contents+amount<capacity] 

fill(amount:Integer) 
[contents+amount>=capacity] 

fill(amount:Integer) 
[amount>=capacity] 

contents = capacity 

Making Contract 
context Bottle::fill(amount:Integer) 
pre: not filled and not capped 
post: (partiallyFilled and  
                      content@pre + amount < capacity) 
        or 
          (filled and contents@pre + amount >= capacity) 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 43 -!

Code: DigitalWatch 

Display SetHours SetMinutes 
do/display 
current time 

do/display 
hours 

do/display 
minutes 

modeButton() 

modeButton() modeButton() 

inc()/hours:= 
hours+1 modulo 24 

inc()/minutes:= 
minutes+1 modulo 60 

DigitalWatch 

modeButton() 
inc() 

state  

activity  



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 44 -!

State 

public class State{ 
    public final int Display = 1; 
    public final int SetHours = 2; 
    public final int SetMinutes = 3; 
    public int value; 
}  

DigitalWatch 

+ modeButton() 
+ inc() 

State 
+ Display : int = 1 {frozen} 
+ SetHours : int = 2 {frozen} 
+ SetMinutes : int = 3 {frozen} 
+ value : int 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 45 -!

public class DigitalWatch{ 
    private State state = new State(); 
    private DigitalDisplay LCD = new DigitalDisplay(); 
  
   public DigitalWatch(){ 
       state.value = state.Display; 
       LCD.displayTime(); 
    } 
    
    public void modeButton() { … } 
    
    public void inc() { … } 
} 

DigitalWatch 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 46 -!

ModeButton 
public void modeButton() { 
       switch (state.value){ 
            case state.Display :  
                             LCD.displayTime(); 
                             state.value =  state.SetHours; 
                             break; 
             case state.SetHours:  
                             LCD.displayHours(); 
                             state.value = state.SetMinutes; 
                             break; 
              case state.SetMinutes:  
                            LCD.displayTime(); 
                            state.value = state.Display; 
                            break; 
         } 
} 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 47 -!

Inc 
public void inc() { 
         switch (state.value){ 
              case state.Display : break; 
              case state.SetHours: LCD.incHours(); 
                                                  break; 
              case state.SetMinutes: LCD.incMinutes(); 
                                                     break; 
          } 
} 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 48 -!

Design Pattern: State 

DigitalWatch 

+ modeButton() 
+ inc() 

State 

Display 

+inc() 

Hours 

+inc() 

Minutes 

+inc() 

+inc() 

Comment: 
   This is more object oriented!  



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 49 -!

Two examples to show the power 
of state charts 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 50 -!

The life cycle of an applet 

init 
start 

stop 

destroy 

Loading 
applet 

Leaving 
page Visiting 

page 

Discarding 
page 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 51 -!

Thread states 

New Thread Dead 

yield 

start 

The run method terminates 

sleep 

(finish sleeping) 

wait 

notify 

I/O finish 

public final boolean isAlive() 
      A thread is alive if it is in the state ”Runnable” or ”Blocked” . 

Blocked 
Wait to be 

notified 

Wait for target 
to finish 

Wait for I/O 

Sleeping 

Runnable 

Not 
interrupted 

interrupted 

join 

target finish 
blocked on I/O 

Alive 

interrupt 

interrupt()/throws InterruptedException 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 52 -!

Appendix 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 53 -!

Interaction Diagrams in UML2 
•  There are four different kinds of interaction 

diagrams: 
–  Sequence diagrams 
–  Communication diagrams (formerly known as collaboration 

diagrams) 
–  Interaction overview diagrams (combination of activity and 

sequence diagrams) 
–  Timing diagrams (not treated in this course) 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 54 -!

Example 

 
 

•  Communication diagrams are usually more concise 
than sequence diagrams 

•  But: They are often considered harder to read 
•  In UML2, communication diagrams are far less 

powerful than sequence diagrams 

:Copy :Book 

borrow(theCopy) 
:LibraryMember 

1:okToBorrow 

2:borrow 
2.1 borrowed 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 55 -!

Message  

:StudentReg :AdmSystem 
  isReg(studNum) 

message flow 

parameters 
link line  

:StudentReg 

:AdmSystem 
  n=numOfStud(studNum):int 

return value name 

return value type 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 56 -!

Start-message 
•  Can start with a  system call. The system operation can be found 

in the system class. 

addStudent 
removeStudent 
listStudent 
numOfStudent 

System 

:StudentReg :AdmSystem 
1:n= numOfStudent():int 

n:= numOfStudent():int 

first internal 
message  

first message  



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 57 -!

Sequence numbering 

:Class1 
msg1() 

:Class2 

:Class3 :Class4 

2:msg4() 

1:msg1() 

1.1:msg3() 

first   

fourth 

second 

third 

3:msg2() 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 58 -!

Example 

:Copy :Book 

borrow(theCopy) 
:LibraryMember 

1:okToBorrow 

2:borrow 
2.1 borrowed 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 59 -!

Create 

s1:Student :StudentReg 
1:create(firstName,…) 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 60 -!

Conditions  

:Class1 
msg() 

:Class2 

:Class3 :Class4 

1a[test]: msg1() 

1b[not test]: msg3() 

s1:Student :AdmSystem 
1 [condition]: create(...) 

1a.1: msg2() 

1b.1: msg4() 

1a and 1b are mutually  
exclusive conditional paths 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 61 -!

Iterations 

:Calculator 
calcPrim(n) 

:PrimModule 

1*[z=1..n]: prim = nextPrim(prim) 

:Class1 :Class2 
1*:msg1() 

Recurrence value omitted 



Datavetenskap 

Rogardt Heldal! Classes, Objects, and Relations! - 62 -!

Class methods 

Date :AdmSystem 
1:d=today() 

instance  

<<metaclass>> 

Message to 
class (a static 
method call) 


