
Software Engineering

Grischa Liebel! Interaction Diagrams! - 1 -!

Next Thursday

•  “Extended Modelling Notations, Experiment”

•  Expressing scenarios that must/must not
occur

•  Analysing models (E.g. verification)
•  Non-UML notations

Software Engineering

Grischa Liebel! Interaction Diagrams! - 2 -!

What about the Experiment?

•  Second part of the lecture: Experiment
•  Connected to my (Grischa) research:

Are some notations harder/easier to
understand than others?

•  Participation is voluntary…but would really
help me!

•  And: Similar question style as voluntary exam
III. So, it’s a good practice!

Software Engineering

Grischa Liebel! Interaction Diagrams! - 3 -!

Object-oriented System Development

Lecture 7

Sequence Diagrams

Software Engineering

Grischa Liebel! Interaction Diagrams! - 4 -!

Learning Outcomes
•  …be able to create UML Sequence Diagrams (Lifelines,

different message types, different combined fragments,
conditions)

•  …be able to reflect on the complexity of Sequence Diagram.
When is it suitable to have a higher/lower abstraction/level of
detail?

•  …be able to create Sequence Diagrams given component and
interface definitions and/or Use Cases

•  …be able to describe a process to systematically refine your
system design starting from sequence diagrams with abstract
components down to actual façade classes, interfaces, and
classes within your component

•  …be able to argument why you use/don’t use certain parameter
types in your component interfaces

Software Engineering

Grischa Liebel! Interaction Diagrams! - 5 -!

p:Person e:Employee v:Vehicle
borrow(v)

borrow(p,v)

borrow(p,v)
c:Contract

«create»(p,v)
c c c

Sequence Diagrams

•  Concentrate on control flow
SD Borrowing

Software Engineering

Grischa Liebel! Interaction Diagrams! - 6 -!

Sequence Diagrams

•  Concentrate on control flow, show invocations
of methods & operations

•  Diagrams do not show
–  Computations that take place
–  Most of the data flow

•  Responsibilities of classes in context
–  More readable than a textual description

•  Time runs from top to bottom in diagram!

Software Engineering

Grischa Liebel! Interaction Diagrams! - 7 -!

Basic Sequence Diagrams: Objects

e:Employee

Lifeline

Tail, shows
how long the
lifeline exists

c:Contract
«create»(p,v)

Objects can be created:

c:Contract

«destroy»

… and destroyed:

Software Engineering

Grischa Liebel! Interaction Diagrams! - 8 -!

Lifelines
grischasAccount[id=“1234”]:Account

name selector type

refer to the lifeline within the
interaction

name of the classifier of which the
lifeline represents an instance

Software Engineering

Grischa Liebel! Interaction Diagrams! - 9 -!

Basic Sequence Diagrams: Messages

e:Employee

borrow(p,v)

Usually:
method/operation
invokation

“Activation”, shows
how long object is

processing
message

Activations are often left
out in diagrams:

e:Employee

borrow(p,v)

Software Engineering

Grischa Liebel! Interaction Diagrams! - 10 -!

Messages

•  Synchronous message
•  Asynchronous message
•  Message return
•  Object creation
•  Object destruction
•  Found message
•  Lost message

:B

aMessage(aParameter)

aMessage(aParameter)

<<create>>aMessage()

<<destroy>>

Software Engineering

Grischa Liebel! Interaction Diagrams! - 11 -!

Basic Sequence Diagrams: Alternatives

•  Choose between two (or more) possible scenarios:

[e is not allowed to borrow v]

null

c

……

……

alt

[else]

“Combined fragment”
borrow(p,v)

Software Engineering

Grischa Liebel! Interaction Diagrams! - 12 -!

Other Combined Fragments
opt [b.waitingCustomers->notEmpty()]

•  neg
•  assert
•  …
•  See the UML spec!

Software Engineering

Grischa Liebel! Interaction Diagrams! - 13 -!

Loops
p:Person :RentalService

borrow()

v = borrow()

loop [need more vehicles] Arbitrarily many
(while-loop)

v = borrow()

loop 5 Exactly 5

v = borrow()

loop 2,5 [need more v.]
Unclear semantics!

One possible
interpretation:

minimum 2, up to 5 as
long as condition holds

Software Engineering

Grischa Liebel! Interaction Diagrams! - 14 -!

e:Employee

Combined Fragments: Break
•  Variant of “opt”: Leave enclosing blocks if condition holds

c:Company

findEmployeeWithNr(nr:int)

employees

loop (for each e in employees)

k = getEmployeeNr()

null

break [k=nr]
e

If condition holds,
loop is left

Software Engineering

Grischa Liebel! Interaction Diagrams! - 15 -!

Combined Fragment: Parallelism
•  Do 2 or more things in parallel

(order is unspecified)
•  Similar to activity diagrams

•  Further keywords: seq, strict, critical

par

…

…

Software Engineering

Grischa Liebel! Interaction Diagrams! - 16 -!

State Invariants
•  Express that some property is supposed

to hold at a point
•  Documentation + consistency checks

p:Person :RentalService
borrow()

v = borrow()

loop 5

{have 5 cars} {at least 5 cars are rented}

{have at least 5 cars}

Software Engineering

Grischa Liebel! Interaction Diagrams! - 17 -!

What are Interaction Diagrams
good for?

•  Distributing responsibilities, designing
interaction between systems or objects

•  Documentation

•  Testing, comprehension: Diagrams for
particular scenarios (traces) can be
created automatically from code

Software Engineering

Grischa Liebel! Interaction Diagrams! - 18 -!

:Librarian

sd returnBook

finishReturn()
rc:ReturnController

returnExemplar()

for each l in rc.finishedLendings

l:Lending

setReturnDate()

finishRunning
Lending()

lastExamplar
:Exemplar

notifyWaiting
Customer()

makeFormer
Lending()

book:Book

printRecept()

resetController()
What’s the ‘right’

complexity?

Software Engineering

Grischa Liebel! Interaction Diagrams! - 19 -!

Complexity of Interaction
Diagrams

•  Big interaction diagrams are very hard to read

•  Important to choose right level:
–  Abstraction: how many details?
–  Generality: how many cases?

•  Decide which aspects a diagram is supposed
to show!
–  Hide everything else

Software Engineering

Grischa Liebel! Interaction Diagrams! - 20 -!

How many Details?

•  Unfold method calls?
•  UML “ignore” feature (Unclear semantics!)
•  Sub-diagrams? (“ref” Combined Fragment)

•  Also: Is it important to be accurate?
•  Who do you target with the diagram?

(Manager, Developer, Customer?)

Software Engineering

Grischa Liebel! Interaction Diagrams! - 21 -!

How many Scenarios?

•  One general diagram

•  Many specialised diagrams

•  Similar to use cases (vertical splits)
•  Handling too many cases (e.g. errors)

clutters diagrams

Software Engineering

Grischa Liebel! Interaction Diagrams! - 22 -!

Example: General Diagram
p:Person e:Employee v:Vehicle

borrow(v)

[not employee, no partner]
null

alt

[else]
borrow(p,v)

[e is not allowed to borrow v]

null null

alt

[else]
borrow(p,v)

c:Contract
«create»(p,v)

c c c

Software Engineering

Grischa Liebel! Interaction Diagrams! - 23 -!

Referencing other Diagrams
p:Person e:Employee

borrow(v)

[not employee, no partner]
null

alt

[else]
borrow(p,v)

Ref SD_Detailed_Diagram

c c

Includes another Diagram!

Software Engineering

Grischa Liebel! Interaction Diagrams! - 24 -!

Problem Domain: A Library
(once more)

Book
ISBN
title
author

Exemplar
* exemplars

1

Lending
startDate
lendingPeriod
actualReturnDate

Customer
name

* lendings

1

runningLending

0..1 0..1

formerLendings

* 0..1

* *

waitingCustomers

{ordered}

Software Engineering

Grischa Liebel! Interaction Diagrams! - 25 -!

Use Case: Returning Books
•  Actor: Librarian
•  Goal:

Register books returned by customer
•  Description:

The librarian enters the name of a customer
and selects one or more books as returned.
The system registers the books as returned,
prints a receipt with the fee that the customer
has to pay for late books, and notifies
customers that are possibly waiting for the
returned books.

Software Engineering

Grischa Liebel! Interaction Diagrams! - 26 -!

Write a Detailed Use Case and a
System Sequence Diagram!

Software Engineering

Grischa Liebel! Interaction Diagrams! - 27 -!

Use Case: Returning books
1.  Librarian starts return of books
2.  System prompts customer name
3.  Librarian enters customer name
4.  System validates name, retrieves lent books
5.  System displays list of lent books
6.  WHILE (further books to be returned)

1.  Librarian selects a returned book
2.  System checks the lending period
3.  System displays accumulated fee for late books

7.  Librarian finishes the book return
8.  System marks the selected books as returned
9.  System prints a receipt with the fee for late books
10.  System prints notifications for waiting customers

Software Engineering

Grischa Liebel! Interaction Diagrams! - 28 -!

System Sequence Diagram
:LibComponent

identCustomer(name)

returnBook(l:Lending)

Librarian

loop

runningLendings:Lending[*]

finishReturn()

accumFee:Real

Printing would be
a further call

Use a component
interface instead!

Software Engineering

Grischa Liebel! Interaction Diagrams! - 29 -!

Refinement of (System)
Sequence Diagrams

•  One possibility:
1.  Draw a sequence diagram that depicts communication

between user and components (or between components)

2.  Divide each component into multiple interfaces à Refine
sequence diagrams to communicate with the interfaces
instead

3.  Within the component, start with your domain model and
add façade classes for each interface

4.  Later on: possibly refactor the class diagram to include
further classes that implement the actual functionality and
get called from the façade!

Software Engineering

Grischa Liebel! Interaction Diagrams! - 30 -!

Refinement: Add an Interface

 <<interface>>
 ILibrary

identCustomer(String):Lending[*]
returnBook(Lending)
finishReturn()

interface

<<component>>
LibComponent

realization

Software Engineering

Grischa Liebel! Interaction Diagrams! - 31 -!

Refinement: Add Interface
:ILibrary

identCustomer(name)

returnBook(l:Lending)

Librarian

loop

runningLendings:Lending[*]

finishReturn()

accumFee:Real

Software Engineering

Grischa Liebel! Interaction Diagrams! - 32 -!

Refinement: Add Interface & Facade to
Domain Model

Lending
startDate
lendingPeriod
actualReturnDate

Customer
name

* lendings

1

runningLending

0..1

formerLendings

*

*

waitingCustomers

{ordered}

ILibraryImpl

*
remainingLendings

finishedLendings
*

identCustomer(String)
 :Lending[*]
returnBook(Lending)
finishReturn()

0..1
0..1

treatedCustomer

fee:Real

 <<interface>>
 ILibrary

identCustomer(String):Lending[*]
returnBook(Lending)
finishReturn()

Software Engineering

Grischa Liebel! Interaction Diagrams! - 33 -!

Types: What does your environment
know?

 <<interface>>
 ILibrary

identCustomer(String):Lending[*]
returnBook(Lending)
finishReturn()

Is “Lending” a type that is only
known inside your

component?

•  Often, the types you are using within your component
(Class Diagram) are private to that component

•  This means, using them as parameters for interface
operations does not make sense!

•  Solution: Use only primitive datatypes & collections

Software Engineering

Grischa Liebel! Interaction Diagrams! - 34 -!

Learning Outcomes
•  …be able to create UML Sequence Diagrams (Lifelines,

different message types, different combined fragments,
conditions)

•  …be able to reflect on the complexity of Sequence Diagram.
When is it suitable to have a higher/lower abstraction/level of
detail?

•  …be able to create Sequence Diagrams given component and
interface definitions and/or Use Cases

•  …be able to describe a process to systematically refine your
system design starting from sequence diagrams with abstract
components down to actual façade classes, interfaces, and
classes within your component

•  …be able to argument why you use/don’t use certain parameter
types in your component interfaces

Software Engineering

Grischa Liebel! Interaction Diagrams! - 35 -!

Papyrus

•  How to define Sequence Diagrams with
component interactions?

à Demo

