
Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 1 -!

Object Oriented System Development
Lecture 5

Contracts, Classes, Objects and Relations

Rogardt Heldal

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 2 -!

 Use case Register Student

Pre: Student id exists and course code exists and places exist on
 the course and the student meets all the course pre-requirements

Post: Student is registered on the course

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 3 -!

Pre-condition
•  Pre:

–  Student id exists and course code exists and places exist on
 the course and the student meets all the course pre-requirements

This pre-condition is true if all these are true:

–  Student id exists
–  Course code exists
–  …

This pre-condition is false if any of these conditions is false

–  Student id exists
–  Course code exists
–  …

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 4 -!

Post-condition
•  Post: Student is registered to the course

•  This post-condition is true only if a student is
registered.

•  That means that a student should always be
registered to a course after executing the use
case!

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 5 -!

Contract
•  Pre and Post-conditions are the contract for

the use case.
•  Or put in another way:

–  Pre-condition is what should be true for the use
case to guarantee the post condition.

–  Post-condition is what should be true after ending
any of the scenarios of the use case.

•  So, when writing the use case flows:
–  Given the pre-condition, write the flows in such a

way that it meet the post-conditions

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 6 -!

Contract
•  pre-conditions
 implies
 <running a scenario> post-conditions

True implies True (True)
True implies False (False)
False implies True (True)
False implies False (True)

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 7 -!

 Use case Register Student

Pre: Student id exists and course code exists and places exist on
 the course and the student meets all the course pre-requirements

Post: Student is register to the course

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 8 -!

 Use case Register Student
Pre: Student id exists and course code exists and places exist on
 the course and student meets all the course pre-requirement

Post: Student is register on the course

1. User input student id and course code
2. System find student and course
3. System register student to course

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 9 -!

 Use case Register Student

Pre: True

Post::
if Student id exists and course code exists and places exist on
 the course and student meets all the course pre-requirement
then Student is registered to the course
else True

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 10 -!

 Use case Register Student
Pre: True

Post::
if Student id exists and course code exists and places exist on
 the course and student meets all the course pre-requirements
then Student is registered to the course
else True

1. User input student id and course code
2. System find student and course
3. Assume: that student and course existed
4. System register student to course
5. Assume: enough places on the course
6. Assume: student had the require courses

3 alternative
Cases:
Assume:
 student don´t
 exist
…

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 11 -!

 Use case Register Student
Pre: True

Post::
if Student id exists and course code exists and places exist on
 the course and student meets all the course pre-requirements
then Student is register on the course
else nothing is changed in the system

1. User input student id and course code
2. System find student and course
3. Assume that student and course existed
4. System register student to course
5. Assume enough places on the course
6. Assume student had the require courses

3 alternative
Cases:
Assume:
 student don´t
 exist
…

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 12 -!

Operation
pre. y<> 0
div(x,y) : int
 return x/y (this is ok, due to pre-condition)

Misunderstood pre-condition:
pre y<> 0
div(x,y) : int
 if y<> 0 (y should be different from 0)
 then return x/y
 else …

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 13 -!

Use case: Withdraw Money
Only main flow:
1.  user identifies himself by a card
2.  system reads the bank ID and account number from card and

validates them
3.  user authenticates by PIN
4.  system validates that PIN is correct
5.  user requests withdrawal of an amount of money
6.  system checks that the account balance is high enough
7.  system subtracts the requested amount of money from account

balance
8.  system returns card and dispenses cash

Suggested names for operations

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 14 -!

System Sequence Diagram
Withdraw Money

ATM:System

identify(card)

authenticate(pin)

:Customer

withdraw(amount)

Syntax will be covered
in later lectures in

more detail!

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 15 -!

xxx:System

M1()
M2()

:Customer

M3()

:Customer

M1()
M2()
M3()

Pre:…
Post:

mmm

Pre and post-condition
of the use case only
state what should be
true before and
after the execution of
all the methods

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 16 -!

Contract

System operations

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 17 -!

Example: Contract

•  Operation: withdraw(amount:int)
•  Postcondition:

–  If account contains enough cash
 then the balance of the account for the inserted card
 is decreased by “amount” AND
 the card has been returned AND
 cash had been dispensed
 else the account balance has not been changed AND
 card had been returned

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 18 -!

Contract Template
•  The signature of the operation:

–  Name, parameters, return value

•  Description of the operation (optional), for instance
–  Informal meaning of operation
–  Implementation in pseudo-code

•  Description of the parameters (optional)
•  Description of the operation’s result (optional)
•  Cross-reference
•  Precondition
•  Postcondition

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 19 -!

Use Domain Model to obtain pre- and
post-conditions

•  Furthermore, the domain model can be used as the basis for the
creation of the contracts.
–  The precondition specifies what has to hold in the domain model

before the call to the operation.
–  The postcondition has to specify what has to hold in the domain

model after the execution of the call.

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 20 -!

Postcondition
•  The postcondition has to specify the following things:

–  What instances have been created?
–  What attributes are modified?
–  What associations (to be precise, UML links) are formed and broken?
–  What value is returned from the operation?

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 21 -!

Example: Withdraw Money
•  What attributes are modified?

–  The balance attribute in the concept Account might be changed.

Account
balance:Integer

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 22 -!

Problem
Write a contract for the operation authenticate.
 …
4. user authenticates himself by PIN
5. system validates that PIN is correct
 …

•  4a. Wrong pin less than 3 times:

–  1. System updates number of tries
–  2. start from action step 3

•  4-8a. Wrong pin 3 times:
–  1. System keeps the card

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 23 -!

Part of the solution
•  Operation: Authenticate (userPin: Integer):PinResult
•  Cross-ref: Withdraw Money
•  Result:

–  PinResult::Correct if authentication successful,
–  PinResult::Wrong if authentication failed, but further tries possible
–  PinResult::Abort if authentication failed

•  post-condition: ?

<<enumeration>>
 PinResult

Correct
Wrong
Abort

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 24 -!

Solution
•  Operation: Authenticate (userPin: Integer): PinResult
•  …
•  post-condition:

–  if userPin was equal to the pin of the inserted card
 then PinResult::Correct has been returned
 else if tries was at most 3
 then tries has been incremented by 1 AND
 PinResult::Wrong has been returned
 else card has been kept AND
 PinResult::Abort has been returned

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 25 -!

More details into Contracts
•  In contracts, one often is more precise than in use cases, even

formal.
•  On the next slide we show a formal contract written in Object

Constraint Language (OCL) for Withdraw Money.
•  We might come back to OCL later in this course.

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 26 -!

Formal Contract
Context ATMController::giveAmount(amount:long) post:
 if (amount <= bank.getBalance(card.getID())) then
 cashDispenser^giveOutCash(amount)
 and bank.getBalance(card.getID())
 = bank.getBalance@pre(card.getID()) - amount
 and card^returnCard()
 else
 not cashDispenser^giveOutCash(?)
 and bank.getBalance(card.getID())
 = bank.getBalance@pre(card.getID())
 and card^returnCard()

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 27 -!

Problem
•  Write contract for the system operations obtained from “register

on course”.

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 28 -!

What next?

Essential use cases
Domain model
(contracts)

code

real use cases

further modelling
 interaction diagram
 class diagram
 …

Design Analysis

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 29 -!

Classes

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 30 -!

Obtaining operations

p2:Point

p1:Point

: Line move(p3)
move(p3)

move(p3)

2
Line

move(dist:Point):void

Point
x:double
y:double

 move(dist:Point):void

1

Line
Point

X:double
Y:double

1 2

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 31 -!

Mapping to code
•  One can map a UML class to many different code skeletons in

different programming languages such as:

Point
x:double
y:double

 move(dist:Point):void

Java

C#

C++

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 32 -!

UML Classes: Visibility
Point

- x:double
- y:double

 + move(dist:Point):void

Mapping visibility to java:
•  - -> private
•  # -> protected
•  + -> public
•  ~ -> package

(In this case the semantics of -,#,+,~ will be the one
of Java.)

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 33 -!

UML attribute
UML:
 [visibility] name [multiplicity] [:type] [= initial value]

[{properties}]

Properties could be:

–  changeable (Variable may be changed.)
–  addOnly (When multiplicity is bigger than one you can add more

values, but not change or remove values.)
–  frozen (Cannot be changed after it has been initialized.)

•  Example:
–  x : int {frozen}

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 34 -!

Operations/methods
 UML:

 [visibility] name [(parameter list)] [: return type] [{properties}]

 You can have zero or more parameters. Syntax for
parameters:

 [direction] name : type [= default value]
–  direction: in, out, inout

•  Example of a property
–  isQuery (no ”side effects”)

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 35 -!

Relations
•  All the associations we consider when drawing

domain models can also be used in class
diagrams.

•  But there are some interesting issues to
consider …

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 36 -!

Navigability

Point Line 1 2

Line knows Point,
but Point doesn’t know
Line.

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 37 -!

Association constraint
Constraint:
•  changeable (Links may be changed.)
•  addOnly (New links can be added by an object on the opposite

side of the association.)
•  frozen (When new links have been added from an object on the

opposite side of the association, they cannot be changed.)
•  ordered (Has a certain order)
•  bag (multisets instead of sets)
•  …

Company Person
{ordered}

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 38 -!

Class methods and class variables

Account
-interestRate:double
-balance:double

 +changeInterestRate(newinterestrate:double)

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 39 -!

Association names UML

Person Company * *
employees employers

works for

Association name, Verb phrase

Role name,
Noun phrase

UML:

Person works for company
Can be read only one way

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 40 -!

Class templates

Stack

+ empty():Boolean{isQuery}
+ push(e:T):Void
+ pop():T

- n: int
- s : T[size]

T
size:int

PersonStack

<<bind>>(Customer,10)

Stack<Person,10>

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 41 -!

Interface

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 42 -!

Interfaces

•  Interfaces are very important. By using an
interface you can separate implementation
from specification.

•  An interface specifies a service of a class or

component.

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 43 -!

Interfaces in UML

 <<interface>>
 AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

interface

DiscPlayer

In this lecture we will just look at interfaces connected to classes,
but later we will also look at interfaces connected to components.

realization

MultiMedia

dependency

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 44 -!

The same interface

Here TapePlayer is a new implementation of AudioPlayer. If you have
done everything correctly you only have to change the implementation
of the methods in the interface, the rest of the program remains the
same.
The MultiMedia doesn’t need to be changed!

TapePlayer

MultiMedia

 <<interface>>
 AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 45 -!

Dependency

DiscPlayer

MultiMedia

dependency

The class MultiMedia uses the methods in the interface,
which are implemented by DiscPlayer.

DiscPlayer
AudioPlayer

MultiMedia

dependency

realization <<interface>>
 AudioPlayer
play()
stop()
pause()
skipForward()
skipBackwards()

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 46 -!

Interface Specifiers
 <<interface>>
 IEmployer

getCompensation()
getBenefits()

Person Company - employer:IEmployer
1..* 1

A person can have many other roles, such as customer, boss, father,
pilot etc.

Roles can be shown using interfaces.

Person - supervisor:IManager

- worker:IEmployee 1 *

- employees
works for

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 47 -!

Inheritance

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 48 -!

Example: Dwelling-house

DwellingHouse
#additionalInsulation:boolean

+ insulate()

super class

sub class

Inheritance

House
#length:double
#width:double
#numberOfFloors:int
#lastRenovation:int
+ area():double

: visible with class and
 in subclasses

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 49 -!

Instances
Sometimes you want to work with instances of House

and sometimes with instances of DwellingHouse etc.

length = 20
width = 15
numberOfFloors = 2

:House

length = 30
width = 20
numberOfFloors = 3
additionalInsulation = true

:DwellingHouse

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 50 -!

leaf: stops inheritance
 public final class A {

 …
 }

 Note that also a method can be final. Then the method must not be
changed in the sub classes, e.g.

 public final int test (int x) {

 …
 }

 A
{leaf}

B
Not allowed!

Datavetenskap

Rogardt Heldal! Classes, Objects, and Relations! - 51 -!

Multiple inheritance

•  This is allowed in C++, but not in Java.
 (But: For interfaces in Java multiple inheritance

is allowed)

PrivateCar MotorBoat

AmphibiousCar

