
Datavetenskap

Rogardt Heldal! Use Cases! - 1 -!

Lecture 3

Use cases

Rogardt Heldal

Datavetenskap

Rogardt Heldal! Use Cases! - 2 -!

Objectives
•  To be able to

–  Understand the difference between “inside” and
“outside” of a system

–  describe the behaviour of a system using use cases
–  write use cases

Datavetenskap

Rogardt Heldal! Use Cases! - 3 -!

System

Inside
the
system

Outside
the
system

Datavetenskap

Rogardt Heldal! Use Cases! - 4 -!

Outside the system
•  Find the one which interact with the system:

–  Actors

Datavetenskap

Rogardt Heldal! Use Cases! - 5 -!

ATM

System atm:

:Customer

:Service

:Bank

Datavetenskap

Rogardt Heldal! Use Cases! - 6 -!

ATM

System atm:

<<actor>>
bank:System :Customer

:Service

How should
the system
behave?

Datavetenskap

Rogardt Heldal! Use Cases! - 7 -!

ATM

System atm:

:Customer Withdraw Money

Datavetenskap

Rogardt Heldal! Use Cases! - 8 -!

Use Case Diagram

Withdraw Money

atm:System

:Customer

Actor Use Case

System boundary

Active verb-noun phrase

System name

Datavetenskap

Rogardt Heldal! Use Cases! - 9 -!

Problem: Use Case Diagram

CourseAdm:System

1.  Find actors for this domain
2.  Find use cases for this domain

?

?

Datavetenskap

Rogardt Heldal! Use Cases! - 10 -!

Brief Use Cases
•  A short description of the use case, for

example:
–  Name: Withdraw Money
–  Actor: Customer
–  Goal: Take out money from an account
–  Description: The customer identifies

himself and requests an amount of
money. The ATM gives out money if the
customer has sufficient funds in his
account.

Datavetenskap

Rogardt Heldal! Use Cases! - 11 -!

Problem: Brief Use Cases
•  Write a brief use case for “register for course”.

– Use Case Name: ?
– Actor Name: ?
– Goal: ?
– Description: ?

Datavetenskap

Rogardt Heldal! Use Cases! - 12 -!

Complete Use Case
•  Template

–  Use Case Name
–  Use Case Goal
–  Actor Names
–  Main Flow of Event
–  Alternative Flows
–  Pre-Condition (if any)
–  Post-Condition

•  Different organisations have different templates, but all
things in this template should be part of any use case
template.

Datavetenskap

Rogardt Heldal! Use Cases! - 13 -!

Example: Flow of Events
Main flow of withdraw money:
1.  user identifies himself by a card
2.  system reads the bank ID and account number from card and

validates them
3.  user authenticates by PIN
4.  system validates that PIN is correct
5.  user requests withdrawal of an amount of money
6.  system checks that the account balance is high enough
7.  system subtracts the requested amount of money from account

balance
8.  system returns card and dispenses cash

Datavetenskap

Rogardt Heldal! Use Cases! - 14 -!

Problem
•  Write the main flow of events for the complete Use

Case “register to course”.

Datavetenskap

Rogardt Heldal! Use Cases! - 15 -!

Alternative flows
•  Most use cases do not have just one flow, but several

alternative flows.
–  Another frequent behaviour of the system
–  Another possible behaviour of the system
–  An error case
–  …

•  The alternative ways depend on the input given by the
actor, the system state, iterations … .

Datavetenskap

Rogardt Heldal! Use Cases! - 16 -!

Complete Use Case
•  Template

–  Use Case Name
–  Use Case Goal
–  Actor Names
–  Main Flow of Event (sequence of action steps)
–  Alternative Flows (sequence of action steps)
–  Pre-Condition (if any)
–  Post-Condition

Datavetenskap

Rogardt Heldal! Use Cases! - 17 -!

Domain Model (Meta-Model)

Flow

alternative
*

Use Case

1

condition

Name
Goal

pre

post

main 1

*
* *

* *

Datavetenskap

Rogardt Heldal! Use Cases! - 18 -!

Scenarios
•  One way through the use case.

Representing a
use case having
4 alternative flows

One way
through the
use case

Datavetenskap

Rogardt Heldal! Use Cases! - 19 -!

One Flow of Events
Main flow of withdraw money:
1.  user identifies himself by a card
2.  system reads the bank ID and account number from card and

validates them
3.  user authenticates by PIN
4.  system validates that PIN is correct
5.  user requests withdrawal of an amount of money
6.  system checks that the account balance is high enough
7.  system subtracts the requested amount of money from account

balance
8.  system returns card and dispenses cash

Datavetenskap

Rogardt Heldal! Use Cases! - 20 -!

Example: Alternative Flow
Fragment of the use case “Withdraw Money”
 …

7. User requests withdrawal of an amount of money
8. System checks that the account balance is high
 enough
9. System subtracts from account the amount taken out from
 the ATM
10. System gives back card and dispenses cash

8-10a: Not enough money on account:
1. System does not change the account
2. System returns card

Datavetenskap

Rogardt Heldal! Use Cases! - 21 -!

Numbering of Alternative Flows
1.  …
2.  …
3.  …
4.  …

3a – instead of point 3 in the main flow do this …
3b - instead of point 3 in the main flow do this …
2-3a – instead of point 2 to 3 in the main flow do this …
2-4a – instead of point 2 to 4 in the main flow do this …
2-4b – instead of point 2 to 4 in the main flow do this …

Datavetenskap

Rogardt Heldal! Use Cases! - 22 -!

Problem
•  In the case of a ATM, a user is permitted to give the

wrong pin 3 times.
•  If pin is given wrongly 3 times the card is kept.
•  Write alternative ways for withdraw money which take

this into account. Do not use WHILE loops!

Datavetenskap

Rogardt Heldal! Use Cases! - 23 -!

Solution
•  4a. Wrong pin less than 3 times:

–  1. System updates number of tries
–  2. start from action step 3

•  4-8a. Wrong pin 3 times:
–  1. System keeps the card

Datavetenskap

Rogardt Heldal! Use Cases! - 24 -!

Action Block parts

Event Flow

action block1 action block2 …

User input System responsibility System response

action steps1 action stepsn+1 action step2 … action stepsn

Then one can have “assume” action steps when needed and a “choice”
steps after return if necessary.

Datavetenskap

Rogardt Heldal! Use Cases! - 25 -!

Withdraw Money
Only main flow:
1.  user identifies himself by a card
2.  Assume: bank ID and account number are the same
3.  user authenticates by PIN
4.  Assume: PIN is correct
5.  user requests withdrawal of an amount of money
6.  Assume: that the account balance is high enough
7.  system subtracts the requested amount of money from account

balance
8.  Assume: that the ATM can communicate with the bank
9.  system returns card and dispenses cash

Action
block
Action
block

Action
block

System response

System responsibility

User input

Datavetenskap

Rogardt Heldal! Use Cases! - 26 -!

Withdraw Money
Only main flow:
1.  user identifies himself by a card
2.  Assume: bank ID and account number are the same
3.  user authenticates by PIN
4.  Assume: PIN is correct
5.  user requests withdrawal of an amount of money
6.  Assume: that the account balance is high enough
7.  system subtracts the requested amount of money from account

balance
8.  Assume: that the ATM can communicate with the bank
9.  system returns card and dispenses cash

Vocabulary from the
domain model

Datavetenskap

Rogardt Heldal! Use Cases! - 27 -!

Assume and Choice
•  Only the places where one have an assume or a

choice can one an alternative way.
•  For example if we have this action step in the main

flow:
–  Assume: PIN is correct

•  Then we can expect an alternative flow
–  Assume: PIN wrong three times

Datavetenskap

Rogardt Heldal! Use Cases! - 28 -!

Withdraw Money (Choice)
Only main flow:
1.  …
2.  …
3.  …
4.  System return a price of the bike
5.  Choice: customer want to buy the bike
6.  Customer give the name, home address, card info

Datavetenskap

Rogardt Heldal! Use Cases! - 29 -!

Action Block
•  A pattern for writing the event flows of use cases.

Objective:
– Write structured and informative use cases

Datavetenskap

Rogardt Heldal! Use Cases! - 30 -!

When to use the Pattern
•  Complete use cases

–  Contain all the important parts, in particular main and
alternative flows.

•  Essential style
–  Does not contain implementation issues
–  No interface details
–  …

•  System use cases (not business use cases), for
example:

Withdraw Money

ATM:System

Customer

Datavetenskap

Rogardt Heldal! Use Cases! - 31 -!

Alternative
2a Assume login is valid name and password is not correct and the same

login name has been used less than four times
 1. Ask for a new login name and password
 2. System remember how many times the login

 name has been used with wrong password.
 3. Go to 2
2-8 Assume login name is valid and password is not correct and the same

login name has been used four times
 1. Inform that the student has used more than
 four tries with the same login

 2. Make the login name not valid
2-8 Assume login name not valid
 1. Inform that it is not possible to login

Datavetenskap

Rogardt Heldal! Use Cases! - 32 -!

Numbering of Alternative Flows
1.  …
2.  …
3.  …
4.  …

3a – instead of point 3 in the main flow do this …
3b - instead of point 3 in the main flow do this …
2-3a – instead of point 2 to 3 in the main flow do this …
2-4a – instead of point 2 to 4 in the main flow do this …
2-4b – instead of point 2 to 4 in the main flow do this …

* Whenever

Datavetenskap

Rogardt Heldal! Use Cases! - 33 -!

When to use the Pattern
•  Complete use cases

–  Contain all the important parts, in particular main and
alternative flows.

•  Essential style
–  Does not contain implementation issues
–  No interface details
–  …

•  System use cases (not business use cases), for
example:

Withdraw Money

ATM:System

Customer

Datavetenskap

Rogardt Heldal! Use Cases! - 34 -!

Not good style

Book taxi

Taxi:System

Customer Operator

Not the way of doing it:
 1) Customer calls operator
 2) Customer give bla bla to operator
 3) Operator enter info bla bla into the system
 4) Operator gives info bla bla back to customer

Only include interaction between actor and system!

Datavetenskap

Rogardt Heldal! Use Cases! - 35 -!

Complete Use Case
•  Template

–  Use Case Name
–  Use Case Goal
–  Actor Names
–  Main Flow of Event (sequence of action steps)
–  Alternative Flows (sequence of action steps)
–  Pre-Condition (if any)
–  Post-Condition

Datavetenskap

Rogardt Heldal! Use Cases! - 36 -!

Pre- and Post-condition
•  Pre-condition is what holds, whenever the use case

takes place, before the action steps happen.
–  For example “Withdraw Money”:

•  Customer has account
•  Customer has a bank card
•  …

–  But: Usually trivial stuff is left out
•  Post-condition is what holds after the use case has

taken place.
–  Examples later

•  Beware: Conditions and action steps have to fit
together!

Datavetenskap

Rogardt Heldal! Use Cases! - 37 -!

Problems with pre-conditions
•  Let us consider having “the customer entered the

correct PIN” as a pre-condition:
–  This means that we will not specify what happens if the

customer enters a wrong PIN.
–  Making the use case very weak!

•  One should avoid pre-conditions as much as possible
in use cases, because the usual understanding of a
pre-condition is that the post-condition need only be
guaranteed if the pre-condition is met before the use
case.

Datavetenskap

Rogardt Heldal! Use Cases! - 38 -!

Examples for post-conditions
•  Post-condition for “Withdrawal”

–  If the customer entered the PIN on the Card, and
the customer's balance was greater or equal to the
requested amount, then the customer got the
requested amount and the amount was deducted
from the balance.

–  If the customer entered the wrong PIN three times,
the card was retained.

–  If the customer requested too much money, the
card was returned to the customer.

Datavetenskap

Rogardt Heldal! Use Cases! - 39 -!

Problem
•  Write a post-condition for “register for course”?

Datavetenskap

Rogardt Heldal! Use Cases! - 40 -!

Primary Actor
•  A use case is always started by some actor : most

often the primary actor
•  There are also other types of actors:

–  Secondary actor
–  Helper actor
–  Time

Datavetenskap

Rogardt Heldal! Use Cases! - 41 -!

Requirements on Use Cases
•  Shall be a complete process
•  Shall result in a given goal

Datavetenskap

Rogardt Heldal! Use Cases! - 42 -!

External and Internal View

Datavetenskap

Rogardt Heldal! Use Cases! - 43 -!

External View

identify himself

present choices
choose

dispense money
take money

User System

Can be viewed as a role play between user
and system.

Datavetenskap

Rogardt Heldal! Use Cases! - 44 -!

Example: Internal View

identify himself

present choices

choose
dispense money

take money

User System

verify identity

Datavetenskap

Rogardt Heldal! Use Cases! - 45 -!

Example: Internal View

1. User identify himself
2. System verify identity
3. System present choices
4. User choose
5. System dispense money
6. User take money

Datavetenskap

Rogardt Heldal! Use Cases! - 46 -!

Action Block Details
•  Two types:

–  Black box
•  User intention
•  System response

–  White box
•  User intention
•  System responsibility ß This is extra
•  System response

•  In the white box case system response can often be
left out if it is clear from the system responsibility how
the system will respond.

Datavetenskap

Rogardt Heldal! Use Cases! - 47 -!

Abstraction level

Datavetenskap

Rogardt Heldal! Use Cases! - 48 -!

Real Use Cases
•  Contain design details.
•  Different aspects:

–  Internal view of the system
–  Also gives information about user interface (i.e., not essential

use case)
–  Consider also technology issues (like databases)

Datavetenskap

Rogardt Heldal! Use Cases! - 49 -!

Real Use Case?
•  Is this a real use case?

–  User authenticates himself by PIN
–  System validates that PIN is correct

•  Less abstract than
–  Customer identifies himself
–  System verifies identity

•  But the first fragment makes more sense for people working in the
banking industry.

•  The second fragment is often too general, can be used in several
contexts:
–  ATM
–  Library system
–  Student Registration system

Datavetenskap

Rogardt Heldal! Use Cases! - 50 -!

Which abstraction level to use?
•  During analysis, one should write essential use

cases.
•  Later, during design, essential use cases can

be refined to real use cases.
•  But we believe that there are better ways of

defining the design than using real use cases

Datavetenskap

Rogardt Heldal! Use Cases! - 51 -!

Process for Brief Use Cases
•  Find actors
•  Consider the goals of each actor
•  Write brief use cases, based on the goals of the use

case:
–  Give a name of the use case
–  Give the actor(s)
–  Write the goal as one sentence
–  Write a brief description

Datavetenskap

Rogardt Heldal! Use Cases! - 52 -!

Prioritize Use Cases
•  Based on the importance of a brief use case, a

complete use case should be written.
•  For ordering use cases take into consideration:

–  How important is the use case for the business?
–  Does the use case have important consequences for the

system (technological, architectural)? These use cases should
come early.

Datavetenskap

Rogardt Heldal! Use Cases! - 53 -!

Process for Complete Use Case
•  Based on a brief use case

–  Write the main flow of control using
–  Write the alternative
–  Write pre-conditions (if any)
–  Write the post-conditions

Datavetenskap

Rogardt Heldal! Use Cases! - 54 -!

Advance topics

Datavetenskap

Rogardt Heldal! Use Cases! - 55 -!

”Include”
•  Often used to catch common action steps

•  Important: one has to leave and come back to the main flow at the

same place.

•  In the flow which is included add action step:
•  include (the name of the included use case)

Main flow

Included flow

Datavetenskap

Rogardt Heldal! Use Cases! - 56 -!

UML-syntax
•  Use cases A and B includes C:

–  A and B know about C, but not the other way round.
–  C must have at least as high priority as A and B.

A

B
C

<<include>>

<<include>>

Datavetenskap

Rogardt Heldal! Use Cases! - 57 -!

”Extend”
•  Sometimes one wants to include extra action steps in a use case. Then

”extend” might be useful:

•  Important: one has to leave and come back to the main flow at the same
place.

Main flow

Extended flow

Datavetenskap

Rogardt Heldal! Use Cases! - 58 -!

UML Syntax

•  A is extended with B
•  Some condition has to be satisfied for the use case B

to be used.
•  A has to be a full use case without B.

B
A

<<extend>>

Datavetenskap

Rogardt Heldal! Use Cases! - 59 -!

extend

•  In the use case IssueFine’s flow:
•  …
•  …
•  Extension point:overdueBook
•  …

IssueFine <<extend>>

Return Book
Extension points
 overdueBook

Datavetenskap

Rogardt Heldal! Use Cases! - 60 -!

Inherit relation
•  It might happen that several use cases have action steps which

are similar. In this case one can use abstract use cases:

•  A inherits from B.

B

A

Datavetenskap

Rogardt Heldal! Use Cases! - 61 -!

Example

Give loan

Give loan
private customer

Give loan
organisation

PrivateCustomer
Organisation

Customer

Datavetenskap

Rogardt Heldal! Use Cases! - 62 -!

Uses
•  Whether to use ”include”, ”extend”, and inherit is

discussed a lot.
•  Most important reason for using these features: they

can improve readability

Datavetenskap

Rogardt Heldal! Use Cases! - 63 -!

Split

One full
use case

Split

Two full use cases

Datavetenskap

Rogardt Heldal! Use Cases! - 64 -!

Vertical split

Condition for the
taking an alternative
way.

Same
action
steps

Different
Action
steps

Same
action
steps

Datavetenskap

Rogardt Heldal! Use Cases! - 65 -!

When to split
•  If it is not important to show the condition
•  If main flow and alternative flow do not have many

steps in common
•  If the two flows are complete use cases in themselves

•  Sometimes one might want to combine use cases as
well.

Datavetenskap

Rogardt Heldal! Use Cases! - 66 -!

Actor Specialisation
•  Vertical split can lead to more specialised actors, for example:

Customer

Private Organisation

Datavetenskap

Rogardt Heldal! Use Cases! - 67 -!

Example of Actor Inheritance

Customer

Operator

Booking

Datavetenskap

Rogardt Heldal! Use Cases! - 68 -!

Horizontal Split

Two full
use cases

One full
use case

Datavetenskap

Rogardt Heldal! Use Cases! - 69 -!

Business Use Cases
•  Describe how a business works. Might describe

human behaviour as well.
•  Might contain system use cases.

Datavetenskap

Rogardt Heldal! Use Cases! - 70 -!

Applications of Use Cases

Datavetenskap

Rogardt Heldal! Use Cases! - 71 -!

Problem
•  Why using Use Cases?
•  Because:

–  Describing the behavior of the system
–  Communicating with the customer
–  Catching functional requirements on the system
–  Obtaining the user interface
–  Driving the development process, deciding what should be

done in each iteration
–  Obtaining tests for the system

Datavetenskap

Rogardt Heldal! Use Cases! - 72 -!

Communication

Customer Developers Create a dialog between
the customer and
developers.

But also a
dialog among
developers.

Datavetenskap

Rogardt Heldal! Use Cases! - 73 -!

Requirement analysis
•  Often these kinds of requirements have to be

identified (FURPS+):
–  Functionality
–  Usability
–  Reliability
–  Performance
–  Supportability
–  ”+” represents further requirements

Datavetenskap

Rogardt Heldal! Use Cases! - 74 -!

Example: ATM
1.  ATM saves information about withdrawals
2.  Can be given a code
3.  Gives customer amount X of money if customer has at least X on the

account.
4.  Can be given a card
5.  Can return a card when withdrawal is finished or when transaction is

cancelled.
6.  Can make transactions between accounts
7.  Can insert money into the account
8.  The amount of money inserted should be added to the account
9.  Reduce the account by the amount withdrawn.
10.  Can choose an amount.
11.  Can choose to withdraw.
12.  Check amount on account
13.  Can obtain a receipt.
14.  Can stop the process of withdrawal.
15.  Can give code up to three times.
16.  If wrong code three times then the ATM keeps the card.
17.  …

Datavetenskap

Rogardt Heldal! Use Cases! - 75 -!

Problem
•  What is the problem with the list of requirements on

the previous slide?
•  Problems:

–  How to priorities requirements
–  How to group requirements
–  Often imprecise
–  Hard to obtain an overview
–  Is it a complete list of requirements?
–  Many!!! Can be several thousands.

Datavetenskap

Rogardt Heldal! Use Cases! - 76 -!

Different kinds of functional
requirements

•  Business requirements:
–  A customer shall be able to book a taxi via telephone

•  System requirements:
–  The system should estimate the time until a taxi arrives

•  Use cases will help to separate these two types of
requirements, since we write use cases only for
describing system behavior.

•  We will obtain system requirements from use cases.

Datavetenskap

Rogardt Heldal! Use Cases! - 77 -!

Grouping Requirements
•  Requirements can be grouped in several ways
•  One way: Use cases
•  For example, Withdraw Money relates to the

requirements:
–  R1, R2, R3, …

•  Implementing a requirement might not make a system
more useful; implementing a use case does!

•  Use cases tackle the problem of making requirements
readable, understandable, and to choose priorities

Datavetenskap

Rogardt Heldal! Use Cases! - 78 -!

Functional requirements
•  Use cases capture most functional

requirements.
•  But: Some functionality can be ”hidden”

in several/all use cases
– For instance: Logging occurring events

Datavetenskap

Rogardt Heldal! Use Cases! - 79 -!

Dealing with Requirements
•  Different ways of dealing with functional

requirements:
–  Only having a requirement list
–  Only having use cases
–  A combination of both

Datavetenskap

Rogardt Heldal! Use Cases! - 80 -!

Example: ATM

Withdraw Money

Check Balance

Transaction
:Customer

Dispose Money

Datavetenskap

Rogardt Heldal! Use Cases! - 81 -!

Use Case/Requirement Matrix

x
x x x x

x

x x x x

x

Withdraw Money Check Balance Transaction Dispose Money

R1

R2

R3

R4

R5

…

Datavetenskap

Rogardt Heldal! Use Cases! - 82 -!

Non-functional requirements
•  Non-functional requirements are hard to handle by use

cases, but sometimes one can relate them to use
cases.

•  Further documents (apart from use cases) are needed

Datavetenskap

Rogardt Heldal! Use Cases! - 83 -!

Example (1)
•  Usability

–  ATM should be usable for colour blind persons
•  Reliability

–  Frequency of failure
•  At most one failure per year (or per 10 sec)

–  Restart after an error
•  When restarting, account balance should be checked

against bank to ensure right value (in case of unfinished
transactions)

Datavetenskap

Rogardt Heldal! Use Cases! - 84 -!

Example (2)

•  Supportability
– ATM system should be adaptable to

• Different currencies
• Different languages
• Different bank computer systems
• Different card types

Datavetenskap

Rogardt Heldal! Use Cases! - 85 -!

User interface
•  Usually an ”user interface expert” will derive

the user interface from use cases
•  For instance:

•  … and make a description of the interface

100

300

500

1000

2000

Cancel

Balance

Withdrawal

Datavetenskap

Rogardt Heldal! Use Cases! - 86 -!

Connecting user interface and use
cases

•  For instance: ”Customer chooses amount in window A”

•  Dangerous: Such use cases are very fragile

concerning changes in user interface

A

B
100

300

500

1000

2000

Cancel

Balance

Withdrawal

Datavetenskap

Rogardt Heldal! Use Cases! - 87 -!

Problem
•  Should one consider user interface details when

writing use cases?
•  Should use cases contain information about the

interface?
•  Should one make the user interface before or after the

use cases?

Datavetenskap

Rogardt Heldal! Use Cases! - 88 -!

Interface first or last?
•  Most people agree that use cases should be

written before user interface is designed
•  Exception: Interface can be given, no changes

are possible
•  (Some people even recommend designing the

user interface first)
•  Interface is important, because customers

might get new ideas by looking at it (less
abstract than use cases, easier to understand,
things become more concrete and more
obvious)

Datavetenskap

Rogardt Heldal! Use Cases! - 89 -!

Essential Use Cases
•  A use case which abstracts from user

interface, implementation details etc.
•  Avoids premature design decisions of how to

develop the system, such as the look of user
interface, whether to use a database etc.

Datavetenskap

Rogardt Heldal! Use Cases! - 90 -!

Summary
•  We have considered
•  How to write brief use cases
•  How to write complete use cases

–  How to write main flow
–  How to write alternative flows
–  How to write post-conditions
–  …

Datavetenskap

Rogardt Heldal! Use Cases! - 91 -!

Appendix

Datavetenskap

Rogardt Heldal! Use Cases! - 92 -!

Role play
•  To illustrate one flow through a use case, one can

use a concrete case.
•  One can play the interaction between the system

and the actor.
•  One person plays the system and for each actor

there is a person playing the actor.

Datavetenskap

Rogardt Heldal! Use Cases! - 93 -!

Problem
•  One plays the ATM
•  One plays the customer which wants to take out

money
•  Write down the lines for each role, and then play it.

Datavetenskap

Rogardt Heldal! Use Cases! - 94 -!

Goal
•  In books

– Often the goal are the use cases
themselves.

•  In industry
–  The goal is the complete running system.

gap

Datavetenskap

Rogardt Heldal! Use Cases! - 95 -!

Gap between Analysis and Design

•  Often the case:
•  Analysis

–  Use cases

•  Design
–  Realization of use cases

Often different people

Datavetenskap

Rogardt Heldal! Use Cases! - 96 -!

Trend
•  Use cases are good in grouping

requirements

• Why not use them for everything?

Datavetenskap

Rogardt Heldal! Use Cases! - 97 -!

Gap between use cases and code
•  Often the case:

–  Use cases

–  Code (Being modified)

(Might not be modified after code produced)

gap

