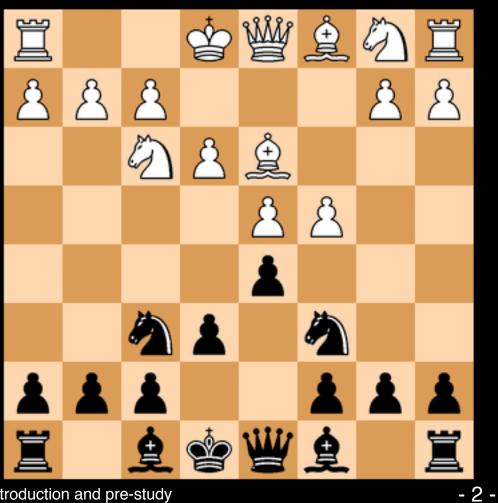

- 1 -

Puzzle

Given 4 rows and 4 columns of dots. Using six contiguous straight lines, connect all of the sixteen dots.

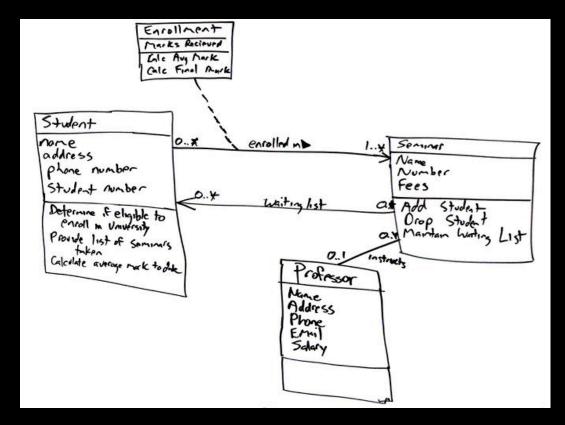

Rogardt Heldal

GÖTEBORGS UNIVERSITET CHALMERS

Datavetenskap

Game

Focus on move!



Rogardt Heldal

Domain model

See the relationship, and make new ones.

Try to describe this model in words.

Creativity

Rogardt Heldal

Introduction and pre-study

- 3 -

CHALMERS | GÖTEBORGS UNIVERSITET

Datavetenskap

Free your mind!

Rogardt Heldal

Introduction and pre-study

- 4 -

CHALMERS

Welcome to Model Driven Software Development

Rogardt Heldal/Grischa Liebel Software Engineering Division Chalmers & Gothenburg University

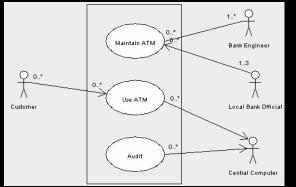
From requirements to code

Requirement/top level architectureSpecification - quite informal

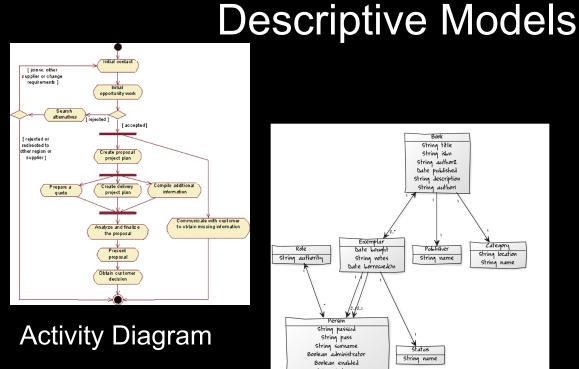
Working architecturePrecise structure of the system

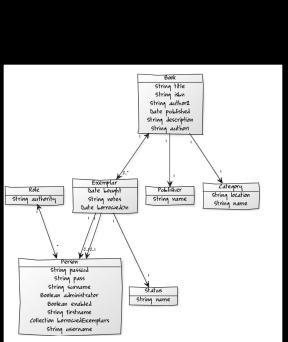
Software design

Behavior


Can use models Communications

Can use models Analysis


Can use models Simulations

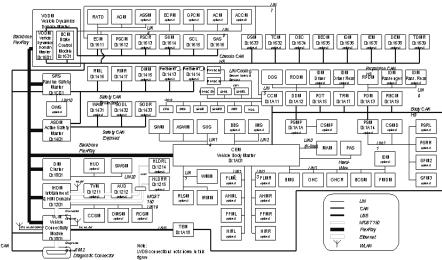

Rogardt Heldal

Example: **Requirement/Analysis**

Use Cases Diagram

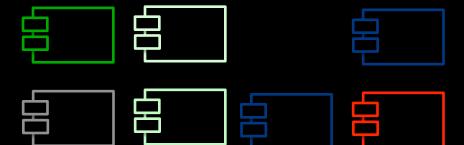
Domain Model

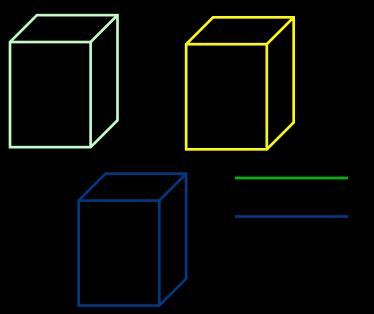
Purpose: understand and describe the system

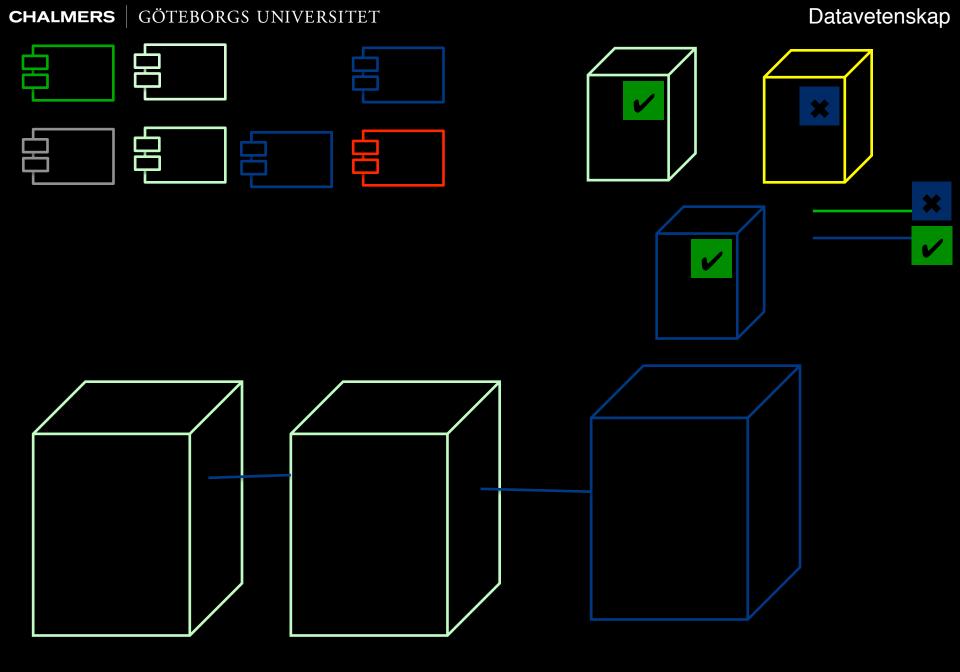

Rogardt Heldal

CHALMERS | GÖTEBORGS UNIVERSITET

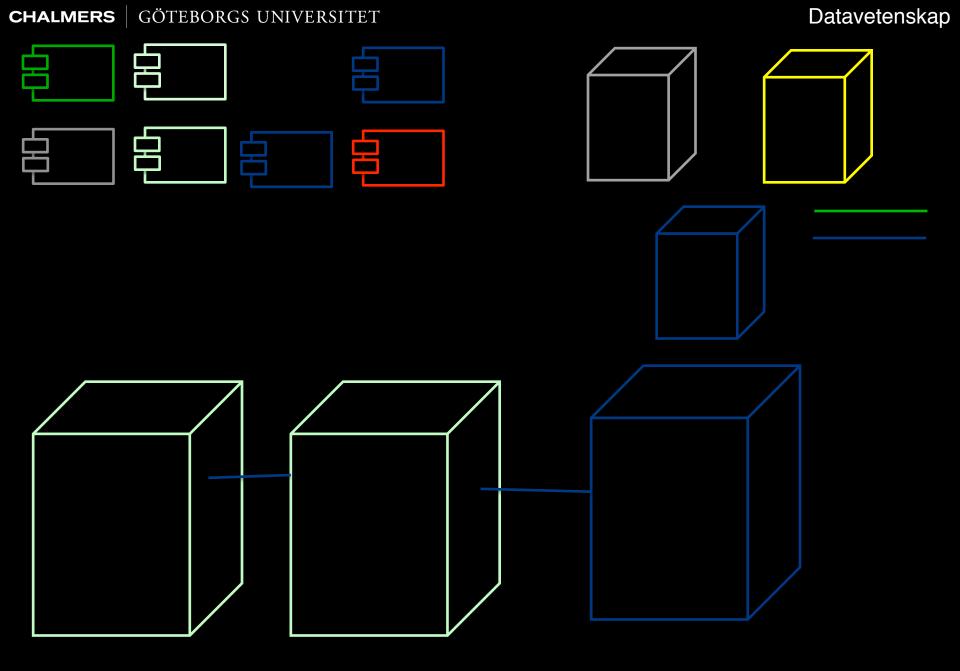
Software architecturePrecise structure of the system


100+ ECUs


Research question: Can we do a better job of finding a topology automatically?



CHALMERS | GÖTEBORGS UNIVERSITET


Datavetenskap

Rogardt Heldal

Rogardt Heldal

CHALMERS | GÖTEBORGS UNIVERSITET

Datavetenskap

Evolution of Modeling Languages and SW Design Tools

Proprietary Technology All kinds of general modeling languages	Technology All kinds of general modeling Tools Companies UML becomes popular		Emergence of open source tools DSLs or UML Golden age of SW Tool Community and collaboration?
1985	1995	2005	2015
ogardt Heldal	Intro	oduction and pre-study	- 10

CHALMERS GÖTEBORGS UNIVERSITET

Datavetenskap

One example of an Open Source Modeling tool

Companies like Ericsson putting millions into it ...

Rogardt Heldal

Introduction and pre-study

- 14 -

Model Driven Software Development

Rogardt Heldal

Rogardt: Who am I?

- Teaching about object oriented system development for 14-15 years. For the last 11-12 years been the main instructor.
- Particular interested in modeling, the main focus of this course.
- Collaborate a lot with the industry, Ericsson, Volvo Car, Volvo Truck …
- Active in the modeling research community and have several papers in this area.
- Enjoy collaborating with industry via PhD students and master students. In particular when there are some research issues involved.

CHALMERS | GÖTEBORGS UNIVERSITET

Datavetenskap

My Family

Traveling

Rock climbing

Skiing

Kayaking

Kiting Introduction and pre-study

Mount biking

Trekking

Grischa: Who am I?

- Teaching about modeling for 1-2 years. For the last 0 years been the main instructor :)
- Collaborations with Volvo Trucks, AVL List
- Active in the modeling research community and have 'several' papers in this area.
- Background in Robotics/Pattern Recognition and Software Engineering
- Active in App Development outside of University
- I answer my mails 2-3 times a day. An answer can take up to 24hrs
- Or you come by my office (EDIT 6462) in Johanneberg: Tuesdays 11:45-12:30

CHALMERS GÖTEBORGS UNIVERSITET

Datavetenskap

Traveling & Photography

Hiking, Playing (E-) Guitar, (Beach) Volleyball, Surfing, ...

Rogardt Heldal

Supervisors

- Rogardt Heldal
- Grischa Liebel
- Jan-Philipp Steghöfer
- Matthias Tichy

Course structure

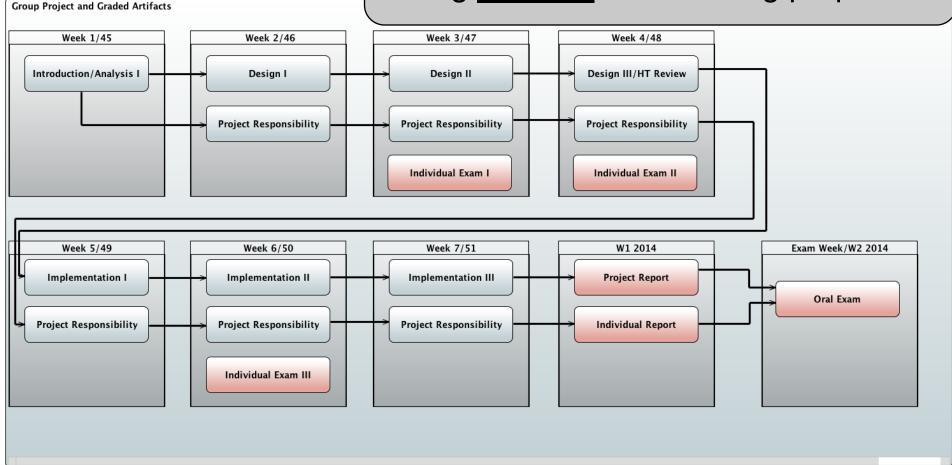
- Two lectures a week
 - Tuesday 13.15 15.00
 - Thursday 13.15 15.00
- 3 voluntary exams
 - Will be done in combination with lectures
- Group work
 - Mandatory meetings every week with a supervisor
 - support the development of the project
- Oral exam on the project work and course material
 - Exam week; Time and place will be given later

Reading material

- There will be no course book, but you are responsible to find reading material on the topics covered in this course.
- One book related to this course:
 - Applying UML and Patterns (Craig Larman) (An Introduction to Object-Oriented Analysis and Design)
- We will add other recommended readings on the course home page during the course.

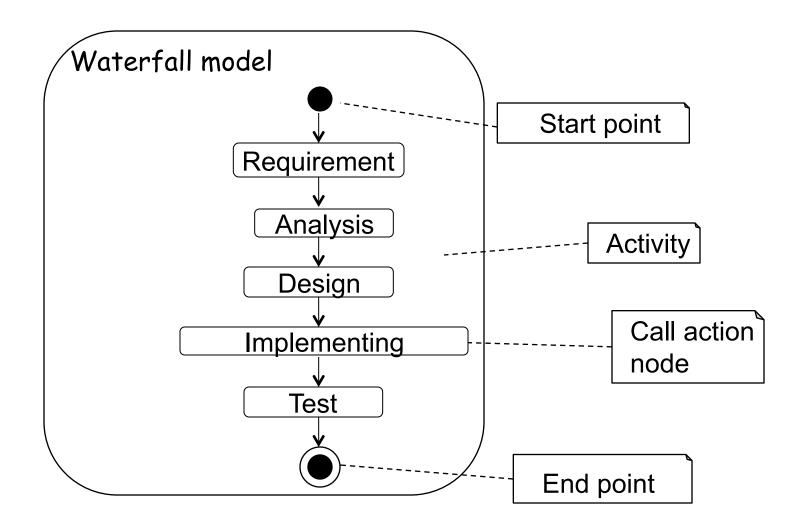
Course Home Page

- The course home page can be found at:
 - http://www.cse.chalmers.se/edu/course/TDA593/Year2014/start.html
 - <u>Backup:</u> http://grischaliebel.se/mdsd
- In this lecture we will highlight important issues considering the course
- All of you should regularly read the course home page. There will be updates there throughout the course!



Project work

- Done in groups of 8-10 students. Groups will be formed today.
- New assignment every week, see course home page.
- Mandatory meetings a 35 minutes with supervisor every week
- More meetings within the group to solve the week's assignment.
- Examination of project and course material:
 - Final report together with an oral examination
 - Individual report on the project
- For more details see the course home page.



Prc From week 3 or 4 (tba), we will be using <u>Papyrus</u> for modeling purposes!

Work flow/processes

Groups

- Groups:
 - Tuesday 08.00 09.45 (3 groups) (Johanneberg)
 - Tuesday 10.00 11.45 (3 groups) (Johanneberg)
 - Tuesday 15.15 17.00 (3 groups) (Johanneberg)
 - Thursday 08.00 09.45 (3 groups) (Johanneberg)
 - Thursday 10.00 11.45 (3 groups) (Johanneberg)
 - Thursday 15.15 17.00 (3 groups) (Johanneberg)
 - Friday 08.00 09.45 (3 groups) (Lindholmen) (extra)
 - Friday 13.15 15.45 (4 groups) (Lindholmen)

CHALMERS | GÖTEBORGS UNIVERSITET

Group Nr:_____

Name	SSNr	Project				pass		Contribution	Grade	Executable	Voluntary exams					Gr	Grade	
			1 2	2 3	4	. [5 6	6 7	ution	ade	3ble		2	3	4	mns	Grade	de
							_											
Time:						-	Pla	ace										
Supervisor:																		
Contact person:			email:									tele	phc	ne:				

Rogardt Heldal

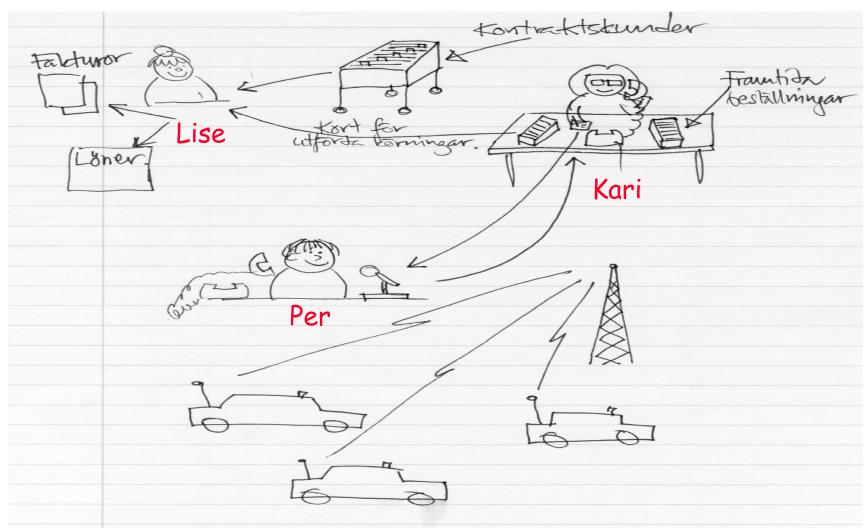
PROJECT

Rogardt Heldal

What we will look at

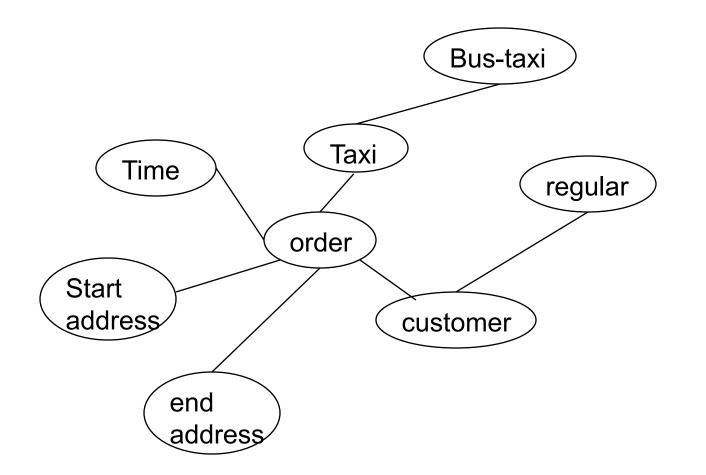
- How well:
 - the system is documented using software models
 - you have created a workable solutions
 - you have created a good solutions
 - you have obtained a creative and innovative solution using models
- You will obtain extra points if the solutions are more complex, for example, distributed system, layered architecture, use of databases and user interface
 - But, one obtains extra points only if this is documented as software models as well as a working implementation.

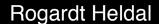
Individual Contribution


- Every Requirement you write will have a group member as a responsible!
- It is that student's task to follow up the requirements and make sure they're not forgotten.
- In the individual report, you will
 - reflect on this responsibility
 - explain the steps you have taken
 - justify why some of your requirements were not included in the final system
- In the last supervision, you have to judge each others' contributions
 - Divide 100 points among all group members!

Pre-Study

- Give an introduction to the project which is part of this course.
- Show some techniques which can be useful in describing a business.


Example: Taxi company

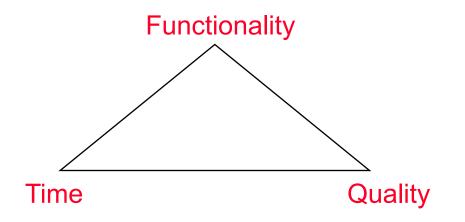


Rogardt Heldal

Mind Maps

The Course's Project

• A company contacts us and asks us to produce a design and a prototype of a hotel booking system.


They present us with an:

- A idea of what the system should do.
- A budget based on what they are willing to pay.
- A deadline for completion of the design.

Correct level

• First step is to find out what is most important for the customer.

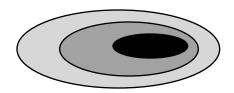
Idea and budget

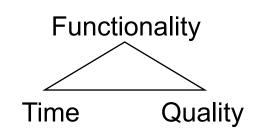
• Idea

 A hotel system (For more information see handout).

Budget

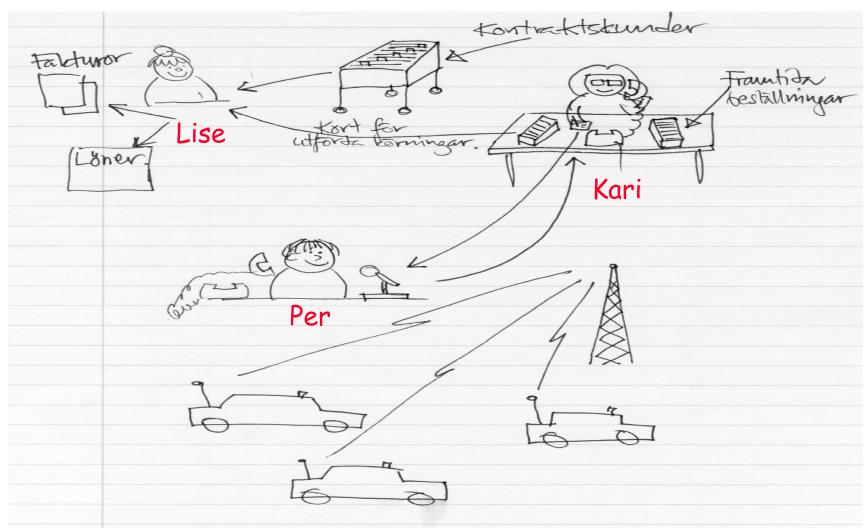
 Budget is normally about money, but it is possible to calculate using points instead.


Deadline


- Deadline
 - An initial design shall be ready at the end of this period.
 - There will be weekly deadlines.

Work process

- Step 1: Brainstorming.
- Step 2:
 - 1. Find the smallest useful system
 - 2. Find the dream system
 - 3. Find levels between 1 and 2



- Step 3:
 - Choose right level on the basic of time, money and quality (in your case: time, points, and quality)

Example: Taxi company

What should you do first week?

- A definition of the responsibilities of a team member.
- The goals and objectives of the team.
- A text description of your system. You have to motivate your decisions and make explicit the features you have chosen not to include.
- A revised list of requirements. Focus on functional requirements but indicate which non-functional requirements will be important.
- A discussion or motivation of your requirements.
- Include documents that make your report stronger, like mindmaps, drawings, or interviews. These can be included in an appendix.

Collect information

- Looking at hotel booking system at the Web
- Conduct interview with people working at the hotel, in particular the hotel manager if you can
- Interview travel agency
- Any information found at the web, books etc.
- Discuss the hotel business domain with your supervisor (this should not be the main source!)

Appendix

Rogardt Heldal

Introduction and pre-study

Definition - IEEE [1990]

- A requirement is:
- (1) A condition or capability **needed** by a user to solve a problem or achieve an objective.
- (2) A condition or capability that **must** be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed document.
- (3) A documented **representation** of a condition or capability as in (1) or (2).

Requirements Engineering

- Elicitation to identify the requirements
- Specification to document the requirements
- Validate to check the requirements
- Prioritization to select the best requirements

• You will do Elicitation, Specification, and Prioritizing until next week.

Elicitation: Get out there!

 "You cannot sit in your office and produce requirements based on intuition and logic. You have to discover the non-trivial requirements from users and other stakeholders."

Collect information

- Looking at hotel booking system at the Web
- Conduct interview with people working at the hotel, in particular the hotel manager if you can
- Interview travel agency
- Any information found at the web, books etc.
- Discuss the hotel business domain with your supervisor (this should not be the main source!)
- But also, do brainstorming and discussion in the group!

Functional requirements

- Wikipedia:
 - As defined in <u>requirements engineering</u>, functional requirements specify particular results of a system.
 - This should be contrasted with non-functional requirements which specify overall characteristics such as cost and <u>reliability</u>.
 - Functional requirements drive the *application* architecture of a system, while non-functional requirements drive the *technical architecture* of a system.

We want ...

- The functional and non-functional (constraints, quality attribute) requirements to:
 - Be well-written
 - Have a unique id
 - Be testable
- You might use hierarchy to group your requirements