
Hotel-project

Week 4: Design 3

This weeks topics are: Component diagrams, Class diagrams and Se-
quence diagrams.

Assignment

This is your last assignment where you create new models. From next week
on, you will implement your models using Java and will only update the
existing models. Before that, you will do three more types of diagrams:
component diagrams, class diagrams, and sequence diagrams. Besides these,
you shall also review the work of another group. The instructions for the
halftime review can be found in another PDF in the project part of the
course homepage.

Class Diagram

Draw a class diagram that supports your complete use cases from last week’s
assignment. Use the domain model as a starting point for the class diagram
and add classes with operations and attributes which you need in order to
realise your use cases. Remember that the domain model reflects a con-
ceptual perspective of the domain while class diagrams represent a software
development perspective. Draw the class diagram using Papyrus and hand
it in as an image export from Papyrus.

Iterate between the class diagram, the component diagram and the se-
quence diagrams.

Component Diagram

Draw a component diagram of your system and its surroundings.
Your booking system shall be placed in at least one component. You

are free to divide it into further components if you think this is reasonable!
Use your actors (assignment 2) and your system operations (assignment 3)
in order to define interfaces for you component(s). Visualise your actors in
the component diagram by adding one component per actor and connecting
them to your system’s interfaces.

1



Banking Component

Your customer has decided that you shall use a commercial banking service
during the every booking. For a booking to be successful, a valid credit card
has to be specified. In order to verify the validity of the credit card, you are
required to use a banking service offered by a third party. Additionally, you
shall handle the payment of the booking through this service. Whether you
do this during the booking or at later stages, such as check-in or check-out,
is up to you. Update your system description (assignments 1 through 3)
to accomodate this requirement! In the component diagram, include the
banking component. Your booking system shall not use the administration
interface of the banking interface. However, the components you are adding
for your actors can use this interface. The component is described in more
detail in appendix A.

The papyrus model of the banking component can be downloaded on the
course homepage. So you can simply copy the contents from the provided
component diagram into your component diagram!

Sequence diagrams

Construct a sequence diagram for each complete use case that you wrote
last week. Use the system operations which you have defined in assignment
3. The sequence diagrams should depict a interaction between the use case
actor and your system component(s). This means that they have to follow
the component interface! Also, do not forget to include the interaction with
the banking component, where necessary!

The implementation of the search for available rooms does not need to
be sophisticated. For passing the course it is enough to return a room with
the right amount of beds or deny the booking if there are no available rooms.
Implementations returning a sufficient amount of rooms to accomodate the
number of people in the booking is of course more satisfying.

Checklist

• A Component Diagram, modelled in Papyrus, containing your sys-
tem’s component(s), components visualising your actors, and the bank-
ing component.

• A Class Diagram, modelled in Papyrus.

• A Sequence Diagram, modelled in Papyrus, for each complete Use Case
from assignment 3.

• Halftime review, see separate document.

2



Literature

• Craig Larman, ”Applying UML and Patterns”, chapters 15 and 16.

A Banking Component

The banking service which we will use in this course has two interfaces - an
interface for customer access and an interface for administration access. The
administration interface will only be used for testing purposes and should
not be accessed by your hotel system. You will however use this interface
in your testing code during the implementation phase. The administration
interface and implementation details for the component will be provided
together with next week’s assignment!

Figure 1 depicts the component diagram of the banking component. The

Figure 1: Component Diagram: Banking Component

customer interface CustomerProvides provides a method to check whether
a credit card is valid (isCreditCardValid) and a method to actually process
a payment (makePayment). They are defined as described in the following
subsections.

A.1 isCreditCardValid

Signature: boolean: isCreditCardValid(ccNumber:String, ccv:String, ex-
piryMonth:int, expiryYear:int, firstName:String, lastName:String)
Description: Given a credit card number, a ccv (checksum) number, the

3



expiry date (month and year) of the credit card and the full name of the
credit card owner, this operation returns true if the information corresponds
to a valid credit card and false otherwise. Valid means that the credit card is
known to the bank and not expired. The operation also returns false if any
erroneous information is provided (e.g. null parameters, invalid month/year
values).
Preconditions:None
Postcondition:Returns true if (ccNumber is not null and ccv is not null
and expiryMonth is between 1 and 12 and expiryYear is between 14 and 20
and firstName is not null and lastName is not null and a credit card with
the specified parameters exists in the system). Else, returns false.
Sequence Diagram: The sequence diagram for this operation is depicted
in Figure 2.

A.2 makePayment

Signature: boolean: makePayment(ccNumber:String, ccv:String, expiry-
Month:int, expiryYear:int, firstName:String, lastName:String, sum:double)
Description: Given a credit card number, a ccv (checksum) number, the
expiry date (month and year) of the credit card, the full name of the credit
card owner, and a non-negative amount, this operation subtracts the amount
from the given credit card account given that the credit card is valid (see
isCreditCardValid operation) and the balance is larger or equal than the
specified amount. It returns true if the amount was successfully subtracted,
false otherwise.
Preconditions:None
Postcondition:(Returns true and subtracts sum from the credit card’s bal-
ance) if (credit card is valid and the balance for this credit card is larger or
equal than sum and sum is larger than 0.0). Else, returns false.
Sequence Diagram: The sequence diagram for this operation is depicted
in Figure 2.

SD CheckCreditCardValidity

Hotel CustomerProvides

isCreditCardValid(ccNumber, ccv, expiryMonth, 
expiryYear, firstName, lastName)

success

SD MakePayment

Hotel CustomerProvides

makePayment(ccNumber, ccv, expiryMonth, 
expiryYear, firstName, lastName, sum)

success

Figure 2: Sequence Diagrams for isCreditCardValid (left) and makePayment
(right).

4


