
2
0
1
3
-0

2
-2

1
 v

e
rs

 1

Functional ProgrammingXP

1

The Industrial Experience

Karol Ostrovský

• M.Sc. – Comenius University, Bratislava

• Ph.D. – Chalmers

• Post-doc – Chalmers

• System Designer – Dfind IT

 On assignment for Ericsson

 Operations & Maintenance Subsystem

2

The Chalmers Years

• Research in static analysis of concurrent
programming languages

 Type systems

 Protocol analysis

• Main course responsible

 Concurrent Programming Course – TDA381

 Developed the course between 2005 and 2010

3

The Language & Paradigm Nerd

• Language skills
 Basic

 Pascal

 C/C++

 Scheme

 SmallTalk

 Java

 JR (MPD)

 Haskell

 Erlang

 Ocaml

 LaTeX

 VAX assembler

 Trilogy

 Ada

 Agda

 Some of my own

4

What is Programming?

• Manipulation of Structures

5

Compositions

• Functions

6

map

reduce/fold

Structures

• Types

7

[B]

C

My Favourite Slide

8

The Message from this Course

• Should you forget everything from this
course, please, remember at least this saying:

3PPVT10 – Introduction

Use the right tool for the job.

Mobile Telecom Network

9

Packet Core Network

• 3GPP

 Defines standards (mostly protocols)

 Interoperability is essential

• SGSN-MME

 Servicing GPRS Support Node (2G/3G)

 Mobility Management Entity (4G)

 Control signalling
− Admission control, Authentication

− Mobility, roaming

 Payload transport (not in 4G)

10

SGSN-MME MkVI

• 3 sub-racks

• 21 blades (2+19)

• 2 core PowerPC

• ~ 114 simultaneously
running processes

• Backplane: 1Gbps

• Capacity: 3MSAU

11

SGSN-MME MkVIII

• 3 sub-racks

• 14 blades (2+12)

• 6 core Intel x86
 12 SMT threads total

• ~ 432 simultaneously
running processes

• Backplane: 1 or 10Gbps

• Capacity: 10MSAU

12

SGSN-MME – Architecture Sketch

13

......

...

NCB FSB FSB

DP DP DP

APAP AP

NCB

SGSN-MME – Use The Right Tool

• Control Plane

 Erlang
− concurrency

− distribution

− fault-tolerance

 DSL
− frameworks for protocol implementation

• User Plane

 C

 time-critical

14

Erlang – The Functional Advantage

• Protocol Programming

 3GPP standards

 Domain experts not software engineers

• DSL

 A “library” of abstractions
− Possible in any language

− Often easier in a functional language

 A set of combinator “glues”
− Considerably more powerful in a functional language

15

Typical Concurrency Patterns

• One mobile – one process (replicated worker)

 Isolation

 Synchronisation only with resources

• Central resources

 Resource allocator

 Master/coordinator – slave/worker

 Transaction handler

16

Distribution

• One mobile – one process

 Evenly distribute all phones over all blades

 Replicate data for fault-tolerance

• Central resources

 Run on the master-blade

 Replicate to all the slaves

 Can we survive without a master?

17

Fault-tolerance

• SGSN-MME requirement: 99.999% availability

• Hardware

 Faulty blades are automatically taken out of service

 Mobile phones redistributed

• Software

 Fail fast – offensive programming

 Recovery strategy

18

Fault-tolerance – Software

• Phone process crash should never affect others

 Automatic memory handling

 Process monitoring

• Recovery Strategy – escalate

 Restart the phone process

 Restart the whole blade

 Restart the whole node

19

Sieve of Eratosthenes

20

46PPVT10 – Message Passing

Architecture

• N+1 pipeline channels

• One shared output channel

filter1 filter2 filterN

nums

eatoutputprint

loggingLOG

Pipeline of Processes

21

AP_1 AP_2 AP_N

NCB

Haskell Patterns – Monads

• Good

 Keeps pure and side-effecting computations apart
− Good separation of concerns

− Improved compositionality

− Possible performance gain

 Gather writes together and write to DB once –
amortise the cost of transactions:
− 1 item write costs 10

− 10 items write is not 100 but only 20!

22

Haskell Patterns – Monads

• Bad

 In rapid prototyping it can present a big hurdle to
jump over

 So, it is good that Erlang does not have static types

 Lazy evaluation is more complicated in the presence
of side-effects especially inter-process
communication

23

OO-Design Patterns

• Factory method

 Improve memory sharing

• Object pool

 Bounded parallelisation of algorithms – thread pool

 Overload protection

24

What they do not teach you

• Software lives long

 Especially telecom systems (decades)

 Banking systems live even longer (think COBOL)

• People change

• Organisations change

• Hardware changes

• Requirements change

• Documentation often does not change

25

Software Maintenance

• The developer’s challenge

 Write simple (readable) and efficient code:
1. Write a straightforward and working solution first

2. Optimise later (or even better skip this step)

• Think smart but do not over-optimise

 Optimisations complicate maintenance

• The code is often the only reliable document

 Types can be very good documentation

26

Synthesis and Analysis

• Emphasis on synthesis in education

 Software development from scratch

• Industrial systems often have a legacy

 Software development by further iteration
− Refactoring

− Code review

− Software maintenance

 Need for both analytical and synthesizing thinking

27

Synthesis and Analysis

• Roughly 30% of manpower is spent on testing

 Analytical work

 Do you like to break a system?

• But testing can also be “synthesizing”

 Testing frameworks
− Quickcheck

− SGSN-MME has its own

 Would you like to formally prove the system correct?

28

Erlang in Practice – Pros

• Well suited for

 Control handling of telecom traffic

 Application layer (OSI model) applications
− Web servers, etc.

 Domain Specific Language – framework
− Test scripting

• Reasonably high-level (as compared to for
example C)

 Good for software maintenance

29

Erlang in Practice – Pros

• Dynamic typing

 Aids rapid prototyping

• OTP – includes useful building blocks

 Supervisor

 Generic server

 Finite state machine

30

Erlang in Practice – Cons

• Hard to find good Erlang programmers (?)

 Management b......t

 Long live Chalmers

• A bit too low-level language

 Given current HW limitations one must sometimes
optimise to the point where the code is not portable
(with the same performance)

 Raise the abstraction and provide a customisable
compiler, VM (Elixir?)

31

Erlang in Practice – Cons

• Where is the type system?

 A static type system of Haskell-nature would
probably be a hindrance

 But good static analysis tools are desperately
needed

 Types are an excellent form of documentation

32

More Than True

33

54PPVT10 – Introduction

Sayings

• The greatest performance improvement of all
is when a system goes from not-working to
working

• The only thing worse than a problem that
happens all the time is a problem that doesn't
happen all the time

Functional Programming

• Widespread use

 Embedded (cars, satellites, etc.), web-apps, games,
banks, big-data, …

• Abstractions and compositionality

• Productivity gains

34

The Industrial Experience

• It is more difficult that you expect, but

 Usually not in complexity but size

• Good methodical approach helps

• Lateral thinking is an asset

 Learn many programming paradigms

 Learn many programming languages

35

