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Parallel Programming 
David Sands 
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Parallelism vs. Concurrency 

Multiple cores for performance Multiple threads for modularity 
of interaction 

Concurrent Haskell Parallel Haskell 

Slide: S. Marlow 

Parallelism vs. Concurrency 

•  Primary distinguishing feature of Parallel 
Haskell: determinism 
– The program does “the same thing” 

regardless of how many cores are used to run 
it. 

– No race conditions or deadlocks 
– add parallelism without sacrificing correctness 
– Parallelism is used to speed up pure (non-IO 

monad) Haskell code 

Slide: S. Marlow 
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Parallelism vs. Concurrency 
•  Primary distinguishing feature of Concurrent 

Haskell: threads of control 
– Concurrent programming is done in the IO monad 

•  because threads have effects 
•  effects from multiple threads are interleaved 

nondeterministically at runtime. 
– Concurrent programming allows programs that 

interact with multiple external agents to be 
modular 

•  the interaction with each agent is programmed 
separately 

•  Allows programs to be structured as a collection of 
interacting agents (actors) 

Slide: S. Marlow 

Parallel Haskell 
•  Basic primitives: par and pseq 
•  parallelise use of Sudoku solver 
•  use ThreadScope to profile parallel execution 

•  do dynamic rather than static partitioning 
•  measure parallel speedup 

–  use Amdahl’s law to calculate possible speedup 

– Evaluation Strategies 
•  build simple Strategies 

Running example: solving 
Sudoku 

– code from the Haskell wiki (brute force search 
with some intelligent pruning) 

– can solve all 49,000 problems in 2 mins 
–  input: a line of text representing a problem 

import Sudoku 
 

solve :: String -> Maybe Grid 

.......2143.......6........2.15..........637...........68...4.....23........7.... 

.......241..8.............3...4..5..7.....1......3.......51.6....2....5..3...7... 

.......24....1...........8.3.7...1..1..8..5.....2......2.4...6.5...7.3........... 
 
 

Slide: S. Marlow 

Solving Sudoku problems 

•  Sequentially: 
– divide the file into lines 
– call the solver for each line 
import	
  Sudoku	
  
	
  
f	
  =	
  "sudoku17.1000.txt”	
  
	
  
main	
  ::	
  IO	
  ()	
  
main	
  =	
  do	
  
	
  	
  	
  	
  grids	
  <-­‐	
  fmap	
  lines	
  $	
  readFile	
  f	
  
	
  	
  	
  	
  let	
  solutions	
  =	
  map	
  solve	
  grids	
  
	
  	
  	
  	
  print	
  $	
  all	
  isJust	
  solutions	
  

Compile 

•  Optimisation –O2 
•  Runtime options  

$ ghc -O2 sudoku1.hs -rtsopts 
[1 of 2] Compiling Sudoku           ( Sudoku.hs, Sudoku.o ) 
[2 of 2] Compiling Main             ( sudoku1.hs, sudoku1.o ) 
Linking sudoku1 ... 
$ 

Controlling Evaluation for 
Parallelism 

•  In theory a compiler should be able to 
automatically compile pure functional 
programs to use multiple cores 
– purity ) computations can be freely 

reordered without changing the result 
•  In practice this is hard. We need to give 

hints as to which strategy to use 
– but no synchronisation/deadlock issues need 

to be considered! 
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Run the program... 
$ ./sudoku1 +RTS -s 

   2,392,127,440 bytes allocated in the heap 

      36,829,592 bytes copied during GC 

         191,168 bytes maximum residency (11 sample(s)) 

          82,256 bytes maximum slop 

               2 MB total memory in use (0 MB lost due to fragmentation) 

 

  Generation 0:  4570 collections,     0 parallel,  0.14s,  0.13s elapsed 

  Generation 1:    11 collections,     0 parallel,  0.00s,  0.00s elapsed 

 

... 

 

  INIT  time    0.00s  (  0.00s elapsed) 

  MUT   time    2.92s  (  2.92s elapsed) 

  GC    time    0.14s  (  0.14s elapsed) 

  EXIT  time    0.00s  (  0.00s elapsed) 

  Total time    3.06s  (  3.06s elapsed) 

 

... 

par and pseq 

ghc	
  –threaded	
  uses a threaded runtime 
system.  To make use of it we need to add 
some parallelism hints to the code 
Control.Parallel	
  provides 
pseq	
  ,	
  par	
  ::	
  a	
  -­‐>	
  b	
  -­‐>	
  b	
  
• pseq  – seq but with a guarantee of left-to-

right evaluation order  
• par – maybe evaluate left argument (to 

whnf) possibly in parallel with its right arg. 

What does par actually do? 

•  par creates a spark by writing an entry in the spark 
pool 
–  par is very cheap! (not a thread) 

•  the spark pool is a circular buffer 
•  when a processor has nothing to do, it tries to remove 

an entry from its own spark pool, or steal an entry from 
another spark pool (work stealing) 

•  when a spark is found, it is evaluated 
•  The spark pool can be full – watch out for spark 

overflow! 

Spark Pool 

x 

x `par` y  

Parallelising Sudoku 

•  Let’s divide the work in two, so we can 
solve each half in parallel: 

•  Now we need something like 

let (as,bs) = splitAt (length grids `div` 2) grids 
    as’ = map solve as 
    bs’ = map solve bs 

let solutions = as’ `par` bs’ `pseq` as’ ++ bs’ 
print $ all isJust solutions 
 

But this won’t work... 

•  Like seq, par evaluates its argument to Weak 
Head Normal Form (WHNF) 
–  evaluates as far as the first constructor 
–  e.g. for a list, we get either [] or (x:xs) 
–  e.g. WHNF of  map	
  solve	
  (a:as) would be  

solve	
  a	
  :	
  map	
  solve	
  as	
  

•  But we want to evaluate the whole list, and the 
elements 

We need ‘deepseq’ 

•  deepseq fully evaluates a nested data 
structure (its first arg) and returns it’s second 
–  e.g. a	
  `deepseq`	
  b	
  	
  
a	
  is fully evaluated, including the elements 

•  uses overloading: the argument must be an 
instance of NFData 
–  instances for most common types are provided by 

the library  

import	
  Control.DeepSeq(deepseq)	
  
-­‐-­‐	
  deepseq	
  ::	
  NFData	
  a	
  =>	
  a	
  -­‐>	
  b	
  -­‐>	
  b	
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deep 

•  We need to use deepseq inside a par 
  (as	
  `deepseq`	
  as)	
  `par`	
  …	
  
	
  
 

•  But things in a par should be variables, 
and should be used later (otherwise the 
spark might get discarded!). Thus:  
	
  let	
  as’	
  =	
  deep	
  as	
  in	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  as’	
  `par`	
  …	
  

 
 

deep	
  a	
  =	
  a	
  `deepseq`	
  a	
  

Using deep 
main	
  =	
  do	
  
	
  	
  	
  	
  grids	
  <-­‐	
  fmap	
  lines	
  $	
  readFile	
  f	
  
	
  	
  	
  	
  let	
  (as,bs)	
  =	
  splitAt	
  (length	
  grids	
  `div`	
  2)	
  grids	
  
	
  	
  	
  	
  	
  	
  	
  	
  as'	
  =	
  deep	
  $	
  map	
  solve	
  as	
  
	
  	
  	
  	
  	
  	
  	
  	
  bs'	
  =	
  deep	
  $	
  map	
  solve	
  bs	
  
	
  	
  	
  	
  	
  	
  	
  	
  result	
  =	
  all	
  isJust	
  (as'	
  ++	
  bs')	
  	
  
	
  	
  	
  	
  bs'	
  `par`	
  as'	
  `pseq`	
  print	
  result	
  

•  Why bs’ before as’? 
– worked out a little better 
– need performance measurement… 

Let’s try it... 

•  Compile sudoku2 
–  (add -threaded -rtsopts) 
–  run with sudoku17.1000.txt +RTS -N2 

•  Take note of the Elapsed Time 

Runtime results... 
$ ./sudoku1 +RTS -s -N2  

True 

   2,400,106,440 bytes allocated in the heap 

      48,996,296 bytes copied during GC 

       2,615,040 bytes maximum residency (7 sample(s)) 

         326,584 bytes maximum slop 

               9 MB total memory in use (0 MB lost due to fragmentation) 

 

  Generation 0:  2984 collections,  2983 parallel,  0.65s,  0.12s elapsed 

  Generation 1:     7 collections,     7 parallel,  0.02s,  0.02s elapsed 

 

  Parallel GC work balance: 1.49 (6106266 / 4103299, ideal 2) 

 

SPARKS: 1 (1 converted, 0 pruned) 

 

  INIT  time    0.01s  (  0.01s elapsed) 

  MUT   time    2.25s  (  1.70s elapsed) 

  GC    time    0.68s  (  0.14s elapsed) 

  EXIT  time    0.00s  (  0.00s elapsed) 

  Total time    2.93s  (  1.85s elapsed) 

speedup ~1.5 
over the 

sequential version 

One spark was 
created and one was 
run by a processor 

Why not 2? 

•  two reasons for lack of parallel speedup: 
–  less than 100% utilisation (some processors 

idle for part of the time) 
– extra overhead in the parallel version 

•  Each of these has many possible causes... 

A menu of ways to screw up 
•  less than 100% utilisation 

–  parallelism was not created, or was discarded 
–  algorithm not fully parallelised – residual sequential 

computation 
–  uneven work loads 
–  poor scheduling 
–  communication latency 

•  extra overhead in the parallel version 
–  overheads from rpar, work-stealing, deep, ... 
–  lack of locality, cache effects... 
–  larger memory requirements leads to GC overhead 
–  GC synchronisation 
–  duplicating work 
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So we need tools 

•  to tell us why the program isn’t performing 
as well as it could be 

•  For Parallel Haskell we have ThreadScope 

•  -eventlog has very little effect on runtime 
–  important for profiling parallelism 

$ ghc -O2 sudoku2.hs -threaded -rtsopts –eventlog 
$ ./sudoku2 +RTS -N2 -ls 
$ threadscope sudoku2.eventlog 

Uneven workloads... 
•  So one of the tasks took longer than the 

other, leading to less than 100% utilisation 

•  One of these lists contains more work than 
the other, even though they have the same 
length 
–  sudoku solving is not a constant-time task: it is a 

searching problem, so depends on how quickly 
the search finds the solution 

 let (as,bs) = splitAt (length grids `div` 2) grids  

Partitioning 

•  Dividing up the work along fixed pre-
defined boundaries, as we did here, is 
called static partitioning 
– static partitioning is simple, but can lead to 

under-utilisation if the tasks can vary in size 
– static partitioning does not adapt to varying 

availability of processors – our solution here 
can use only 2 processors 

 let (as,bs) = splitAt (length grids `div` 2) grids  

Dynamic Partitioning 

•  GHC’s runtime system provides spark 
pools to track dynamic work units, and a 
work-stealing scheduler to assign them to 
processors 

•  So all we need to do is use smaller tasks 
and more pars, and we get dynamic 
partitioning 

Simple idea: parallel map 

paraMap::	
  (a	
  -­‐>	
  b)	
  -­‐>	
  [a]	
  -­‐>	
  [b]	
  
paraMap	
  f	
  []	
  =	
  []	
  
paraMap	
  f	
  (x:xs)	
  =	
  let	
  y	
  	
  =	
  deep	
  $	
  f	
  x	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ys	
  =	
  paraMap	
  f	
  xs	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  y	
  `par`	
  ys	
  `pseq`	
  y	
  :	
  ys	
  	
  
  

places each call to f in a new 
spark – to be evaluated deeply! 

main	
  =	
  do	
  
	
  	
  	
  	
  grids	
  <-­‐	
  fmap	
  lines	
  $	
  readFile	
  f	
  
	
  	
  	
  	
  let	
  solutions	
  =	
  paraMap	
  solve	
  grids	
  	
  
	
  	
  	
  	
  print	
  $	
  all	
  isJust	
  solutions	
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Result (2 cores) Same code on an 8-core box 

5.2 
speedup 

Evaluation Strategies 

par and pseq are low level 
•  All about sequencing computation and 

creation of sparks 
– monads are good for sequencing… 

•  Algorithm + Strategy = Parallel program 
– strategies as re-usable components that can 

be composed together 
– Clean separation of algorithm from strategy 

The Eval monad 

•  Eval is pure 
•  Just for expressing sequencing between rpar/rseq – 

nothing more 
•  Compositional – larger Eval sequences can be built by 

composing smaller ones using monad combinators 
•  Internal workings of Eval are very simple (see Haskell 

Symposium 2010 paper) 

import Control.Parallel.Strategies 
 
data Eval a 
instance Monad Eval 
 
runEval :: Eval a -> a 
 
rpar :: a -> Eval a 
rseq :: a -> Eval a 

Example: A parallel map 
rParaMap :: (a -> b) -> [a] -> Eval [b] 
rParaMap f [] = return [] 
rParaMap f (a:as) = do 
   b <- rpar $ deep (f a) 
   bs <- rParaMap f as 
   return (b:bs) 

Create a spark to 
evaluate (f a) for 
each element a  

Return the new list 

The Strategy type 

•  A Strategy is... 
– A function that,  
– when applied to a value ‘a’, 
–  evaluates ‘a’ to some degree 
–  (possibly sparking evaluation of sub-components 

of ‘a’ in parallel), 
–   and returns an equivalent ‘a’ in the Eval monad 

•  NB. the return value should be equivalent to 
the original 

type Strategy a = a -> Eval a     
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Some Basic Strategies 

•  r0     no evaluation 
•  rpar   create a parallel spark 
•  rdeepseq  deep evaluation 

evalList 
•  parMap has the sparking behaviour built-in, start 

with a basic traversal in the Eval monad: 

 

evalList	
  (a	
  -­‐>	
  Eval	
  a)	
  -­‐>	
  [a]	
  -­‐>	
  Eval	
  [a]	
  
evalList	
  f	
  []	
  	
  	
  	
  	
  =	
  return	
  []	
  
evalList	
  f	
  (x:xs)	
  =	
  do	
  
	
  	
  x’	
  	
  <-­‐	
  f	
  x	
  
	
  	
  xs’	
  <-­‐	
  evalList	
  f	
  xs	
  
	
  	
  return	
  (x’:xs’)	
  

evalList 
 

•  and now: 

-- Earlier example could be defined as 
rParaMap f  =  
	
  	
  parList	
  (rpar	
  `dot`	
  rdeepseq)	
  .	
  map	
  f	
  
	
  
parList	
  f	
  =	
  evalList	
  (rpar	
  `dot`	
  f)	
  
	
  	
  where	
  s1	
  `dot`	
  s2	
  =	
  s1	
  .	
  runEval	
  .	
  s2	
  

	
  

How do we use a Strategy? 

•  We could just use runEval 
•  But this is better: 

•  e.g. 

•  Idea: `using` strategies should always be a 
performance annotation.  
– need to check that x `using` s == x 

type Strategy a = a -> Eval a     

x `using` s = runEval (s x) 

myList `using` parList rdeepseq 

Using Strategies 

•  Note: this modularity depends crucially on lazy 
evaluation – otherwise strat would be too late to 
have any control (the term would already be 
evaluated!) 

main	
  =	
  do	
  
	
  	
  	
  	
  grids	
  <-­‐	
  fmap	
  lines	
  $	
  readFile	
  f	
  
	
  	
  	
  	
  let	
  solutions	
  =	
  map	
  solve	
  grids	
  `using`	
  strat	
  	
  
	
  	
  	
  	
  print	
  $	
  all	
  isJust	
  solutions	
  

strat	
  =	
  evalList	
  (rpar	
  `dot`	
  rdeepseq)	
  

What if the file is BIG 

•  1000 -> 16000 sudokus 
•  Spark pool buffer exceeded – lost sparks –  
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chunkList Strategy 

•  Strategy idea – spark chunks of n 
elements (fewer sparks) 

strat = chunkList 100 (rpar `dot` rdeepseq) 
 
chunkList n strat =  
   fmap concat . evalList strat . chunks 
     where chunks = takeWhile (not.null) 
                  . map (take n) 
                  . iterate (drop n) 
 
prop_chunkList k xs = k > 0 ==>  

 xs == xs `using` chunkList k rdeepseq  

chunkList is parListChunk 

•  This function already exists in the 
strategies library (I missed it first time!) 

16000 in <24s Summary 

•  Strategies, in theory: 
– Algorithm + Strategy = Parallelism 

•  Strategies, in practice (sometimes): 
– Algorithm + Strategy = No Parallelism 

•  laziness is the magic ingredient that 
bestows modularity, but laziness can be 
tricky to deal with. 

Where to look next 

•  Other alternatives are emerging, see e.g. 
– The Par monad: abandon modularity via 

laziness for more explicit concurrency 
– Data-parallel Haskell – operations on bulk 

data (think GPU’s – thousands of cores) 

Further Reading 

•  Many slides here adapted from Simon 
Marlow’s CEFP summer school slides 

•  http://research.microsoft.com/en-us/
people/simonmar 
–  /par-tutorial.pdf 
–  /papers/strategies.pdf 

•  haskell.org/haskellwiki/ThreadScope 


