Monads seen so far:
IO vs Gen

I0A Gen A

Y}_Y_}

Monads

* Instructions to build a value * Instructions to create a
of type A by interacting with random value of type A
the operating system

* Run by the ghc runtime * Run by the QuickCheck
system library functions to perform

random tests
David Sands
Terminology Parsing

* A “monadic value” is just an expression whose
type is an instance of class Monad

* “tis a monad” means t is an instance of the
class Monad

» We have often called a monadic value an
‘instruction”. This is not standard terminology
— but sometimes they are called “actions”

So far: how to write

readExpr :: String -> Maybe Expr

* Key idea:

type Parser = String -> Maybe (a, String)

This lecture: Building Parsers; Parsers as a new
type of "instructions” — i.e. a monad.

The Big Picture

Refactor/generalise RefactoredParser Alterative approach
« Few basic bulding Parsing.hs
blocks (datatype

ReadExpr.hs dependent) « Parser as an
*Parser instance of Monad

* “Brute force” “Combinators”

parser.

* Big ugly case

expressions. RefactoredReadExpr ReadExprMonadic

* Minimal reuse.

+ Afew lines of code « Afew lines of code
Refactor

Recall some key building blocks

succeed :: a -> Parser a
succeed a = P $ \s -> Just(a,s)

sat :: (Char -> Bool) -> Parser Char
(>->) :: Parser a -> Parser b -> Parser b
(>*>) :: Parser a -> (a -> Parser b) -> Parser b

Main> parse (digit >*> \a -> sat (==a)) "22xx"
Just ('2',"xxx"

Main> parse (digit >*> \a -> sat (==a)) "12xx"
Nothing

The Parser Monad

* Using these building blocks we can make
Parser an instance of the class Monad
— We get a language of “Parsing Instructions”
— Another way to write Parsers using do notation
— Deeper understanding of Monads

Monads seen so far:
IO vs Gen

I0A Gen A

L____Y____J L____Y____J

* Instructions to build a value * Instructions to create a
of type A by interacting with random value of type A
the operating system

* Run by the ghc runtime

* Run by the QuickCheck
system

library functions to perform
random tests

Monads = Instructions

* What is the type of doTwice?

Main> :i doTwice
doTwice :: Monad a => a b -> a (b,b)

Whatever kind of
Even the kind of instructions result argument
can vary!
Different kinds of instructions,
depending on who obeys
them.

produces, we get a
air of them

IO means operating
system.

Monads and do notation

* To be an instance of class Monad you need
(as a minimal definition) two operations: >>=
and return

class Monad m where
(>>=) :t:ma->(a->mb) ->mb

return :: a ->ma
Default implementations
(>>) ::ma->mb->mb

X >y =X >=_->y

fail :: String -> m a
fail msg = error msg

Monad

* To be an instance of class Monad you need
two operations: >>= and return

instance Monad Parser where
return = succeed
(>>=) = (>*>)
-- (>->) is equivalent to (>>)

The truth about Do

» Do syntax is just a shorthand:

do actl == =

act2 actl >> act2 actl >>= _ -> act2

do v <- actl |==

actl >>= \v -> act2
act2

* Why bOther? t[-First example of a home-grown monad

+Can understand and use do notation

The truth about Do

Full translation (1)

do actl __ |actl >> do ..
actn
actn

do v <- actl | _ factl >>= \v -> do ..
- actn
actn

do actn —= |actn

Full Translation (Il): Let and pattern matching

The truth about Do

do let p

actn

= e let p = e in

do ..
actn

actn

do pattern <- actl

let f pattern = do ..
actn
f _ = fail “Error”
in actl >>= f

Example

* recall doTwice

doTwice :: Monad m => m a -> m (a,a)
doTwice cmd =
do a <- cmd
b <- cmd
return (a,b)

Main> parse (doTwice number) "9876”
Just ((9,'8"), "76")

Example revisited: Parsing

ExpreSS|onS modified to use the new

expr :: Parser Expr
expr s1 = case parse num s1 of

version of Parser type.
Otherwise as before

Just (a,s2) -> case s2 of
'+":83 -> case parse expr s3 of
Just (b,s4) -> Just (Add a b, s4)
Nothing -> Just (a,s2)
_ -> Just (a,s2)
Nothing -> Nothing

Monadic style abstracts
away from implementation of
the Parser type

expr :: Parser Expr
expr =do a <- num
do char '+
b <- expr
return (Add a b)
+++return a

Parser Combinators

zeroOrMore, oneOrMore :: Parser a -> Parser [a]
zeroOrMore p = oneOrMore p +++ return []
oneOrMore p = do v <- p

vs <- zeroOrMore p
return(v:vs)

Main> parse (oneOrMore number) "9876+”
Just ("9876","+")

Combinator: a function which
take functions as arguments and
produces a function as a result

Parser Combinators

nat =

int =

nat ::

int ::

Parser Int -- Parses a non negative integer
do xs <- oneOrMore number
return (read xs)

Parser Int
nat +++
do char '-'
n <- nat
return (-n)

Chain

Old definition (modified

to work with the new
type)

chainpopf=P $\s1->
case parse p s1 of
Just (a,s2) -> case s2 of
c:s3 | c == op -> case chain p op f s3 of
Just (b,s4) -> Just (f a b, s4)
Nothing -> Just (a,s2)
_ -> Just (a,s2)
Nothing -> Nothing

chainpopf=dov<-p

Factor

factor :: Parser Expr
factor (°(’:s) =
case expr s of
Just (a, ’)’:sl) -> Just (a, s1)
-> Nothing

factor s = num s

factor :: Parser Expr
factor = num +++
do char ’(°

o -) e <- expr
vs <- zeroOrMore (char op >> p - h >y’
return (foldr1 f (v:vs)) P?p':g?;ﬁ'?;:”é {‘;'d Eei:r‘n e
with at least one
element (no "nil”
case)
10 t
Summary . Ger.1 t Parser t
* Instructions for | |+ Instructions for ||+ Instructions for
. . . interacting with building random parsing
* We can use higher-order functions to build operating values
Parsers from other more basic Parsers. system
. . * Run by parse
* Parsers can be viewed as an instance of * Runby GHC |1, Run by to parse a
Monad runtime system || quickCheck to string and
+ We can build our own Monads! p][(:ducet’ value generate Maybe produce
of type
— A lot of "plumbing” is nicely hidden away Y ;z;l:dgztvalues ? value of type
— The implementation of the Monad is not visible y

and can thus be changed or extended

Three Monads

Code

» Parsing.hs

— module containing the parser monad and simple
parser combinators.

* ReadExprMonadic.hs
— A reworking of Read

See course home page

A fun blog post about functors,
applicatives and monads
http://adit.io/posts/

2013-04-17-functors,_applicatives,_and_monads_in_pictures.html|

Here is a function

“TPKES A
€ VALVE

RETURNS A
<« VALLE

They can be composed

Here is a function

half x = if even x
then Just (x “div® 2)
else Nothing

What if we feed it a wrapped value?

We need to use >>= to shove our wrapped value into the function

>>=

Ssald

>>=

Here’s how it works:

>>=

()i ma > @ > mb > mb
1

Just 3 half \
Nothing _
Just 4 half 1.>>= TheES 2. AD A 3 AND T
Just 2 A MONAD AT ‘
Nothing half) FuNCTION RETLANS
Nothing Qe ReTURNS A MONAD A MONAD
(uke haD
What's happening inside? Monad is another typeclass. Here's a partial definition:
class Monad m where
m a a m b m b
%“ﬂzgﬁygu
F b o >>=
. 7 WT?
Z e o
4. WD UNweRAPS
THE VALVE

3 \uRAETED VAWE
* comes ouT

H B worwee
& comes ooT

Just 20 >>= half >>= half >>= half

é

Dak>

Maybe another Monad

* Maybe is a very simple monad

instance Monad Maybe where
Just x >>=k = k x

Nothing >>= _ = Nothing
return = Just
fail s = Nothing

Although simple it can be useful...

Congestion Charge Billing

) Betalstation

Nordagan® 7

S ety AV —_,.
i |

nﬂﬂ:ﬂw b

0830- 0859 3

Congestion Charge Billing

Registration number used to find the
Personnummer of the owner

carRegister :: [(RegNr,PNr)]

Personnummer used to find the name of the
owner

nameRegister :: [(PNr,Name)]
Name used to find the address of the owner
addressRegister :: [(Name,Address)]

Example:
Congestion Charge Billing

type CarReg = String ; type PNr = String
type Name = String ; type Address = String

carRegister :: [(CarReg,PNr)]
carRegister
= [("IBD 007","750408-0909"), ...]

nameRegister :: [(PNr,Name)]
nameRegister
= [("750408-0909","Dave”), ...]

addressRegister :: [((Name,PNr),Address)]
addressRegister =
[(("Dave","750408-0909"),"42 Streetgatan\n Askim")

s ees

Example:
Congestion Charge Billing

With the help of

lookup :: Eq a => a -> [(a,b)] -> Maybe b
we can return the address of car owners

billingAddress :: CarReg -> Maybe (Name, Address)
billingAddress car =
case lookup car carRegister of
Nothing -> Nothing
Just pnr -> case lookup pnr nameRegister of
Nothing -> Nothing
Just name ->
case lookup (name,pnr) addressRegister of
Nothing -> Nothing
Just addr -> Just (name,addr)

Example:
Congestion Charge Billing

Using the fact that Maybe is a member of class Monad
we can avoid the spaghetti and write:

billingAddress car = do
pnr <- lookup car carRegister
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

Example:

Congestion Charge Billing

Unrolling one layer of the do syntactic sugar:

billingAddress car ==

lookup car carRegister >>= \pnr ->

do
name <- lookup pnr nameRegister
addr <- lookup (name,pnr) addressRegister
return (name,addr)

* lookup car carRegister gives Nothing
then the definition of >>= ensures that the whole
result is Nothing

* return is Just

Another Example: A Stack

» A Stack is a stateful object

» Stack operations can push values on, pop
values off, add the top elements

type Stack = [Int]
newtype StackOp t = StackOp (Stack -> (t,Stack))

-- the type of a stack operation that produces
-- a value of type t

pop :: StackOp Int

push :: Int -> StackOp ()

add :: Stackop ()

Running a StackOp

type Stack = [Int]
newtype StackOp t = StackOp (Stack -> (t,Stack))

run (Stackop f) = f

-- run (StackOp f) state = f state

Operations

pop :: StackOp Int
pop = StackOp $ \(x:xs) —> (x,xs) —— can fail

push :: Int —> StackOp ()
push i = StackOp $ \s —> ((),i:s)

add :: StackOp ()

add = StackOp $ \(x:y:xs) —> ((),x+y:xs) —— can fail

Building a new StackOp...

swap :: StackOp ()
swap = StackOp $ \s ->
let (x,s') = run pop s
(y,s'") = run pop s’
(_,s""") = run (push x) s''
(_,s"""") = run (push y) s'"’

StackOp is a Monad

+ Stack instructions for producing a value

— (>>=) :: StackOp a —> (a —> StackOp b) —> StackOp b
instance Monad StackOp
where return n = StackOp $ \s —> (n,s)
sop >>= f = StackOp $ \s —>
let (i,s') = run sop s
in run (f i) s'

Stack t
» Stack
instructions
producing a
value of type t
* Run by run

Maybe t
Instructions for
either
producing a
value or
nothing
Run by ?? (not
an abstract
data type)

Two More Monads

Summary: Parsing

* We can use higher-order functions to build
Parsers from other more basic Parsers.

» Parsers can be viewed as an instance of
Monad

« We can build our own Monads!

— A lot of "plumbing” is nicely hidden away
— A powerful pattern, used widely in Haskell

— A pattern that can be used in other languages, but
syntax support helps

» F# computation expressions

* Scala

