Semaphores, Monitors,
Protected Objects

K.V.S. Prasad
Dept. of Computer Science

Chalmers University
2 and 6 feb 2015



Questions?

 Reminder: course rep meeting next Monday 9 Feb
— give your rep notes, suggestions, etc. during the break

* Anything you want to say
— Comments, questions, stray thoughts, etc.
— Are we too fast/slow?

 More status questions
— How did the demo/viva go?
— Mail us if there are problems (of any kind)



Pet examples

Passing a door from opposite directions
— If both sleep until the other passes — deadlock
— If both eager — livelock (busy waiting)

Library

The knife (atomic; deadlock if fork+knife picked
up in either order)

The printer (grab then file, or atomic per sheet?)
Count up to 20

Max, sort by chemical machine

Max and grabbing by broadcast



Plan

 Chap 6 examples
e Chap7
— Monitors (contd.)
— protected objects
* Transition to message passing

Chap 3 & 4 (skipped for now)

REMINDER: do the exercises in Chaps. 1, 2, 3, 6



Primitives and Machines

We see this repeatedly in Computer Science
— Whether for primitives or whole machines
Recognise pattern in nature or in use

— Critical section motivating ex. for semaphores
Specify primitive or machine

— Set or queue? Direct handover upon signal?

Figure out range of use and problems
— today

Figure out (efficient) implementation
— Maybe later



CS problem for n processes

e Seealg6.3(p 113, s6.5)

— The same algorithm works for n procs
— The proofs for mutex and deadlock freedom work
* We never used special properties of binary sems

— But starvation is now more likely

* p and q can release each other and leave r blocked

* Exercise: If k is set to m initially, at most m
processes can be in their CS’s.



Mergesort using semaphores

e See p 115, alg 6.5 (s 6.8)

— The two halves can be sorted independently
* No need to synch

— Merge, the third process,
* has to wait for both halves

— Note semaphores initialised to 0
 Signal precedes wait
* Done by process that did not do a wait

— Not a CS problem, but a synchronisation one



Producer - consumer

Yet another meaning of “synchronous”
— Buffer of 0 size

Buffers can only even out transient delays
— Average speed must be same for both

Infinite buffer first. Means

— Producer never waits

— Only one semaphore needed

— Need partial state diagram

— Like mergesort, but signal in a loop

See algs 6.6 and 6.7



Infinite buffer is correct

* |nvariant

— #sem = #buffer
* Oinitially
* Incremented by append-signal
— Need more detail if this is not atomic

* Decremented by wait-take

* So cons cannot take from empty buffer

* Only cons waits —so no deadlock or
starvation, since prod will always signal



Bounded buffer

 Seealg6.8(p119,s6.12)

— Two semaphores
e Cons waits if buffer empty
* Prod waits if buffer full

— Each proc needs the other to release ”its” sem

e Different from CS problem

— "Split semaphores”

— Invariant
* notEmpty + notFull = initially empty places



Different kinds of semaphores

* “Strong semaphores”

— use queue insteadof set of blocked procs
* No starvation

* Busy wait semaphores
— No blocked processes, simply keep checking

* See book re problems about starvation
— Simpler.
e Useful in multiprocessors where each proc has own CPU
— The CPU can’t be used for anything else anyway

e Orif there is very little contention



Dining Philosophers

* Obvious solution deadlocks (alg 6.10)
* Break by limiting 4 phils at table (6.11)
 Or by asymmetry (6.12)



Semaphore recap

* Designed for CS problem or atomic actions
— (even with n-proc)
— Avoid busy waiting

e But for the producer-consumer problem

— The correctness of each proc
* Depends on the correctness of the other

— Not modular

* Monitors modularise synchronisation
— for shared memory



Correctness, and software processes

* Look at state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, 92, ..)
— No deadlock

* Of a set of waiting (or blocked) procs, one gets in
* Simpler definition of deadlock now

— Both blocked, no hope of release

— No starvation, with fair scheduler

* A wait will be executed
* A blocked process will be released



Monitors = synchronised objects

* A type of monitors looks like a class with sync

* An operation on a monitor
— Looks atomic
— All operations are mutex w.r.t. each other

* i.e., only one operation at a time

 Soalg 7.1 can only result in n=2 at the end.



Confusions with O-O programming

* Monitors are static
— They don’t "send messages” to each other

* Processes are the running things
— They can enter the monitor one at a time

— There is no queue of processes waiting to get in,
* Only a set



Monitors centralise

e Access to the data

— Natural generalisation of objects in OO, but
* With mutex
* With synchronisation conditions

* Could dump everything in the kernel

— But this centralises way too much

* SO monitors are a compromise



Condition Variables = named queues

* Mutex?
— Monitors provide it, by definition (See alg 7.1)

* But often, need explicit synchronisation

* j.e., processes wait for different events
— Producer waits till (someone makes) buffer notFull
— Consumer waits till (someone makes) buffer notEmpty

* They need to be unblocked
* when the corresponding event occurs

* In monitors, each such event

— Has a queue associated with it

* In fact, for the monitor, the "event” is just the queue
* These queues are called "condition variables”



Semaphore implemented by monitor

Alg 7.2

No explicit release of monitor lock
— Leave when done

waitC always blocks
— This is not the semaphore’s wait
— When unblocked by signal

* Must wait till signalling proc leaves monitor

signalC has no effect on empty queue
— Semaphore signal always has an effect



waitC (on monitor condition var)
Vs wait on semaphore

waitC (on monitor condition var)
Append p to cond

p.State <- blocked

Monitor release

Wait(S)
If SV>0thenS.V:=5.V-1
else S.L :=S.L +{p}; block p



signalC (on monitor condition var)
vs signal on semaphore

signalC (on monitor condition var)
If cond not empty

g <- head of queue

ready g

Signal(S)
If S.L empty then S.V := S5.V+1
else S.L :=S.L —{q}, ready q (for abitrary q)



Correctness of semaphore by monitor

See p 151
Exactly the same as fig 6.1 (s 6.4)

Note that state diagrams simplify
— Whole operations are atomic

Check: for well-behaved program

— 4 unreachable states
* blocked-blocked (deadlock)
* signal-signal (no mutex)
» wait-blocked (deadlock coming!)
— For mutex starting with k=1, and two user processes
* The variable values are determined by the proc states



Producer-consumer

e Alg7.3
* All interesting code gathered in monitor
* Very simple user code



Immediate resumption

* So signalling proc cannot again falsify cond

— If signal is the last op, allow proc to leave?
« How? See protected objects

 Many other choices possible

— Check what your language implements



Semaphores vs monitors: examples

 Semaphores

— Library- user returning book chooses sleeper and
wakes them

— Prod-cons — each wakes the other
— Can’t tell at a glance what the semaphore is for
* Mutex? Synchronisation signal?
* Monitor
— mutex access; synchronisation by condition variables

— Library- users only contract with the library
* takes care of returns, chooses sleeper and wakes them

— Prod-cons — each only contracts with the buffer



Design issues with monitors

* A borrower has to wait (where?)

— The returner and woken up borrower
* Can be active together?
* If not, who waits? Where?
— “Hoare semantics”(immediate resumption)

* the returner has to wait — where?
 Why? So the borrower doesn’t find book gone

— “Mesa semantics”

e Returner signals and leaves, then wake up borrower
— Who must again check if book is available



More monitor design issues

When do you check if book is available?

— Why not right away?

— Whatever you do before that cannot change cond
— Because that is signalled by the returner

So you can check in a cond.var ante-room
Drop explicit signal by returner

Then who checks cond-vars?

— The system
— check all c-v's whenever anyone leaves



So: protected objects

* = monitors with cond. Vars -> entry guards
— Call to entry blocks till guard is true
— No signals

* Simply check all guards whenever a user leaves



Readers and writers

e Alg7.4
 Not hard to follow, but lots of detail

— Readers check for no writers

e But also for no blocked writers
— Gives blocked writers prioroty

* Cascaded release of blocked readers
— But only until next writer shows up

— No starvation for either reader or writer

* Shows up in long proof (sec 7.7, p 157)
— Read at home!



Dining philosophers again

¢ Alg 7.5



Protected objects

* Monitors need waitC and signhalC programmed
* Protected objects combine this with queueing
* See alg 7.6 for readers-writers

— Each operation starts only when its cond is met
* Called a "barrier”

— What happened to signalC?
* When any op exits, all barriers are checked



Protected objects (contd.)

 Seealg 7.6 (p 164, s 7.16)

* Tidies up the mess

— No separate condition variables
e Or queues for them
* Or detailed choices “immediate release”, etc.

* The simplicity of 7.6 is worth gold!

— Price: starvation possible
— Can be fixed, at small price in mess (see exercises)



Ada

Uses protected objects
— Since the 1980’s

* though the concept was around earlier
— Thus has the cleanest shared memory model

Also has a very good communication model
— Rendezvous

Ada was decided carefully through the 1970s

— Open debates and process of definition

Has fallen away because of popularity of C, etc.
— Use now seen as a proprietary secret!



Transition

* Why do we need other models?

* Advent of distributed systems
— Mostly by packages such as MPI

* Message passing interface

e But Hoare 1978

— arrived before distributed systems
— | see it as the first realisation that

e Atomic actions, critical regions, semaphores, monitors...

e Can be replaced by just I/O as primitives!



