Lecture 5: Monitors and
protected objects

K.V.S. Prasad
Dept of Computer Science

Chalmers University
15 Sep 2014



Questions?

 Reminder: course rep meeting next Tuesday 23 Sep
— All: give your rep some notes, suggestions, etc. during the break

* Anything you want to say
— Comments, questions, stray thoughts, etc.
— Are we too fast/slow?

* More reminders
— Joined the google group. You must, to mail us and get replies
— Please don’t mail us at our personal addresses
— Found a lab partner? Ask tutors for help if needed



Plan for today
 Chap 6: recap

e Chap7
— Monitors (contd.)
— protected objects
* Transition to message passing

Chap 3 & 4 (skipped for now)

REMINDER: do the exercises in Chaps. 1, 2, 3, 6



Semaphore recap

* Designed for CS problem or atomic actions
— (even with n-proc)
— Avoid busy waiting

e But for the producer-consumer problem

— The correctness of each proc
* Depends on the correctness of the other

— Not modular

* Monitors modularise synchronisation
— for shared memory



Correctness, and software processes

* Look at state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, 92, ..)
— No deadlock

* Of a set of waiting (or blocked) procs, one gets in
* Simpler definition of deadlock now

— Both blocked, no hope of release

— No starvation, with fair scheduler

* A wait will be executed
* A blocked process will be released



Different kinds of semaphores

* “Strong semaphores”

— use queue insteadof set of blocked procs
* No starvation

* Busy wait semaphores
— No blocked processes, simply keep checking

* See book re problems about starvation
— Simpler.
e Useful in multiprocessors where each proc has own CPU
— The CPU can’t be used for anything else anyway

e Orif there is very little contention



Monitors = synchronised objects

* A type of monitors looks like a class with sync

* An operation on a monitor
— Looks atomic
— All operations are mutex w.r.t. each other

* i.e., only one operation at a time

 Soalg 7.1 can only result in n=2 at the end.



Confusions with O-O programming

* Monitors are static
— They don’t "send messages” to each other

* Processes are the running things
— They can enter the monitor one at a time

— There is no queue of processes waiting to get in,
* Only a set



Monitors centralise

e Access to the data

— Natural generalisation of objects in OO, but
* With mutex
* With synchronisation conditions

* Could dump everything in the kernel

— But this centralises way too much

* SO monitors are a compromise



Condition Variables = named queues

* Mutex?
— Monitors provide it, by definition (See alg 7.1)

* But often, need explicit synchronisation

* j.e., processes wait for different events
— Producer waits till (someone makes) buffer notFull
— Consumer waits till (someone makes) buffer notEmpty

* They need to be unblocked
* when the corresponding event occurs

* In monitors, each such event

— Has a queue associated with it

* In fact, for the monitor, the "event” is just the queue
* These queues are called "condition variables”



Semaphore implemented by monitor

Alg 7.2

No explicit release of monitor lock
— Leave when done

waitC always blocks
— This is not the semaphore’s wait
— When unblocked by signal

* Must wait till signalling proc leaves monitor

signalC has no effect on empty queue
— Semaphore signal always has an effect



waitC (on monitor condition var)
Vs wait on semaphore

waitC (on monitor condition var)
Append p to cond

p.State <- blocked

Monitor release

Wait(S)
If SV>0thenS.V:=5.V-1
else S.L :=S.L +{p}; block p



signalC (on monitor condition var)
vs signal on semaphore

signalC (on monitor condition var)
If cond not empty

g <- head of queue

ready g

Signal(S)
If S.L empty then S.V := S5.V+1
else S.L :=S.L —{q}, ready q (for abitrary q)



Correctness of semaphore

* Seep 151
* Exactly the same as fig 6.1 (s 6.4)
* Note that state diagrams simplify

— Whole operations are atomic



Producer-consumer

e Alg7.3
* All interesting code gathered in monitor
* Very simple user code



Immediate resumption

* So signalling proc cannot again falsify cond

— If signal is the last op, allow proc to leave?
« How? See protected objects

 Many other choices possible

— Check what your language implements



Readers and writers

e Alg7.4
 Not hard to follow, but lots of detail

— Readers check for no writers

e But also for no blocked writers
— Gives blocked writers prioroty

* Cascaded release of blocked readers
— But only until next writer shows up

— No starvation for either reader or writer

* Shows up in long proof (sec 7.7, p 157)
— Read at home!



Dining philosophers again

¢ Alg 7.5



Protected objects

* Monitors need waitC and signhalC programmed
* Protected objects combine this with queueing
* See alg 7.6 for readers-writers

— Each operation starts only when its cond is met
* Called a "barrier”

— What happened to signalC?
* When any op exits, all barriers are checked



Protected objects (contd.)

 Seealg 7.6 (p 164, s 7.16)

* Tidies up the mess

— No separate condition variables
e Or queues for them
* Or detailed choices “immediate release”, etc.

* The simplicity of 7.6 is worth gold!

— Price: starvation possible
— Can be fixed, at small price in mess (see exercises)



Ada

Uses protected objects
— Since the 1980’s

* though the concept was around earlier
— Thus has the cleanest shared memory model

Also has a very good communication model
— Rendezvous

Ada was decided carefully through the 1970s

— Open debates and process of definition

Has fallen away because of popularity of C, etc.
— Use now seen as a proprietary secret!



Transition

* Why do we need other models?

* Advent of distributed systems
— Mostly by packages such as MPI

* Message passing interface

e But Hoare 1978

— arrived before distributed systems
— | see it as the first realisation that

e Atomic actions, critical regions, semaphores, monitors...

e Can be replaced by just I/O as primitives!



