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Course registration: 
 
GU-students that are admitted to courses in 
Study Period 2 register themselves on the 
same day as the course starts. They do that via 
the Student Portal at GU.   

Important info for GU-students and non-registered Chalmers/
GU-students 
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Philip Ekman   ekman1991@gmail.com  
Sebastian Bellevik  bellevik@gmail.com

   



Course Structure 
•  14 lectures 

–  Book is the verbal format / more meticulous explanations 
–  Lecture slides are only short summary 

•  Perhaps not enough to fully understand 

–  Exam (salstentamen): 
•  I will only assume that you have studied the topics covered by the slides.  
•  Reading instructions are pointers to more verbal descriptions in the book 
•  May come a few “harder” questions, intended to force you to think beyond 

what’s in the slides (and that could of course accidentally be covered by the 
book). 

•  Tutorials – the practical experience 
–  1-6 “holds your hand”. Very fast. Intentionally lots of copy/paste. 

Do them in 2 weeks. No need to wait for their deadlines. 
–  7 – Here, you apply the knowledge from tutorial 1-6, so you must 

have understood them.  
•  You will need the 3 weeks for lab 7. 

–  (Either 3D render engine or path tracer.) 



  Department of Computer Engineering

The Bonus Material

•  Bonus material on home page
–  http://www.cse.chalmers.se/edu/course/TDA361/

schedule.html
–  Purpose: only to be of help in case lectures and course 

book is not enough for you to understand! Sometimes, it 
helps having same topics explained in a second way.

–  Skip the bonus material, if you are not very interested.
–  Mostly in Swedish
–  No exam questions on bonus material!



Quick Repetition of Vector Algebra 



Reading instructions 
VERY IMPORTANT 
•  READ HOME PAGE in connection to each lecture 

–  Course book reading advice in schedule on home page 
•  COURSE HOME PAGE is located here: 

 http://www.cse.chalmers.se/edu/course/TDA361/ 

COURSE HOME PAGE 



Structure 
•  Matrices 

–  Matrix mult. 
–  Pipeline 
–  Practical usage 
–  Rotations 
–  Translations 
–  Homogeneous coordinates 
–  Shear / scale / normal matrix 
–  Euler matrices 
–  Quaternions 
–  Projections 

•  Bresenham’s line drawing algorithm 
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Why transforms? 
l We want to be able to animate objects 

and the camera 
–  Translations 
–  Rotations 
–  Shears  
–  … 

l We want to be able to use projection 
transforms 
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How implement transforms? 
l Matrices! 
l Can you really do everything with a 

matrix? 
l Not everything, but a lot! 
l We use 3x3 and 4x4 matrices 
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Matrix multiplication 
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Matrix multiplication 
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camera 

Model space 
World space 

View space 

Model to World 
Matrix 

World to 
View 
Matrix 

ModelViewMtx = ”Model to View 
Matrix” 

ModelViewMtx = (MW->V * MM->W) 

x 

y 

z 



camera 
Model space World space View space 

Model to World 
Matrix 

World to View 
Matrix 

ModelViewMtx = ”Model to View Matrix” 

ModelViewMtx * v = (MW->V * MM->W) * v 

 

 

 

 

 

Full projection: 

Vscreen_space = projectionMatrix * ModelViewMatrix * vmodel_space 

x 

y 

z 

Projection 
Matrix 
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v 
e 
r 
t 
e 
x 

Modelview 
Matrix 

Projection 
Matrix 

Perspective 
Division 

Viewport 
Transform 

Modelview 

Modelview 

Projection 

l 
l 
l 

object 
space 

eye 
space 

clip 
space 

(normalized 
device coords) 

window  
coords 

l  other calculations during 
the pipeline 

–  Color / normal per vertex 
–  (backface culling) 
–  clipping 

Transformation 
Pipeline 

OpenGL | Geometry stage | done on GPU 



The OpenGL Pipeline 

From http://deltronslair.com/glpipe.html 



How do I use transforms 
practically? 
l  Say you have a circle with origin at (0,0,0) and with 

radius 1 – unit circle 

l  Mtx4f m;  
l  m.translate(8,0,0);  // create translation matrix 
l  RenderCircle(m);  // Draw circle using m as  
     // model-to-world matrix 
 

l  Mtx4f s,t;    
l  s.scale(2,2,2);  // create scaling matrix 
l  t.translate(3,2,0);  // create translation matrix 
l  RenderCircle(t*s);  // use matrix (t*s) 

What happens? 
See next slide... 



 
Cont’d from previous slide 
A simple 2D example 
l A circle in model space 

x 

y 

Mtx4f m; 
m.translate(8,0,0); 
renderCircle(m); 

Mtx4f s,t;    
s.scale(2,2,2);   
t.translate(3,2,0);   
RenderCircle(t*s); // Effect= first scaling, then translation 



 
Cont’d from previous slide 
A simple 2D example 
l A circle in model space 

x 

y 
Mtx4f s,t;    
s.scale(2,2,2);   
t.translate(3,2,0);   
RenderCircle(s*t); // Effect= first translation, then scaling. 

    // Each vertex in the sphere will first  
   // be translated (3,2,0) and then have its 
   // coordinate doubled in x,y,z 

 
   // This is less intuitive so humans  
   // prefer to do scaling first and then 
   // translation. 



Moving an object 

Demo 



Rotation (2D) 
Consider rotation about the origin by θ degrees 

– radius stays the same, angle increases by θ

x’=x cos θ –y sin θ
y’ = x sin θ + y cos θ

x = r cos φ
y = r sin φ

x' = r cos (φ + θ)
y' = r sin (φ + θ)
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Derivation of rotation matrix in 2D 
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Derivation 2D rotation, cont’d 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=

+

−==

==

y

x

y

x

zz

T

T
yx

TT
yx

p
p

z

n
n

r

rnn

rrpp

!! "!! #$
R

RpRn

n

p

αα

αα

φαφα

φαφα

φφ

cossin
sincos

? is    what 
))sincoscos(sin

),sinsincos(cos(),(

)sin,cos(),(
In vector form: 



l Same as in 2D for Z-rotations, but with a 
3x3 matrix 

l For X 

l For Y 
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Rotations in 3D 

x

y

z

y
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-y 
α 

x

z 
y -α 

Y: Rot around –y is equal to neg. rot. around y. So, negate α and note that cosα=cos-α 
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Translations must be simple? 

l Rotation is matrix mult, translation is add 
l Would be nice if we could only use matrix 

multiplications… 
l Turn to homogeneous coordinates 
l Add a new component to each vector 
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Homogeneous notation 
l A point: 
l Translation becomes: 

l A vector (direction): 
l Translation of vector: 
l Also allows for projections (later) 
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l  Just add a row at the bottom, and a 
column at the right: 

 

l Similarly for X and Y 
l  det( R )=1 (for rot. matrices) 
l Trace( R )=1+2cos(alpha)  (for any rot-

matrix,3x3) 

Rotations in 4x4 form 
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Change of Frames 
• How to get the Mmodel-to-world matrix: 
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E.g.:  pworld = Mm→w pmodel = Mm→w (0,5,0,1)T = 5 b  + o  

b 

x 

y 

z 

c 

a 

o 

world space 

model space 

(Both coordinate systems are right-handed) 
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The basis vectors a,b,c 
are expressed in the 
world coordinate system 
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l  In                   , the rotation is done first 

More basic transforms 
l Scaling 

l Shear 

l  Rigid-body: rotation and/or (then) translation 

TRX =
l  Concatenation of matrices 

TRRT ≠
TRX =

l  Inverses and rotation about arbitrary axis: 
l  Rigid body: X-1 = XT 

l  Not commutative, i.e., 
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Normal transforms 
Not so normal… 

l  M works for rotations and translations, though 

( ) MMN  of instead     :Use 1 T−=

l  Cannot use same matrix to transform normals 
 



The Euler Transform 
l  Assume the camera or object 

looks down the negative z-
axis, with up in the y-direction, 
x to the right 

l  h=head 
l  p=pitch 
l  r=roll 
l  Optional 

l  You may read about Gimbal lock in book, p: 67 
l  See also 

l  http://mathworld.wolfram.com/EulerAngles.html 



Head: 
l  Rotate around y-axis 
l  Recompute x- and z-axes 

l  By rotating them as vectors 

 
Pitch: 
l  Rotate around x’-axis  
l  Recompute y- and z’-axes 
 
Roll: 
l  Rotate around z’’-axis 
How do we rotate vectors (axes)  
and points around an arbitrary axis? 

Using Euler transforms 
x 

y 

z 

x' 

y 

z' 

x'' 
y' 

z'' 



Quaternions 

l Extension of imaginary numbers 
l Compact+fast representation of rotations 
l Focus on unit quaternions: 

–  Norm (or length): 

wzyx

wzyxwv

qkqjqiq
qqqqq

+++=

== ),,,(),(ˆ qq

1)ˆ( 2222 =+++= wzyx qqqqn q

l A unit quaternion can be written as: 
1||||     where)cos,(sinˆ == qq uuq φφ



Unit quaternions are perfect for 
rotations! 
l Compact (4 components) 
l Can show that  1ˆˆˆ −qpq

l  Interpolation from one quaternion to another is 
much simpler, and gives optimal results 

 

l …represents a rotation of     
2φ radians around uq of p 

)cos,(sinˆ φφ quq =

l That is: a unit quaternion represents a 
rotation as a rotation axis and an angle 

l  rotate(ux,uy,uz,angle); 
l  See p:76 how to convert q to matrix. 
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Projections 
l Orthogonal (parallel) and Perspective 
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Orthogonal projection 
l Simple, just skip one coordinate 

–  Say, we’re looking along the z-axis 
–  Then drop z, and render 
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Orthogonal projection   
l Not invertible!  (determinant is zero) 

–  i.e., depth information is lost 

l For Z-buffering 
–  It is not sufficient to project to a plane 
–  Rather, we need to ”project” to a box 

eye 

image plane near 

far 

Unit cube: [-1,-1,-1] to [1,1,1] 

l Unit cube is also used for perspective proj. 
l Simplifies clipping  
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Orthogonal projection 
l The ”unitcube projection” is invertible 
l Simple to derive 

–  Just a translation and scale 

left right 

bottom 

top 

near 

far 
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What about those homogenenous 
coordinates? 
( )Twzyx pppp=p

l  pw=0 for vectors, and pw=1 for points 
l What if pw is not 1 or 0? 
l Solution is to divide all components by pw 

( )Twzwywx pppppp 1///=p
l Gives a point again! 

l Can be used for projections, as we will 
see 
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Perspective projection 
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Perspective projection 

l  The ”arrow” is the 
homogenization process 
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Perspective projection 
l Again, the determinant is 0 (not invertible) 
l To make the rest of the pipeline the same 

as for orhogonal projection: 
–  project into unit-cube 

l Not much different from Pp 
l Do not collapse z-coord to a plane 
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Understanding the projection matrix 

l  Scaling 
l  Due to homogenization, this becomes the translation 
l  Keep z-info 
l  Perspective foreshortening 
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Perspective projection matrices 
l See ”Från Värld till Skärm” secion 4 for 

more details. 

l BREAK... 



Quick Repetition of Vector Algebra 
Length of vector:  
 
Normalizing a vector:  
 
Normal:  
(usualy needs to be normalized as well) 

 
Cross Product:  

•  Perpendicular vector, Area  
•  sin α:        
 
 

Dot product:  

( ) x
xxx =

++
=

222
ˆ

zyx

( )222 zyx ++=x

( ) ( )0201 vvvvn −×−=

sinα = va × vb
va vb

ê, where ê is perp. to va  and vb.

ba

ba

vv
vv •

=αcos

)( zzyyxx bababa ++=•ba

= 

α
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Ray/Plane Intersections 

• Ray: r(t)=o+td 
• Plane: n•x + d = 0; d=-n•p0 
• Set x=r(t): 

n•(o+td) + d = 0 
n•o+t(n•d) + d = 0 
t = (–d –n•o) / (n•d)  

n 

o 
d 

p0 

Vec3f rayPlaneIntersect(vec3f o,dir, n, d) 
{ 

 float t=(-d-n.dot(o)) / (n.dot(dir)); 
 return o + dir*t; 

} 
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Line/Line intersection in 2D 
l  r1(s) = o1+sd1 
l  r2(t)  = o2+td2 

l  r1(s) = r2(t)   (1) 
l  o1+sd1= o2+td2 (2) 

noting that d•d┴=0, [d=(a,b) → d┴=(b,-a)] 
 
sd1•d2

┴ = (o2-o1) • d2
┴ 

td2•d1
┴ = (o1-o2) • d1

┴ 

€ 

s =
(o2 −o1) • d2

⊥

(d1 • d2
⊥ )

€ 

t =
(o1 −o2) • d1

⊥

(d2 • d1
⊥)

See book, p: 780 
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Line/Line intersection in 3D 
l  r1(s) = o1+sd1 
l  r2(t)  = o2+td2 

l  r1(s) = r2(t)   (1) 
l  o1+sd1= o2+td2  (2) 

noting that d x d=0 
 
sd1 x d2

 = (o2-o1) x d2 
td2 x d1 

 = (o1-o2) x d1 
  

s (d1 x d2) • (d1 x d2) = ((o2-o1) x d2 ) • (d1 x d2)  
t  (d2 x d1) • (d2 x d1) = ((o1-o2) x d1 ) • (d2 x d1) 

2
21

21212

)(
),,det(

dd
dddoo

×

×−
=s 2

21

21112

)(
),,det(

dd
dddoo

×

×−
=t

 = 0 means parallel lines 2
21 )( dd ×

s, t correspond to closest 
points 

See book, p: 781-782 
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Area and Perimeter 
For polygon p0, p1...pn 

Perimeter = omkrets = sum of length of each 
edge in 2D and 3D: 

 ( ) ( ) ( )∑∑
−

=
+++

−

=
+ −+−+−=−=

1

0

2
1

2
1

2
1

1

0
1

n

i
iiiiii

n

i
ii zzyyxxppO

∑
−

=
++ −=

1

1
112

1 n

i
iiii yxyxA

Area in 2D: 

p0 

p1 

p2 

v1 

v2 

We can understand the formula from using Greens theorem: integrating over 
border to get area  
Choose arbitrary point to integrate from, e.g. Origin (0,0,0) 

Works for non-convex polygons as well 

( )212
1 vvAtriangle ×=
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Volume in 3D 
The same trick for computing area in 2D can be 
used to easily compute the volume in 3D for 
triangulated objects 

( ) ),,det(
!3
1

!3
1 cbacba =×•=ntetrahedroV

Again, choose arbitrary  point-of-integration, e.g. Origin (0,0,0) 

With respect to point-of-integration 

•  For all backfacing triangles, add volume 

•  For all frontfacing triangles, subtract volume 

Works for non-convex polygons as well 

( )∑
=

×•=
n

i
objectV

1!3
1 cba

The sign of the determinant will 
automatically handle positive and 
negative contribution 

where 
a = p1 – origin 
b = p2 – origin 
c = p3 – origin 



Scan Conversion of Line 
Segments 

• Start with line segment in window 
coordinates with integer values for 
endpoints 

• Assume implementation has a 
write_pixel function 

y = kx + m 

x
yk
Δ

Δ
=



DDA Algorithm 

• Digital Differential Analyzer 
– DDA was a mechanical device for numerical 
solution of differential equations 

– Line y=kx+ m satisfies differential equation 
        dy/dx = k = Δy/Δx = y2-y1/x2-x1 

• Along scan line Δx = 1 
y=y1; 
For(x=x1; x<=x2,ix++) { 
  write_pixel(x, round(y), line_color) 
  y+=k; 
} 



Problem 

• DDA = for each x plot pixel at closest y 
– Problems for steep lines 



Using Symmetry 

• Use for 1 ≥ k ≥ 0 
• For k > 1, swap role of x and y 

– For each y, plot closest x 



•  The problem with DDA is that it uses floats 
which was slow in the old days 

•  Bresenhams algorithm only uses integers 



Bresenham’s line drawing 
algorithm 

•  The line is drawn between two points (x0, y0)  
 and (x1, y1) 

•  Slope     (y = kx + m) 

•  Each time we step 1 in x-direction, we should increment y with k. 
Otherwise the error in y increases with k. 

•  If the error surpasses 0.5, the line has become closer to the next y- 
value, so we add 1 to y, simultaneously decreasing the error by 1 
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)(
)(

01

01

xx
yyk

−

−
=

See also http://en.wikipedia.org/wiki/
Bresenham's_line_algorithm 

 

function line(x0, x1, y0, y1)  
     int deltax := abs(x1 - x0)  
     int deltay := abs(y1 - y0)  
     real error := 0  
     real deltaerr := deltay / deltax  
     int y := y0  
     for x from x0 to x1  
          plot(x,y)  
          error := error + deltaerr  
          if error ≥ 0.5  
               y := y + 1  
               error := error - 1.0  



Bresenham’s line drawing 
algorithm 

•  Now, convert algorithm to only using integer computations 
•  Trick: multiply the fractional number, deltaerr, by deltax 

–  enables us to express deltaerr as an integer.  
–  The comparison if error>=0.5 is multiplied on both sides by 2*deltax 
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Old float version: 
 
function line(x0, x1, y0, y1)  
     int deltax := abs(x1 - x0)  
     int deltay := abs(y1 - y0)  
     real error := 0  
     real deltaerr := deltay / deltax  
     int y := y0  
     for x from x0 to x1  
          plot(x,y)  
          error := error + deltaerr  
          if error ≥ 0.5  
               y := y + 1  
               error := error - 1.0  

New integer version: 
 
function line(x0, x1, y0, y1)  
     int deltax := abs(x1 - x0)  
     int deltay := abs(y1 - y0)  
     real error := 0  
     real deltaerr := deltay 
     int y := y0  
     for x from x0 to x1  
          plot(x,y)  
          error := error + deltaerr  
          if 2*error ≥ deltax  
               y := y + 1  
               error := error - deltax  



The first case is allowing us to draw 
lines that still slope downwards, but 
head in the opposite direction. I.e., 
swapping the initial points if x0 > 
x1. 

To draw lines that go up, we check if y0 
>= y1; if so, we step y by -1 instead 
of 1. 

To be able to draw lines with a slope 
less than one, we take advantage 
of the fact that a steep line can be 
reflected across the line y=x to 
obtain a line with a small slope. The 
effect is to switch the x and y 
variables. 

 

function line(x0, x1, y0, y1)  
     boolean steep := abs(y1 - y0) > abs(x1 - x0)  
     if steep then  
          swap(x0, y0)  
          swap(x1, y1)  
     if x0 > x1 then  
          swap(x0, x1)  
          swap(y0, y1)  
     int deltax := x1 - x0  
     int deltay := abs(y1 - y0)  
     int error := 0  
     int ystep  
     int y := y0  
     if y0 < y1 then ystep := 1 else ystep := -1  
     for x from x0 to x1  
          if steep then plot(y,x) else plot(x,y)  
          error := error + deltay  
          if 2×error ≥ deltax  
               y := y + ystep  
               error := error - deltax  

Complete Bresenham’s line 
drawing algorithm 
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Swap loop axis 

Swap start and end 
points 



You need to know 
–  How to create a simple Scaling matrix, rotation matrix, 

translation matrix and orthogonal projection matrix 
–  Change of frames (creating model-to-view matrix) 
–  Understand how quaternions are used 
–  Understanding of Euler transforms 
–  DDA line drawing algorithm 
–  Understand what is good with Bresenhams line 

drawing algorithm, i.e., uses only integers. 



Most of the following slides are from 

Ed Angel 
Professor of Computer Science, 

Electrical and Computer Engineering, 
and Media Arts 

University of New Mexico 

The following slides are simply extra non-
compulsory material that explains the content of the 
lecture in a different way.  



Scalars 
• Need three basic elements in geometry 

– Scalars, Vectors, Points 
• Scalars can be defined as members of sets which 

can be combined by two operations (addition and 
multiplication) obeying some fundamental axioms 
(associativity, commutivity, inverses) 

• Examples include the real and complex number 
systems under the ordinary rules with which we are 
familiar 

• Scalars alone have no geometric properties 



Vector Operations 
• Physical definition: a vector is a quantity with two attributes 

– Direction 
– Magnitude 

• Examples include 
– Force 
– Velocity 
– Directed line segments 

•  Most important example for graphics 
•  Can map to other types. Every vector can be multiplied by a scalar. 

• There is a zero vector 
– Zero magnitude, undefined orientation 

• The sum of any two vectors is a vector 

v -v αv 
v 

u 

w 



Vectors Lack Position 

• These vectors are identical 
– Same length and magnitude 

• Vectors insufficient for geometry 
– Need points 



Points 
• Location in space 
• Operations allowed between points and 
vectors 

– Point-point subtraction yields a vector 
– Equivalent to point-vector addition  

P=v+Q 

v=P-Q 



Affine Spaces 
• Point + a vector space 
• Operations 

– Vector-vector addition 
– Scalar-vector multiplication 
– Point-vector addition 
– Scalar-scalar operations 

• For any point define 
– 1 • P = P 
– 0 • P = 0 (zero vector) 



Lines 
• Consider all points of the form 

– P(α)=P0 + α d 
– Set of all points that pass through P0 in the 

direction of the vector d 



Parametric Form 
• This form is known as the parametric form of 
the line 

– More robust and general than other forms 
– Extends to curves and surfaces 

• Two-dimensional forms 
– Explicit: y = kx + m 
– Implicit: ax + by +c =0 
– Parametric:  
        x(α) = αx0 + (1-α)x1 
        y(α) = αy0 + (1-α)y1 



Rays and Line Segments 
• If α >= 0, then P(α) is the ray leaving P0 in 
the direction d 

 If we use two points to define v, then 
P( α) = Q + α (R-Q)=Q+αv 
=αR + (1-α)Q 
For 0<=α<=1 we get all the 
points on the line segment 
joining R and Q 



Planes 
• A plane can be defined by a point and two 
vectors or by three points 

P(α,β)=R+αu+βv P(α,β)=R+α(Q-R)+β(P-Q) 

u 

v 

R 

P 

R 
Q 



Triangles 

convex sum of P and Q 

convex sum of S(α) and R 

for 0<=α,β<=1, we get all points in triangle 



u 

v 

P 

Normals 
• Every plane has a vector n normal (perpendicular, 

orthogonal) to it 
• From point/vector form  

– P(α,β)=R+αu+βv 
  we know we can use the cross product to find 

– n = u  × v 
• Plane equation: 

– n ⋅x – d = 0,  
– where d = -n ⋅p and p is any point in the plane 

     
  



Normal for Triangle 

p0 

p
1

p2 

n 
plane     n ·(p - p0 ) = 0 

n = (p2 - p0 ) ×(p1 - p0 )  
 

normalize n   ←  n/ |n| 

p 

Note that right-hand rule determines outward face 



Convexity 
• An object is convex iff for any two points in 
the object all points on the line segment 
between these points are also in the object 

P 

Q Q 

P 

convex not convex 



Affine Sums 
• Consider the “sum” 
P=α1P1+α2P2+…..+αnPn 
Can show by induction that this sum makes 
sense iff 
α1+α2+…..αn=1 
in which case we have the affine sum of the 
points P1,P2,…..Pn 

• If, in addition, αi>=0, we have the convex 
hull of P1,P2,…..Pn 

 



Convex Hull 
Consider the linear combination 
P=α1P1+α2P2+…..+αnPn 
• If α1+α2+…..αn=1 

–  (in which case we have the affine sum of the points P1,P2,…..Pn) 

 and if αi>=0, we have the convex hull of P1,P2,…..Pn 
 
• Smallest convex object  
 containing P1,P2,…..Pn 

 



Frames 

• A coordinate system is insufficient to 
represent points 

• If we work in an affine space we can add a 
single point, the origin, to the basis vectors 
to form a frame 

P0 

v1 

v2 

v3 



Representing one basis in terms 
of another 

Each of the basis vectors, u1,u2, u3, are vectors that 
can be represented in terms of the first basis 

 
 u1 = γ11v1+γ12v2+γ13v3 

u2 = γ21v1+γ22v2+γ23v3 
u3 = γ31v1+γ32v2+γ33v3 

v 



Matrix Form  
The coefficients define a 3 x 3 matrix 
 
 
 
 
and the bases can be related by 
 a=MTb 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γγγ

γγγ

γγγ

3231

232221

131211

33

M = 



Translation 

• Move (translate, displace) a point to a new 
location 

• Displacement determined by a vector d 
– Three degrees of freedom 
– P’=P+d 

P 

P’ 

d 



How  many ways? 
Although we can move a point to a new location in 

infinite ways, when we move many points there is 
usually only one way 

object translation: every point displaced 
        by same vector 



Translation Using 
Representations 

Using the homogeneous coordinate 
representation in some frame 

     p=[ x y z 1]T 

     p’=[x’ y’ z’ 1]T 

     d=[dx dy dz 0]T 

Hence p’ = p + d or 
     x’=x+dx 
     y’=y+dy 
     z’=z+dz 

note that this expression is in  
four dimensions and expresses 
point = vector + point 



Translation Matrix 
We can also express translation using a  
4 x 4 matrix T in homogeneous coordinates 
p’=Tp where 
 
 
T = T(dx, dy, dz) = 
 
 
This form is better for implementation because all affine 

transformations can be expressed this way and multiple 
transformations can be concatenated together 
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Homogeneous Coordinates 
The homogeneous coordinates form  for a three dimensional 

point [x y z] is given as 
p =[x’ y’ z’ w] T =[wx wy wz w] T 

We return to a three dimensional point (for w≠0) by 
x←x’/w 
y←y’/w 
z←z’/w 
If w=0, the representation is that of a vector 
Note that homogeneous coordinates replaces points in three 

dimensions by lines through the origin in four dimensions 
For w=1, the representation of a point is [x y z 1] 



Homogeneous Coordinates 
and Computer Graphics 

• Homogeneous coordinates are key to all 
computer graphics systems 

– All standard transformations (rotation, 
translation, scaling) can be implemented with 
matrix multiplications using 4 x 4 matrices 

– Hardware pipeline works with 4 dimensional 
representations 

– For orthographic viewing, we can maintain w=0 
for vectors and w=1 for points 

– For perspective we need a perspective division 



Rotation about the z axis 
• Rotation about z axis in three dimensions leaves all 

points with the same z 
– Equivalent to rotation in two dimensions in 

planes of constant z 

– or in homogeneous coordinates 
        p’=Rz(θ)p 

x’=x cos θ –y sin θ
y’ = x sin θ + y cos θ
z’ =z 



Rotation Matrix 
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Rotation about x and y axes 
• Same argument as for rotation about z axis 

– For rotation about x axis, x is unchanged 
– For rotation about y axis, y is unchanged 

R = Rx(θ) = 

R = Ry(θ) = 
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Scaling 
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S = S(sx, sy, sz) = 

x’=sxx 
y’=syx 
z’=szx 

p’=Sp 

Expand or contract along each axis (fixed point of origin) 



Reflection 

corresponds to negative scale factors 

original sx = -1 sy = 1 

sx = -1 sy = -1 sx = 1 sy = -1 



Inverses 
• Although we could compute inverse matrices by 

general formulas, we can use simple geometric 
observations 

– Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)  

– Rotation: R -1(θ) = R(-θ) 
• Holds for any rotation matrix 
• Note that since cos(-θ) = cos(θ) and sin(-
θ)=-sin(θ) 

R -1(θ) = R T(θ) 

– Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)  
    



Concatenation 

• We can form arbitrary affine transformation 
matrices by multiplying together rotation, 
translation, and scaling matrices 

• Because the same transformation is applied to 
many vertices, the cost of forming a matrix 
M=ABCD is not significant compared to the cost 
of computing Mp for many vertices p 

• The difficult part is how to form a desired 
transformation from the specifications in the 
application 



Order of Transformations 

• Note that matrix on the right is the first 
applied 

• Mathematically, the following are equivalent 
        p’ = ABCp = A(B(Cp)) 
• Note many references use column matrices 
to represent points. In terms of column 
matrices 

         p’T = pTCTBTAT 
 



General Rotation About the 
Origin 

θ

x 

z 

y 
v 

A rotation by θ about an arbitrary axis 
can be decomposed into the concatenation 
of rotations about the x, y, and z axes 

R(θ) = Rz(θz) Ry(θy) Rx(θx)  

θx θy θz are called the Euler angles 

Note that rotations do not commute 
We can use rotations in another order but 
with different angles 



Rotation About a Fixed Point 
other than the Origin 

Move fixed point to origin 
Rotate 
Move fixed point back 
M = T(pf) R(θ) T(-pf) 



Instancing 

• In modeling, we often start with a simple 
object centered at the origin, oriented with 
the axis, and at a standard size 

• We apply an instance transformation to its 
vertices to  
  Scale  
  Orient 
  Locate  



Shear 

• Helpful to add one more basic transformation 
• Equivalent to pulling faces in opposite directions 



Shear Matrix 

Consider simple shear along x axis 

x’ = x + y cot θ
y’ = y 
z’ = z 
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OpenGL Transformations 



Objectives 

• Learn how to carry out transformations in 
OpenGL 

– Rotation 
– Translation  
– Scaling 

• Introduce OpenGL matrix modes 
– Model-view 
– Projection 



Clarification (by Ulf) 

•  Note that the following slides explain the old 
deprecated (before OpenGL 3.0) way to modify 
the modelview matrix and projection matrix in 
OpenGL. These were fixed function built in 
OpenGL-matrices. Today, we instead send the 
modelview and projection matrix ourselves to the 
vertex shader. But the principles of the following 
slides still apply. We just have to create and send 
the matrices to the shaders manually instead of 
having them built in. 



OpenGL Matrices 

• In OpenGL matrices are part of the state 
• Multiple types 

– Model-View (GL_MODELVIEW) 
– Projection (GL_PROJECTION) 
– Texture (GL_TEXTURE) (ignore for now) 
– Color(GL_COLOR) (ignore for now) 

• Single set of functions for manipulation 
• Select which to manipulated by 
– glMatrixMode(GL_MODELVIEW); 
– glMatrixMode(GL_PROJECTION); 



Current Transformation Matrix 
(CTM) 

• Conceptually there is a 4 x 4 homogeneous 
coordinate matrix, the current transformation 
matrix (CTM) that is part of the state and is applied 
to all vertices that pass down the pipeline 

• The CTM is defined in the user program and loaded 
into a transformation unit 

CTM vertices vertices 
p p’=Cp 

C 



CTM operations 
• The CTM can be altered either by loading a new 

CTM or by postmutiplication 
Load an identity matrix: C ← I 
Load an arbitrary matrix: C ← M 
 
Load a translation matrix: C ← T 
Load a rotation matrix: C ← R 
Load a scaling matrix: C ← S 
 
Postmultiply by an arbitrary matrix: C ← CM 
Postmultiply by a translation matrix: C ← CT 
Postmultiply by a rotation matrix: C ← C R 
Postmultiply by a scaling matrix: C ← C S 
 



Rotation about a Fixed Point 

Start with identity matrix: C ← I 
Move fixed point to origin: C ← CT 

Rotate: C ← CR 
Move fixed point back: C ← CT -1 
 
Result: C = TR T –1 which is backwards.  
 
This result is a consequence of doing postmultiplications. 
Let’s try again. 



Reversing the Order 

We want C = T –1 R T  
so we must do the operations in the following order 
 
C ← I 
C ← CT -1 
C ← CR 
C ← CT 
 
Each operation corresponds to one function call in the 

program. 
 
Note that the last operation specified is the first executed in 

the program 



CTM in OpenGL  
• OpenGL has a model-view and a projection 
matrix in the pipeline which are concatenated 
together to form the CTM 

• Can manipulate each by first setting the 
correct matrix mode 



Rotation, Translation, 
Scaling 

glRotatef(theta, vx, vy, vz) 

glTranslatef(dx, dy, dz) 

glScalef( sx, sy, sz) 

glLoadIdentity() 

Load an identity matrix: 

Multiply on right: 

theta in degrees, (vx, vy, vz) define axis of rotation 

Each has a float (f) and double (d) format (glScaled) 



Example 
• Rotation about z axis by 30 degrees with a fixed 

point of (1.0, 2.0, 3.0) 

• Remember that last matrix specified in the program 
is the first applied 

glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
glTranslatef(1.0, 2.0, 3.0); 
glRotatef(30.0, 0.0, 0.0, 1.0); 
glTranslatef(-1.0, -2.0, -3.0); 



Arbitrary Matrices 
• Can load and multiply by matrices defined in 
the application program 

• The matrix m is a one dimension array of 16 
elements which are the components of the 
desired 4 x 4 matrix stored by columns 

• In glMultMatrixf, m multiplies the existing 
matrix on the right 

glLoadMatrixf(m) 
glMultMatrixf(m) 



Matrix Stacks 
• In many situations we want to save 
transformation matrices for use later 

– Traversing hierarchical data structures (Chapter 10) 
– Avoiding state changes when executing display lists 

• OpenGL maintains stacks for each type of 
matrix 

– Access present type (as set by glMatrixMode) by 
glPushMatrix() 
glPopMatrix() 



Reading Back Matrices 
• Can also access matrices (and other parts of the 

state) by query functions 

• For matrices, we use as 

glGetIntegerv 
glGetFloatv 
glGetBooleanv 
glGetDoublev 
glIsEnabled 

double m[16]; 
glGetFloatv(GL_MODELVIEW, m); 



Using the Model-view 
Matrix 

• In OpenGL the model-view matrix is used to 
– Position the camera 

• Can be done by rotations and translations but 
is often easier to use gluLookAt  

– Build models of objects  
• The projection matrix is used to define the view 

volume and to select a camera lens 



Quaternions 

• Extension of imaginary numbers from two to three 
dimensions 

• Requires one real and three imaginary components 
i, j, k 

• Quaternions can express rotations on sphere 
smoothly and efficiently. Process: 

– Model-view matrix → quaternion 
– Carry out operations with quaternions 
– Quaternion → Model-view matrix 

q=q0+q1i+q2j+q3k 



Computer Viewing 

Ed Angel 
Professor of Computer Science, 

Electrical and Computer Engineering, 
and Media Arts 

University of New Mexico 



Objectives 

• Introduce the mathematics of projection 
• Introduce OpenGL viewing functions 
• Look at alternate viewing APIs 



Computer Viewing 
• There are three aspects of the viewing 
process, all of which are implemented in the 
pipeline, 

– Positioning the camera 
• Setting the model-view matrix 

– Selecting a lens 
• Setting the projection matrix 

– Clipping 
• Setting the view volume  
•  (default is unit cube, R3, [-1,1]) 



Default Projection 
Default projection is orthogonal 

clipped out 

z=0 

2 



Moving the Camera Frame 
• If we want to visualize object with both positive and 

negative z values we can either 
– Move the camera in the positive z direction 

• Translate the camera frame 
– Move the objects in the negative z direction 

• Translate the world frame 
• Both of these views are equivalent and are 
determined by the model-view matrix 

– Want a translation (glTranslatef(0.0,0.0,-d);) 
– d > 0 



Moving the Camera 
• We can move the camera to any desired 
position by a sequence of rotations and 
translations 

• Example: side view 
– Rotate the camera 
– Move it away from origin 
– Model-view matrix C = TR 



OpenGL code 

• Remember that last transformation specified 
is first to be applied 

glMatrixMode(GL_MODELVIEW) 
glLoadIdentity(); 
glTranslatef(0.0, 0.0, -d); 
glRotatef(90.0, 0.0, 1.0, 0.0); 



The LookAt Function 

• The GLU library contains the function gluLookAt to 
form the required modelview matrix through a 
simple interface 

• Note the need for setting an up direction 
• Still need to initialize  

– Can concatenate with modeling transformations 
• Example: isometric view of cube aligned with axes 

glMatrixMode(GL_MODELVIEW): 
glLoadIdentity(); 
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0., 1.0. 0.0); 



gluLookAt 
glLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, 
upz) 



Other Viewing APIs 

• The LookAt function is only one possible 
API for positioning the camera 

• Others include 
– View reference point, view plane normal, view 

up (PHIGS, GKS-3D) 
– Yaw, pitch, roll 
– Elevation, azimuth, twist 
– Direction angles 



OpenGL Orthogonal Viewing 
glOrtho(left,right,bottom,top,near,far) 

near and far measured from camera 



OpenGL Perspective 
glFrustum(left,right,bottom,top,near,far
) 



Using Field of View 
• With glFrustum it is often difficult to get the 
desired view 
• gluPerpective(fovy, aspect, near, 
far) often provides a better interface 

aspect = w/h 

front plane 



Projections explained differently 

•  Read the following slides about orthogonal 
and perspective projections by your selves 

•  They present the same thing, but explained 
differently 



Projections and Normalization 

• The default projection in the eye (camera) frame 
is orthogonal  

• For points within the default view volume 

• Most graphics systems use view normalization 
– All other views are converted to the default view by 

transformations that determine the projection matrix 
– Allows use of the same pipeline for all views 

xp = x 
yp = y 
zp = 0 



Homogeneous Coordinate 
Representation 

xp = x 
yp = y 
zp = 0 
wp = 1 

pp = Mp 

M =  
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In practice, we can let M = I and set  
the z term to zero later 

default orthographic projection 



Simple Perspective 

• Center of projection at the origin 
• Projection plane z = d, d < 0 



Perspective Equations 
Consider top and side views 

xp = 

dz
x
/

dz
x
/

yp = 
dz
y
/

zp = d 



Homogeneous Coordinate Form 

M =  
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Perspective Division 
• However w ≠ 1, so we must divide by w to 
return from homogeneous coordinates 

• This perspective division yields 

the desired perspective equations  
• We will consider the corresponding clipping 
volume with the OpenGL functions 

xp = 
dz
x
/

yp = 
dz
y
/

zp = d 



Normalization 

• Rather than derive a different projection 
matrix for each type of projection, we can 
convert all projections to orthogonal 
projections with the default view volume 

• This strategy allows us to use standard 
transformations in the pipeline and makes for 
efficient clipping 



Pipeline View 

  modelview 
transformation 

   projection 
transformation 

perspective 
 division 

clipping projection 

nonsingular 
4D → 3D 

against default cube 3D → 2D 



Notes 
• We stay in four-dimensional homogeneous 
coordinates through both the modelview and 
projection transformations 

– Both these transformations are nonsingular 
– Default to identity matrices (orthogonal view) 

• Normalization lets us clip against simple cube 
regardless of type of projection 

• Delay final projection until end 
– Important for hidden-surface removal to retain 

depth information as long as possible  



Orthogonal Normalization 
glOrtho(left,right,bottom,top,near,far) 

normalization ⇒ find transformation to convert 
specified clipping volume to default 



Orthogonal Matrix 
• Two steps 

– Move center to origin 
T(-(left+right)/2, -(bottom+top)/2,(near+far)/2)) 

– Scale to have sides of length 2 
S(2/(left-right),2/(top-bottom),2/(near-far)) 
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Final Projection 
• Set z =0  
• Equivalent to the homogeneous coordinate 

transformation 

• Hence, general orthogonal projection in 4D is 
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P = MorthST 



General Shear 

top view side view 



Shear Matrix 
xy shear (z values unchanged) 
 
 
 
 
Projection matrix 
 
General case:  
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Effect on Clipping 
• The projection matrix P = STH transforms 
the original clipping volume to the default 
clipping volume 

top view 

DOP DOP 

near plane 

far plane 

object 

clipping 
volume 

z = -1 

z =  1 

x = -1 
x = 1 

   distorted object 
(projects correctly) 



Simple Perspective 
Consider a simple perspective with the COP (=center 

of projection) at the origin, the near clipping plane at 
z = -1, and a 90 degree field of view determined by 
the planes  

  x = ±z, y = ±z 



Perspective Matrices 

Simple projection matrix in homogeneous 
coordinates 

 
 
 
 
Note that this matrix is independent of the far 
clipping plane 
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Generalization 
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after perspective division, the point (x, y, z, 1) goes to 

x’’ = x/z 
y’’ = y/z 
Z’’ = -(α+β/z) 

which projects orthogonally to the desired point  
regardless of α and β



Picking α and β
If we pick 

α =  

β =  

nearfar
farnear

−

+

farnear
farnear2

−

∗

the near plane is mapped to z = -1 
the far plane is mapped to z =1 
and the sides are mapped to x = ± 1, y = ± 1 

Hence the new clipping volume is the default clipping volume 



Normalization Transformation 

original clipping 
     volume original object new clipping 

   volume 

distorted object 
projects correctly 



Normalization and 
Hidden-Surface Removal 

• Although our selection of the form of the 
perspective matrices may appear somewhat 
arbitrary, it was chosen so that if z1 > z2 in the 
original clipping volume then the for the 
transformed points z1’ > z2’ 

• Thus hidden surface removal works if we first apply 
the normalization transformation 

• However, the formula z’’ = -(α+β/z) implies that the 
distances are distorted by the normalization which 
can cause numerical problems especially if the near 
distance is small 



OpenGL Perspective 
• glFrustum allows for an unsymmetric 
viewing frustum (although gluPerspective 
does not) 



OpenGL Perspective Matrix 

• The normalization in glFrustum requires 
an initial shear to form a right viewing 
pyramid, followed by a scaling to get the 
normalized perspective volume. Finally, the 
perspective matrix results in needing only a 
final orthogonal transformation 

P = NSH 

our previously defined 
 perspective matrix 

shear and scale 



Why do we do it this way? 

• Normalization allows for a single pipeline 
for both perspective and orthogonal viewing 

• We stay in four dimensional homogeneous 
coordinates as long as possible to retain 
three-dimensional information needed for 
hidden-surface removal and shading 

• We simplify clipping 


