LYSSNA PA OET HAR DA L A G HARJU BORIAT
P& ENZ0-ANWMERARKURS PR KTH,OLROETAR
GANSKA MYCKET MATTE 1 0ET DAR SA LARARN
GAV 055 ETF DIAGNOSISKT PROV | MATTE, 0CH
JRCFICKET RATTAVSIUMO!

HAHAHAHAHA'

FICK QU UNOERKANT PA KURSEN O ExLER™

MATIE | NAR SKA MAN HA NYITA AV DET

HAMN FIEK TYP PLOCKA FRAM RAKNEZAM

NEJ, CEV VAR BARA FOR ATT HAMVILLE S
VILREN NIVA W VAR P4 OCR oM HANSKULE

KUNNA BOPPA OVER OF GRU

GREJERNA, 0¢H OET KUNCE HAN INTE

OCH APPLEN ! V LWET EGENTUIGENT

JAG ERTTATE INGENTING ! 0 BARA "vAQ
ARROTEN URCET HAR T " vAOK ROTEN?

\ IR, WA G T EXEMPEL. !
NULAGLANCE

sy
Hpe?

“uAT AR KVADRATEN AV DETHAR?
VADA KVADRATEN?

CEN
oy
7%k

A

Vectors and Transforms

In
3D Graphics

Important info for GU-students and non-registered Chalmers/
GU-students

Course registration:

GU-students that are admitted to courses 1n
Study Period 2 register themselves on the
same day as the course starts. They do that via
the Student Portal at GU.

Studentrepresentatives

Philip Ekman ekmanl 991 @gmail.com
Sebastian Bellevik bellevik@gmail.com

Course Structure

e 14 lectures
— Book 1s the verbal format / more meticulous explanations

— Lecture slides are only short summary
» Perhaps not enough to fully understand

— Exam (salstentamen):
» I will only assume that you have studied the topics covered by the slides.
* Reading instructions are pointers to more verbal descriptions in the book

* May come a few “harder” questions, intended to force you to think beyond
what’s in the slides (and that could of course accidentally be covered by the
book).

» Tutorials — the practical experience

— 1-6 “holds your hand”. Very fast. Intentionally lots of copy/paste.
Do them in 2 weeks. No need to wait for their deadlines.

— 7 —Here, you apply the knowledge from tutorial 1-6, so you must

have understood them.

* You will need the 3 weeks for lab 7.
— (Either 3D render engine or path tracer.)

CHALMERS Department of Computer Engineering

The Bonus Material

e Bonus material on home page

— http://www.cse.chalmers.se/edu/course/TDA361/
schedule.html

— Purpose: only to be of help in case lectures and course
book 1s not enough for you to understand! Sometimes, it
helps having same topics explained in a second way.

— Skip the bonus material, if you are not very interested.
— Mostly in Swedish
— No exam questions on bonus material!

k Repetition of Vector Algebra

* Right-hand rule: the direc-
tion of the vector e can be found
by curling the fingers of the right
hand around a hypothetical axis
perpendicular to plane ¥ , - ¥ g so
that the vector ¥, rotates along the
angle o until is aligned with vec-
tor V p. The thumb then gives the
direction of e .

P
DEFINITIONS

VECTOR
¢ Scalar and Vector DIMENSIONAL (3-D) ALGEBRA v.xv A€ Right-Handed
l?l:lcgns‘ulctl:eass wl::z:irca::ll;qeuar;- COORDINATE Vector Addition. Th £ s ‘\‘ Rule
o » I, " * Vector Addition. The sum of two s
distance, s, density, p, work, W, SYSTEMS: vectors, ¥, and Ky, ina 2D cartesian
etc., that can be fully described Cartesian Coordinates coardinate system is a vector, ¥,
by a single number are called (%,9,2). A vector, ¥, in a 3-D defined as: e
scalars. Scalars are not associ- cartesian coordinate system can be _
ated with any direction. Physi- written as: V=V, tVy
cal quantities that have both In component notation, the summa-
magnitude and direction are M= VX1+V}.I+V.2 tion is given as:
called vectors, e.g, force, F, ve- : - _
locity, ¥, acceleration, @, mo- V=V (Ve Vy Vo) =VaitVy j+Vk Vax =Vax+Vax , Vay =Vay +Vgy
mentum, P, etc. -

Vector Addition VxVg=—Vpx¥

B*ZA

*Coordinate Systems. A § d B
vector, ¥, can be described in 3-D A cartesian coordinate system is called

reference to a coordinate sys- Cartesian & a right-handed system if i j = k.

tem. Two-dimensional coordi- Coordinates. If two vectors are parallel to each then:

nate systems can be carresian or I

polar. Three-dimensional coor- VixVp=0 V,|¥y

dinate systems can be cartesian, If the vectors are given in terms of

cylindrical or spherical. their components, then in a 3-D
cartesian coordinate system:

* Cylindrical Coordinates (r,
6,2. Avector, ¥,ina ical co-

i TWO ordinate system can be written Vector Addition: i ik

¥ = V=V(¥,,6,7), where V AV =V, Y xVy={¥ax Var Vaz
e g)[MENSIONAL V= /,;z 2 and z=s . :lsis;cianve Law of Vector Vex Ver Vaz
B -D) COORDINATE - ition:

#V, Vector Product
AREA=VAVS sin o
Vs

Cylindrical Y (V AV)V =V V4V)
Coordinates

N AO W

 Cartesian Coordinates (xy).
A vector, ¥, in a 2-D cartesian coordi-
nate system can be written as:
V=WV V,)=V,itV, j

where V,, ¥, are the vector compo-
~ nents, and i, j are the unit vectors
along the x and y axis respectively.
| The magnitude of the vector, |V,
N IS

« Distributive Law for
Multiplication by a Scalar (€):
eV +Vp)=el eV,
* Scalar or Dot Product:

* Spherical Coordinates (;6.9). e A
A vector, ¥, ina spherical coordinate sys- i) e L

oy,

* Triple Scalar Product
The magnitude of the e scalar

: roduct 1 to the vol f the
tem is writien as:V=¥(¥;,0,), [[Vecors.1fhe wovectors areperpen- [[l Broduc issaua o the volume of the

i Y= [1+12 . :

L4 where: dicular to each other then: cectors Vo Ve, Ve: Vio(VaxV,)
- *Polar Coordinates (,6). V=242 s be: baaxbo).
B bA\rccm'r. V. in polar coordinates can TV ’V £ If the veetors are given in terms of Triple Scalar Product
= be written & 'S
O=tan"'(-2) their components, then in a 3-D
i V=V (¥;,0), where: LSy cartesian coordinate system:
¥, =\[Ve? +¥, 2 and p=cos-1 Ve ' Vi =VaxVax *VayVey +VazVaz

v,

W22

where o is the angle between the two

v,
O=tan-1 (ﬁ)

" 4 Volume = ¥, Vg Vesin acos p
Relation Between L
Cartesian and Polar

%

Coordinates: 'I)L;"V.etcllors Formulas
v, cos 0
b . ey -2 22
d=tan”' (£) t‘ilt . dt di
oy BT * Relation Between Cartesian § Z[u_.(,n:pT"—‘
-D Cartesian 2-D Polar s :)
Coordinate Coordinate and Spherical Coordinates

a df L du
;[/(’)E(’)]—nyz

20O 220}t
« Integration of a Vector

fr(0)a={ ()] ~R(6)-R(a)

System ~ System v, =|g1sin¢cox 0,

Vy=|V]sin¢sin 6,

* Vector or Cross Product
Vox V=V V| (sina)e
x=rsingcos) where e is the unit vector perpen-
¥ =rsingsind dicular to the plane formed by
z=rcosp vectors ¥, and ¥V 5.

N AO W

Reading instructions

VERY IMPORTANT
 READ HOME PAGE 1n connection to each lecture

— Course book reading advice in schedule on home page
COURSE HOME PAGE is located here:
http://www.cse.chalmers.se/edu/course/TDA361/

Structure

e Matrices
— Matrix mult.
— Pipeline
— Practical usage
— Rotations
— Translations
— Homogeneous coordinates
— Shear / scale / normal matrix
— Euler matrices
— Quaternions

— Projections

* Bresenham’s line drawing algorithm

Why transforms?

e \We want to be able to animate objects
and the camera
- Translations
- Rotations
- Shears

e \We want to be able to use projection
transforms

How implement transforms?

e Matrices!

e Can you really do everything with a
matrix?

e Not everything, but a lot!
e \We use 3x3 and 4x4 matrices

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

My My N\ P, My, Ty P, My P,

b1z b13
bz2 b23

b2 b3

a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

¥ al1bl1+al12.b21+a13.631 a11.b12 + a12.b22 + a13. 632 allb13+ 212,623 + 213.633)

a31.b11+ a32.b21 + a33.631 a31.bl12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

Matrix multiplication

My Py T My P, Ty, P,
myp, +myp,+m,p,

My, Ty P, My P,

a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

(all.b11+ 212,621+ a13.631 a11.b12 + a12.b22 + a13. 632 allb13+ 212,623 + 213.633)

a31.b11+ a32.b21 + a33.631 a31.bl12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

My, My My N\ P, My, Ty P, My P,

a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

(all.b11+ 212,621+ a13.631 all.b12+ al12.b22 + a13. 632 a11.b13+ 212,623 + 213.633

a31.b11+ a32.b21 + a33.631 a31.bl12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

My, My My N\ P, My, Ty P, My P,

b1z b13
bz2 b23

b2 b3

¢ a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

a31.b11+ a32.b21 + a33.631 a31.bl12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

all.b11+ 212,621+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633)

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

My, Ty P, My P,

all.b11+ 212,621+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633
a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + 223 632 a21.b13 + a22.b83 + a23.633)

a31.b11+ a32.b21 + a33.631 a31.bl12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

My, My My N\ P, My, Ty P, My P,

b1 b1z b13

a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

a31.b11+ a32.b21 + a33.631 a31.bl12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

(all.b11+ 212,621+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

P My, Ty P, My P,

a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

all.b11+ 212,621+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633)

x a31.b11+ a32.621+ a33.631 a31.b12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

My, My My N\ P, My, Ty P, My P,

all a

a2 azz2 azZ3

TN a3t e am J O

all.b11+ 212,621+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633
a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633)

a31.b11+ a32.b21 + a33.631 a31.bl12 + a32.b22 + a33 . 632 a31.b13 + a32.b23 + a33.H33

Matrix multiplication

My My Mpy \[Dy My Py T My P, Ty, P,
my, my My |(|pP,|=| MNP, TP, +TM,p,

My, My My N\ P, My, Ty P, My P,

a21.b11+ a22.b21 + a23.631 a21.b12 + a22.b22 + a23.632 a21.b13 + a22.b83 + a23.633

(all.b11+ 212,621+ a13.631 all.b12+ al12.b22 + a13. 632 allb13+ 212,623 + 213.633

a31.b11+ a32.b21 + aZ3.631 a31.bl12 + a32.b22 + a33 . 632 a31b13+ a32.b23 + aZ3.H33

camera

Model space U
World space

ModelViewMtx = "Model to View
Matrix”

ModelViewMtx = (Myy..y * My sw)

View space

ModelViewMtx = "Model to View Matrix”

ModelViewMtx * v = (My..y * Mysw) * v

Model space

Full projection:

\Y

screen_space

= projectionMatrix * ModelViewMatrix * v

>

model_space

Transtormation
Pipeline

Modelview ecti] Viewport
Matrix Matrix Division Transform

I
e
r
[
e
X

The OpenGL Pipeline

Pixel C-_)r.vma'.q hip)

Jert €S Brimitive Blending g/=lest
Vertex A ASSembly £
Control ; .
\ i s o o pmm———
4 :
‘ (1080190 e g 4 4 ‘ WD
b Pt - GRS
M°I.v‘:,°:v|;°‘" B Enable/Disable buf:
Matr] Texture " Frame'E s
atri Al -
Stack = ' =

BackiBuffer

(Stencil):

\

From http://deltronslair.com/glpipe.html

How do | use transforms
practically?

e Say you have a circle with origin at (0,0,0) and with
radius 1 — unit circle

® Mtx4f m;
@ m.translate(8,0,0); // create translation matrix
@ RenderCircle (m); // Draw circle using m as

// model-to-world matrix

Mtx4f s, t;
s.scale(2,2,2); // create scaling matrix

t.translate(3,2,0); // create translation matrix

RenderCircle (t*s) ; // use matrix (t*s)

What happens?
See next slide...

Cont’d from previous slide
A simple 2D example

e A circle in model space
y
Mtx4f s, t;

s.scale(2,2,2);

t.translate(3,2,0);

RenderCircle (t*s) ; // Effect= first scaling, then translation

Mtx4f m;
m.translate (8,0,0);
renderCircle (m) ;

Cont’d from previous slide
A simple 2D example

e A circle in model space
y

A

Mtx4f s, t;

s.scale(2,2,2);

t.translate(3,2,0);

RenderCircle (s*t) ; // Effect= first translation, then scaling.
// Each vertex in the sphere will first
// be translated (342,0) and then have its
/I coordinate.doubled in X,y,z

// This 1s less intuitive so humans
// prefer to do scaling first and then

// translation.
p— > X

&)

«b) w
'S =
-J =

. A

Rotation (2D)

Consider rotation about the origin by 0 degrees
—radius stays the same, angle increases by 6

X'=r1cos (¢ +9)

/ y'=rsin (¢ + 0)
(x', ¥ ,

L[)
R

Wmr y=r1sIin ¢

Ll

(x, y)

Answer:| x’=x cos 0 —y sin 0
y’=xsinf+ycos0

DerivationiGiioiui ORI XanezZiy

. xo4
ationis multbye]

i z¢

n=e“p=ree

= r[(cosa +isina)(cos@ +ising)| =

= r(cosa cos ¢ —sin asin @) + “
ir(cosasing +sin a cos @) @-p

In vector form:

p=(p,.p,) =(rcosg,rsing)
n=(n,n,)" =(r(cosccosg-sinasing),

r(cosasin @ + sin a cos ¢))’

Tomas Akenine-Mdller © 2002

D erivationZibNOIatONRCHIIEC

P = (pxapy)T - (I/‘COS¢?,I"SiIl¢)T
n=(n,n,)" =(r(cosakosgHsindsing),
(naboss +Eosdsing)

n=R_ p whatisR?

. /
R
A

3xX3 matrix
CoOSx

Rz<a>=(.
SINNa

For X

—sina

CoOSx

A

Rotationsinesh

)=Rz(a>=

R, (a) =

ForYnI\ '& R ()=

(cosax —-sina 0)
sinag cosa O
| 0 0 1/
(1 0 0
0 cosa -sma
\O sin & cosa
(cosa 0 sina)
0 1 0
\—sina 0 cosa

lons, but with a

A

around —v 1s equal to neg. rot. around v. So. negate oo and note that coso=cos-o

Translations must be simple?

Translation Rotation

e Rotation is matrix mult, translation is add

e \Would be nice if we could only use matrix
multiplications...

e Turn to homogeneous coordinates
e Add a new component to each vector

Homogeneous notation

e [ranslation becomes:

1 0 0 ¢ \/p, p,+t,

p,y _ py,+i,
P

e Translation of vector: jXi =¥l
e Also allows for projections (later)

Rotations in 4x4 form

e Just add a row at the bottom, and a
column at the right:

V,xv, Vector Product
AREA=VAVE sin 0.

cosax —-smoa 0 0

sma cosa 0 O
0 0 1 O
0 0 0 1

* Triple Scalar Product

The magnitude of the triple scalar
product is equal to the volume of the

parallelepiped formed by the three
vectors Vi, Vg, Vi Vo(VpXV o).

e Similarly for Xand Y
e det(R)=1 (for rot. matrices) | SEEEEERIEE

e Trace(R)=1+2cos(alpha) (for any rot-
matrix,3x3)

Change of Frames

* How to get the M P=(0,5,0,1) @

model-to-world matrix:

S
o
S

a, x x x 0
M _ Cly by Cy Oy 5 y

model-to-world b 0 3

aZ Z CZ OZ

O O 1 1 model space
L 1= - » X
world space
: a

The basis vectors a,b,c y4
arc exXpres sed in the (Both coordinate systems are right-handed)

world coordinate system

E’g’: Pworld = Mmew Pmodel = Mm—>w (0959091)T =5b to

More basic transforms

e Scaling ’ =

e Shear l — A

e Rigid-body: rotation and/or (then) translation

e Concatenation of matrices

e Not commutative, i.e., 124 N N 28

e In D&M Y . the rotation is done first

e Inverses and rotation about arbitrary axis:
e Rigid body: X1 = XT

Normal transforms
Not so normal...

N

e Cannot use same matrix to transform normals

Use:N = (M'I)T instead of M

e M works for rotations and translations, though

The Euler Transform

e Assume the camera or object
looks down the negative z-
axis, with up in the y-direction,
X to the right

e h=head
e p=pitch
e =roll

e Optional
e You may read about Gimbal lock in book, p: 67

e See also
e http:/mathworld.wolfram.com/EulerAngles.html

Using Euler transforms

Head:
e Rotate around y-axis

e Recompute x- and z-axes
e By rotating them as vectors

Pitch:
e Rotate around x’-axis
e Recompute y- and z'-axes

Roll:
e Rotate around z”’-axis

How do we rotate vectors (axes)
and points around an arbitrary axis?

Quaternions
(Al = (qvﬂqW) = (Qx9Qy9qZ9qW)

=iq.+Jjq, +kq. +q,
e Extension of imaginary numbers
e Compact+fast representation of rotations

e Focus on unit quaternions:
— Norm (or length): n(q) =

q:+4q, +q. +q, =

e A unit quaternion can be written as:

q =(singu_,cos¢) where|u, |=1

Unit quaternions are perfect for
rOtatiOnS! (i — (Sm ¢quc()s¢)

e Compact (4 components)

e Can show that

e ...represents a rotation of
2¢ radians around u, of p

e That is: a unit quaternion represents a
rotation as a rotation axis and an angle

®@ rotate (ux,uy,uz,angle);

® Sce p:76 how to convert g to matrix.

e Interpolation from one quaternion to another is
much simpler, and gives optimal results

Projections
e Orthogonal (parallel) and Perspective

N
Orthogonal projection

e Simple, just skip one coordinate
— Say, we're looking along the z-axis
- Then drop z, and render

N
Orthogonal projection
e Not invertible! (determinant is zero)

- i.e., depth information is lost

e For Z-buffering
— It is not sufficient to project to a plane
- Rather, we need to "project” to a box

far
/ —
image plane near

Unit cube: [-1,-1,-1] to [1,1,1]

/
eveL“o Unit cube is also used for perspective pro;.
e Simplifies clipping

N
Orthogonal projection

e The "unitcube projection” is invertible

e Simple to derive
— Just a translation and scale

What about those homogenenous
coordinates?

P=(x P, P: PW)T

e p.=0 for vectors, and p»=1 for points

e \What if pwis not 1 or 0?

e Solution is to divide all components by pw
p=(p./p, p,/p, p./D, 1f

e Gives a point again!

e Can be used for projections, as we will
see

Perspective projection

projection plane, z=-d

e The "arrow’” is the
homogenization process

Perspective projection -

e Again, the determinant is O (not invertible)

e To make the rest of the pipeline the same
as for orhogonal projection:
— project into unit-cube

e Not much different from P;
e Do not collapse z-coord to a plane

Understanding the projection matrix

Scaling

Due to homogenization, this becomes the translation
Keep z-info

Perspective foreshortening

Perspective projection matrices

e See "Fran Varld till Skarm” secion 4 for
more details.

e BREAK...

Quick Repetition of Vector Algebra

Length of vector: HXH = \/(X2 +y 4+ Zz)

.. . X X
Normalizing a vector: x = — - =
2 2 2
X
\/(x Ty +z) x| v,«v, Vector Product
' AREA=VAVE si
Normal: n= (Vl ~ Vo)x (Vz Vo) Vi g

(usualy needs to be normalized as well)

Cross PI’OdU,C'F. e Triple Scalar Product
¢ PCI’pGI’ldlCUlar VGCtOI’, Area The magnitude of the triple scalar

product is equal to the volume of the

. . V XV, . A - :
* SN O sina =a—be’ where € 1s perp. to v, and Vb.paralleleplped formed by the three
|Va Vb| vectors ¥V, Ve , Vi Vo(VpxVe).
UXV= Xty v =1 vy)+ ¥ (v = 1 v2) + Z 1 vy = 1y vy, Triple Scalar Product
- 7] . - : . .) YBXYC
V oV !
Dot product: cosa = —-—= q N
‘Va VbH IYQ

Vs

a*b=(ab +ab, +ab,)

Volume =Y, Vg Vesin otcos B

Ray/Plane Intersections

*Ray: r(t)=o+td

n
*Plane: nex + d = 0; d=-n*p, p".//v
« Set x=(t): /

ne(o+td) +d =0 0

neo+t(ned) +d=0

t= (—d —n*0) / (ned) Vec3f rayPlanelntersect(vec3f o,dir, n, d)

{
float t=(-d-n.dot(0)) / (n.dot(dir));
return o + dir*t;

Ulf Assarsson © 2011

See book, p: 780
Line/Line intersection in 2D

® ry(s)=0,*sd, ><

r,(t) = o,+td
.2() 2 2 \/

® ry(s) = ry(t) (1)
e 0,+sd= o,+td,(2)

noting that ded"=0, [d=(a,b) — dl=(b,-a)]

sd,ed,” = (0,-0,) * d, —
td,ed,™ = (0,-0,) * dy™

See book, p: 781-782
Line/Line intersection in 3D

e r(s)=o0,+sd, ><
o ry(t) = o,+td,

o 1(5)= rlt) (1) N—"

e o0,+sd,= o,+td, (2)

noting that d x d=0 l(d, xd,)|" = 0 means parallel lines
sd;x d, = (0,-0¢) x d, s, t correspond to closest
td, x dy = (04-0,) x d, points

s (dyx d,)*(d;xd,)=((0,-0,) xd,)*(d;xd,)
t (dyxd;)e(d,xd,)=((04-0,) xd,;)*(d,xd,)

S_det(oz—ol,dz,dlxdz) t_det(oz—ol,dl,dlxdz)

H(dl Xdz)Hz H(dl Xdz)Hz

\D) P>
Area and Perimeter p()«

For polygon p,, ps...p b1
Perimeter = omkrets = sum of length of each
edge in 2D and 3D:

We can understand the formula from using Greens theorem: integrating over

border to get area 1
Choose arbitrary point to integrate from, e.g. Origin (0,0,0) Atn'angle = 5 (Vl X Vz)

Works for non-convex polygons as well

Volume in 3D

The same trick for computing area in 2D can be A\
used to easily compute the volume in 3D for ﬂ’
triangulated objects

Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0) n‘

With respect to point-of-integration q’

* For all backfacing triangles, add volume
« For all frontfacing triangles, subtract volume

Works for non-convex polygons as well where

a =p,— origin
b = p,— origin
C = p;— origin

The sign of the determinant will
automatically handle positive and
negative contribution

Scan Conversion of Line
Segments

» Start with line segment in window
coordinates with integer values for
endpoints

* Assume implementation has a

write pixel function (XQ"’}L.
y =kx +m \\\S//'
/ 2y
k= Q /
Ax Sranl
«—AX |

DDA Algorithm

* Digital Differential Analyzer

/

7

/(Xpi)’])

- AX

—DDA was a mechanical device for numerical

solution of differential equations

—Line y=kx+ m satisfies differential equation

dy/dx = k = Ay/AX = y,-y/X5-X,
* Along scan line Ax = 1

y=yl;

For (x=x1; x<=x2,1ix++)
write pixel (x, round(y),
v+=Kk;

}

line color)

Problem

* DDA = for each x plot pixel at closest y

—Problems for steep lines
/

/

/
l

Using Symmetry

eUsefor1=k=0

Fork> 1, swap role of xand y
—For each vy, plot closest x

/

/
l

* The problem with DDA is that it uses floats
which was slow in the old days

* Bresenhams algorithm only uses integers

Bresenham'’s line drawing
algorithm

The line is drawn between two points (x,, ¥,)
and (x4, ¥;)

Slope k=(y1_y0) (y = kx + m)
(o, =)

Each time we step 1 in x-direction, we should increment y with k.
Otherwise the error in y increases with k.

If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y, simultaneously decreasing the error by 1

function line(x0, x1, y0, y1)
int deltax = abs(x1 - x0)
int deltay = abs(y1 - y0)
real error := 0

real deltaerr := deltay / deltax See also http://en.wikipedia.org/wiki/

inty = y0 Bresenham's line algorithm

for x from x0 to x1
plot(x,y)
error := error + deltaerr
if error > 0.5
y=y+1
error ;= error - 1.0 Ulf Assarsson © 2006

Bresenham'’s line drawing
algorithm

* Now, convert algorithm to only using integer computations

« Trick: multiply the fractional number, deltaerr, by deltax
— enables us to express deltaerr as an integer.
— The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Old float version: New integer version:
function line(x0, x1, y0, y1) function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0) int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0) int deltay := abs(y1 - y0)
real error := () real error := ()
real deltaerr := deltay / deltax real deltaerr ;= deltay €———
inty =y0 inty =y0
for x from x0 to x1 for x from x0 to x1
plot(x,y) plot(x,y)
error ;= error + deltaerr error ;= error + deltaerr
if error > 0.5 if 2*error > deltax ~ €
y=y+1 y=y+1
error ;= error - 1.0 error ;= error - deltax €———

Ulf Assarsson © 2006

Complete Bresenham’s line
drawing algorithm

function line(x0, x1, y0, y1)
boolean steep := abs(y1 - y0) > abs(x1 - x0)

The first case is allowing us to draw
lines that still slope downwards, but

if steep then head in the opposite direction. l.e.,
swap(x0, y0) Swap loop axis swapping the initial points if x0 >
swap(x1, yl) x1.

if x0 > x1 then To draw lines that go up, we check if yO

o1 T
swap(x0, x1) Swap start and end of 13(1’ 50, we stepy by -1 instead
swap(y0, y1) To be able to draw lines with a slope

less than one, we take advantage
of the fact that a steep line can be
reflected across the line y=x to
obtain a line with a small slope. The

int deltax ;= x1 - x0
int deltay := abs(y1 - y0)
int error :=0

int ystep effect is to switch the x and y
inty :=y0 variables.
if yO <yl then ystep := 1 else ystep := -1
for x from x0 to x1 A
if steep then plot(y,x) else plot(x,y) ><

error := error + deltay
if 2xerror > deltax

y =y t ystep
error := error - deltax UIf Assarsson © 2006

N5
rd

You need to know

— How to create a simple Scaling matrix, rotation matrix,
translation matrix and orthogonal projection matrix

— Change of frames (creating model-to-view matrix)
— Understand how quaternions are used

— Understanding of Euler transforms

— DDA line drawing algorithm

— Understand what is good with Bresenhams line
drawing algorithm, i.e., uses only integers.

The following slides are simply extra non-
compulsory material that explains the content of the
lecture 1n a different way.

Most of the following slides are from

Ed Angel

Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

Scalars

* Need three basic elements in geometry
—Scalars, Vectors, Points

» Scalars can be defined as members of sets which
can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutivity, inverses)

« Examples include the real and complex number
systems under the ordinary rules with which we are
familiar

e Scalars alone have no geometric properties

Vector Operations

 Physical definition: a vector 1s a quantity with two attributes
— Direction
— Magnitude
« Examples include
— Force
— Velocity
— Directed line segments
* Most important example for graphics
« Can map to other types. Every vector can be multiplied by a scalar.

 There 1s a zero vector
—Zero magnitude, undefined orientation
* The sum of any two vectors 1s a vector

T

Vectors Lack Position

* These vectors are i1dentical
—Same length and magnitude

e

%

* Vectors insufficient for geometry
—Need points

Points

* Location 1n space

* Operations allowed between points and
vectors

—Point-point subtraction yields a vector

—Equivalent to point-vector addition

v=P-Q

P=v+Q

Affine Spaces

* Point + a vector space
* Operations

—Vector-vector addition
—Scalar-vector multiplication
—Point-vector addition
—Scalar-scalar operations

* For any point define
—1«P=P

—(0 » P =0 (zero vector)

Lines

* Consider all points of the form
—P(a)=P,+a d
—Set of all points that pass through P, in the
direction of the vector d

Pl

Parametric Form

* This form 1s known as the parametric form of
the line

—More robust and general than other forms
—Extends to curves and surfaces

e Two-dimensional forms
—Explicit: y =kx + m

—Implicit: ax + by +¢ =0
—Parametric:
x(a) = ax, + (1-a)x,
y(o) = ay, * (1I-a)y,

Rays and Line Segments

*[f o >= 0, then P(a) 1s the ray leaving P, in
the direction d

If we use two points to define v, then

P(a)=Q + a (R-Q=Q+av] /.';;ia)
=oR + (1-a)Q R
For 0<=0<=1 we get all the
points on the /ine segment
joining R and Q o Q

Planes

* A plane can be defined by a point and two

vectors or by three points p

R u R

P(a,B)=R+au+pv P(a,)=R+a(Q-R)+p(P-Q)

Triangles

»~ |3, convex sum of S(a) and R

/, \\
convex sumof PandQ -7 /

/// T(afﬁ) \\
7 \

P S{al) Q

for 0<=q,p<=1, we get all points in triangle

Normals

e Every plane has a vector n normal (perpendicular,
orthogonal) to 1t

* From point/vector form
— P(a,f)=R+outPv
we know we can use the cross product to find
—NnN=u XV
 Plane equation:
—n-x—-d=0,
—where d = -n -p and p is any point in the plane

- 5

A%

Normal for Triangle

n

plane n-(p-p,) =0

n=(p,-Py) *(P;-Po)

normalize n < n/ |n| Po 1

Note that right-hand rule determines outward face

Convexity

* An object 1s convex 1ff for any two points in
the object all points on the line segment
between these points are also in the object

not convex

convex

Afftine Sums

* Consider the “sum”

P=a,P,to,P,+.....+a P,

Can show by induction that this sum makes
sense 1ff

oot . ..o =1

in which case we have the affine sum of the
points P,,P,,.....P_

* If, in addition, a.>=0, we have the convex
hull of P,P,,.....P_

Convex Hull

Consider the linear combination
P=a,P,+o,P,+.....+a P
If o, To,t.....0 =1

— (in which case we have the affine sum of the points P,,P,,.....P,)

and 1f o.>=0, we have the convex hull of P,P,,.....P_
» Smallest convex object
containing P,,P,,.....P

n

Frames

* A coordinate system 1s insufficient to
represent points

* If we work 1n an affine space we can add a
single point, the origin, to the basis vectors
to form a frame

Representing one basis in terms
of another

Each of the basis vectors, ul,u2, u3, are vectors that

can be represented 1n terms o, "
b

W =Y Vit 2V tYisvs / ey
Uy = Y21 VitY Vo tYa3V3

U3 = Y31V TY30V2TV33V3

Matrix Form

The coefficients define a 3 x 3 matrix

Y Yz Vi3
M= Y21 Yoo Vo3
V31 Va2 Va3

and the bases can be related by
a=M'b

Translation

* Move (translate, dlsplacel) a point to a new
location

* Displacement determined by a vector d

—Three degrees of freedom
—P’=P+d

How many ways?

Although we can move a point to a new location 1n
infinite ways, when we move many points there 1s
usually only one way

translation: every point displaced
by same vector

Translation Using
Representations

Using the homogeneous coordinate
representation in some frame

p={xyz]
p=[xy 2 1T

d=[dx dy dz 0]!
Hence p’ = p + d or | note that this expression is in

four dimensions and expresses
X’=x+d,

point = vector + point
)
y’=y+dy
z’=z+d,

Translation Matrix

We can also express translation using a
4 x 4 matrix T 1n homogeneous coordinates

p’=Tp where 1 0 0 d,
O 1 0 d,
0 0 1 d,
T=1ded.d)= 1 o 0 1

This form 1s better for implementation because all affine
transformations can be expressed this way and multiple
transformations can be concatenated together

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional
point [X y Z] 1s given as

p=[X"y z2’ W] T =[wx wy wz w] T

We return to a three dimensional point (for w=0) by

X<—X'/w

y<y'/w

7z<7’|w

If w=0, the representation 1s that of a vector

Note that homogeneous coordinates replaces points in three
dimensions by lines through the origin in four dimensions

For w=1, the representation of a pointis [x y z 1]

Homogeneous Coordinates
and Computer Graphics

* Homogeneous coordinates are key to all
computer graphics systems

—All standard transformations (rotation,

translation, scaling) can be implemented with
matrix multiplications using 4 x 4 matrices

—Hardware pipeline works with 4 dimensional
representations

—For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

—For perspective we need a perspective division

Rotation about the z axis

* Rotation about z axis in three dimensions leaves all
points with the same z

—Equivalent to rotation in two dimensions 1n
planes of constant z

X’=X cos O —y sin 0
y’=xsm06+ycos0
Z' =Z

—or 1n homogeneous coordinates
p'=R_(0)p

Rotation Matrix

‘cos® —-sm0O 0
sn® cosO® O
0 0 1
0 0 0

R=R,(0)=

- o o 9

Rotation about x and y axes

« Same argument as for rotation about z axis
—For rotation about x axis, x 1s unchanged

—For rotation about y axis, y 1s unchanged

0 0 0
cosO -sm0O O
0
1

snB cosH

|
0
R=R(0)= |,
0

0 0
cosO 0 sin0O O]
R = Ry(e) _ 0 1 0 0
-sin® 0 cosH O
0 0 0 1_

Scaling

Expand or contract along each axis (fixed point of origin)

X’ =8, X
y'=s,X
Z’=S,X
p'=Sp
s. 0
0 s,
S =S(s,, Sy, S,) =
(8% Sy» S,) 0 0
0 0

Reflection

corresponds to negative scale factors

Y
A
B &
s e
s, =-1s,=1 F:f{ i f’ | original

NG
0p]
>
|
[E—
w2
<
|

s =-1s,=-1 F
X y E%

Inverses

 Although we could compute inverse matrices by
general formulas, we can use simple geometric
observations

—Translation: T-(d,, d,, d,) = T(-d,, -d,, -d,)
—Rotation: R “1(0) = R(-0)
* Holds for any rotation matrix

* Note that since cos(-0) = cos(0) and sin(-
0)=-s1n(0)
R-1(0) =R 1(0)

—Scaling: S-(s,, s, s,)=S(1/s,, 1/s,, 1/s,)

y> Sz

Concatenation

* We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

* Because the same transformation 1s applied to
many vertices, the cost of forming a matrix
M=ABCD is not significant compared to the cost
of computing Mp for many vertices p

 The difficult part 1s how to form a desired
transformation from the specifications in the
application

Order of Transformations

* Note that matrix on the right is the first
applied
* Mathematically, the following are equivalent
p’° = ABCp = A(B(Cp))
* Note many references use column matrices

to represent points. In terms of column
matrices

p’T — pTCTBTAT

General Rotation About the

Origin

A rotation by 6 about an arbitrary axis

can be decomposed into the concatenation

of rotations about the x, y, and z axes

R(6) = R,(6,) R,(6,) R,(6,)

Y

0, 8, 6, are called the Euler angles

Note that rotations do not commute

We can use rotations in another order but /

with different angles :

N

Rotation About a Fixed Point
other than the Origin

Move fixed point to origin
Rotate
Move fixed point back

M = T(py) R(0) T(-py)

. Py
o °
> P,
—_— — —

]
VAW AVWan

LN

y
A

Instancing

 In modeling, we often start with a simple
object centered at the origin, oriented with
the axis, and at a standard size

* We apply an instance transformation to 1its

vertices to T T
Scale - _’T_ ‘
Orient moes | e

T

Locate r ,

Shear

* Helpful to add one more basic transformation
« Equivalent to pulling faces in opposite directions

| |
o F

Shear Matrix

Consider simple shear along x axis

y
A

(x', v')
e

(x, y)
e

I ,/

: Py

1 ¥

I ,/

L \9

|

' X

[
o = O O
—_— O O O

OpenGL Transformations

Objectives

* Learn how to carry out transformations in
OpenGL

—Rotation
—Translation
—Scaling
* Introduce OpenGL matrix modes
—Model-view

—Projection

Clarification (by Ulf)

* Note that the following slides explain the old
deprecated (before OpenGL 3.0) way to modify
the modelview matrix and projection matrix in
OpenGL. These were fixed function built in
OpenGL-matrices. Today, we instead send the
modelview and projection matrix ourselves to the
vertex shader. But the principles of the following
slides still apply. We just have to create and send
the matrices to the shaders manually instead of
having them built 1n.

OpenGL Matrices

* In OpenGL matrices are part of the state

e Multiple types
~Model-View (GL MODELVIEW)
—Projection (GL_ PROJECTION)
—Texture (GL_TEXTURE) (ignore for now)
—Color(GL_COLOR) (1gnore for now)

* Single set of functions for manipulation

* Select which to manipulated by
-glMatrixMode (GL MODELVIEW) ;
—glMatrixMode (GL PROJECTION) ;

Current Transtormation Matrix
(CTM)

* Conceptually there 1s a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that 1s part of the state and 1s applied
to all vertices that pass down the pipeline

* The CTM 1s defined 1n the user program and loaded
into a transformation unit
l C

p’=Cp

vertices > CTM > vertices

CTM operations

* The CTM can be altered either by loading a new
CTM or by postmutiplication

Load an identity matrix: C < I
Load an arbitrary matrix: C < M

Load a translation matrix;: C < T
Load a rotation matrix: C < R
Load a scaling matrix: C <= S

Postmultiply by an arbitrary matrix: C < CM
Postmultiply by a translation matrix: C <= CT
Postmultiply by a rotation matrix: C < C R
Postmultiply by a scaling matrix: C <= C S

Rotation about a Fixed Point

Start with 1dentity matrix: C <— I
Move fixed point to origin: C <= CT
Rotate: C < CR

Move fixed point back: C <= CT -!

Result: C = TR T ! which is backwards.

This result 1s a consequence of doing postmultiplications.
Let’s try again.

Reversing the Order

Wewant C=T 'R T
so we must do the operations in the following order

C<1
C<CT"!
C<CR
C<—CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first executed in
the program

CTM 1n OpenGL

* OpenGL has a model-view and a projection
matrix in the pipeline which are concatenated
together to form the CTM

» Can manipulate each by first setting the
correct matrix mode

Vertices Vertices
- Model-view ——m» Projection -

| |
|
CTM

Rotation, Translation,
Scaling

Load an identity matrix:

glLoadIdentity ()

Multiply on right:

glRotatef (theta, vx, vy, vz)
theta in degrees, (vx, vy, wvz)define axis of rotation

glTranslatef (dx, dy, dz)
glScalef(sx, sy, sz)
Each has a float (f) and double (d) format (glScaled)

Example

 Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

glMatrixMode (GL MODELVIEW) ;
glLoadIdentity () ;

glTranslatef (1.0, 2.0, 3.0);
glRotatef (30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

* Remember that last matrix specified in the program
is the first applied

Arbitrary Matrices

* Can load and multiply by matrices defined in
the application program

glLoadMatrixf (m)
glMultMatrixf (m)

* The matrix m 1s a one dimension array of 16
clements which are the components of the
desired 4 x 4 matrix stored by columns

*In glMultMatrixf, m multiplies the existing
matrix on the right

Matrix Stacks

 In many situations we want to save
transformation matrices for use later

—Traversing hierarchical data structures (Chapter 10)
—Avoiding state changes when executing display lists
* OpenGL maintains stacks for each type of
matrix

—Access present type (as set by glMatrixMode) by

glPushMatrix ()
glPopMatrix ()

Reading Back Matrices

* Can also access matrices (and other parts of the
state) by query functions

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

* For matrices, we use as

double m[1l6];
glGetFloatv(GL;MODELVIEW, m) ;

Using the Model-view
Matrix

* In OpenGL the model-view matrix 1s used to
—Position the camera

 Can be done by rotations and translations but
1S often easier to use gluLookAt

—Build models of objects

* The projection matrix 1s used to define the view
volume and to select a camera lens

Quaternions

» Extension of imaginary numbers from two to three
dimensions
* Requires one real and three imaginary components

LK g=q,tqit+q,jt+q:k

 Quaternions can express rotations on sphere
smoothly and efficiently. Process:
—Model-view matrix — quaternion
—Carry out operations with quaternions
—Quaternion — Model-view matrix

Computer Viewing

Ed Angel

Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

Objectives

* Introduce the mathematics of projection
* Introduce OpenGL viewing functions
* Look at alternate viewing APIs

Computer Viewing

* There are three aspects of the viewing
process, all of which are implemented 1n the
pipeline,

—Positioning the camera

e Setting the model-view matrix
—Selecting a lens

e Setting the projection matrix
—Clipping

e Setting the view volume

* (default is unit cube, R?, [-1,1])

Default Projection

Default projection 1s orthogonal

clipped out

/
2
/ o ‘

I
1
/ St ———— X

4/ | Projection plane z=0
Zz

Moving the Camera Frame

* [f we want to visualize object with both positive and
negative z values we can either

—Move the camera in the positive z direction
* Translate the camera frame
—Move the objects in the negative z direction

» Translate the world frame

* Both of these views are equivalent and are
determined by the model-view matrix

—Want a translation (glTranslate£(0.0,0.0,-d) ;)
-d > 0

Moving the Camera

* We can move the camera to any desired
position by a sequence of rotations and

translations ,

* Example: side view 4

—Rotate the camera

—Move it away from origin
- X

—Model-view matrix C = TR i/'
R

Z.

OpenGL code

* Remember that last transformation specified
1s first to be applied

glMatrixMode (GL_MODELVIEW)
glLoadIdentity() ;
glTranslatef (0.0,

0.0, -d);
glRotatef (90.0, 0.0

, 1.0, 0.0);

The LookAt Function

* The GLU library contains the function gluLookAt to
form the required modelview matrix through a
simple interface

* Note the need for setting an up direction
« Still need to initialize
—Can concatenate with modeling transformations

* Example: 1sometric view of cube aligned with axes

glMatrixMode (GL MODELVIEW) :
glLoadIdentity() ;
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, O., 1.0. 0.0);

gluLookAt

glLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy,
upz) Y
(af , at , at) 5
X y Z

\

(Upes Upy. UP,) o ez /
"

r
z

(eye , eye,, eye)

Other Viewing APIs

* The LookAt function 1s only one possible
API for positioning the camera

e Others include

—View reference point, view plane normal, view
up (PHIGS, GKS-3D)

—Y aw, pitch, roll
—FElevation, azimuth, twist
—Direction angles

OpenGL Orthogonal Viewing
glOrtho (left,right,bottom, top,near, far)

y [n'ghf, fop, -far]
‘ /]
=-far

&

4 ~View volume

Z=-near

A
1
Y - X

Ueﬁ, bottom, -near)

near and far measured from camera

OpenGL Perspective

glFrustum(left,right,bottom, top,near, far

Yy Z=rfar
A z=near
ezl “[right, top,-near]

s (left, bottom -near)

-

Using Field of View

* With glFrustum 1t 1s often difficult to get the
desired view

egluPerpective (fovy, aspect, near,
far) often provides a better interface

X , «— front plane

aspect = w/h

fov

Projections explained differently

* Read the following slides about orthogonal
and perspective projections by your selves

* They present the same thing, but explained
differently

Projections and Normalization

* The default projection in the eye (camera) frame
1s orthogonal

* For points within the default view volume

Xp—X

Yp =Y
z,=0
* Most graphics systems use view normalization

—All other views are converted to the default view by
transformations that determine the projection matrix

—Allows use of the same pipeline for all views

Homogeneous Coordinate
Representation

default orthographic projection

p,= Mp
R 1 0 0 O
w =1 |01 00

0O 0 0 O

O 0 O 1

In practice, we can let M =1 and set
the z term to zero later

Simple Perspective

* Center of projection at the origin
* Projection plane z=d, d <0

Yy
f %7, 2
o

(xp, Yor zp)
- X

Perspective Equations

Consider top and side views

y
(x, z) i
bl 2!
i ! z=d (y,.d) '
z/d
- X Z i}
z=d
Y
Z
_ X _)
X, = V, = z.=d
" 2ld ' zld P

Homogeneous Coordinate Form

1 0 O O]
M=|0 1 0O O
consider q = Mp where 0 0 1 0
0 0 1/d 0
—x- B x 7
Y
— |V = »-
= Z
1 z/d

Perspective Division

 However w = 1, so we must divide by w to
return from homogeneous coordinates

 This perspective division yields

x,= y=y z =d

" z/d " z/d P

the desired perspective equations

* We will consider the corresponding clipping
volume with the OpenGL functions

Normalization

* Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

* This strategy allows us to use standard
transformations 1n the pipeline and makes for
efficient clipping

Pipeline View

modelview
transformation

—_

projection
transformation

nonsingula/

| perspective

division

4D — 3D

against default cube

> | clipping > | projection [—

3D —= 2D

Notes

* We stay 1n four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

—Both these transformations are nonsingular
—Default to 1dentity matrices (orthogonal view)
* Normalization lets us clip against simple cube
regardless of type of projection
 Delay final projection until end

—Important for hidden-surface removal to retain
depth information as long as possible

Orthogonal Normalization

glOrtho (left,right,bottom, top,near, far)

normalization = find transformation to convert
specified clipping volume to default

(right,top,-far)
“ ’ 1 l—.l)

@
(left, bottom,-near) (-1,-1,1)

Orthogonal Matrix

* Two steps
—Move center to origin
T(-(lefttright)/2, -(bottom+top)/2,(near+far)/2))
—Scale to have sides of length 2
S(2/(left-right),2/(top-bottom),2/(near-far))

2 0 0 _ right =left
right — left right — left
0 2 0 _ top +bottom
P=ST= top — bottom top — bottom
0 0 2 far + near
near — far far — near
0 0 0 1

Final Projection

e Setz=0

* Equivalent to the homogeneous coordinate
transformation

Morth -

oS O = O
oS O O O

— o o 9

o o0 o -

* Hence, general orthogonal projection in 4D 1s

P=M_,ST

top view

y General Shear

A

Obiject

Back clipping plane

i

/

Front clipping plane

\

Projection plane
\ DOP

N~

- X

(z, ¥

side view

Z

Shear Matrix

xy shear (z values unchanged)

1 0 —cotd O]
HO,p)= |0 1 -cote O
0 O 1 0
0 0 0 1]

Projection matrix
P= Morth H(Gaq))
General case: p=M_, STH(0,0)

Eftect on Clipping

* The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

object top view z= 1
o ' — W |
x=-1
/ \ far plane \ x=1 |
1° . z=-1
clippin
Voifmeg near plane distorted object

(projects correctly)

Simple Perspective

Consider a simple perspective with the COP (=center
of projection) at the origin, the near clipping plane at
z=-1, and a 90 degree field of view determined by
the planes

X =%z, =%z

A / z = -far

(—.l ’ —.l ’ —.l)\ ////”/////

Perspective Matrices

Simple projection matrix in homogeneous

coordinates 1 0 0 0]
1 0 O
0O 1 O
0 -1 0

M:

0
0
0

Note that this matrix 1s independent of the far
clipping plane

Generalization

R O O

oS O = O
o TR O O

===

after perspective division, the point (x, y, z, 1) goes to

x =Xx/z
y ' =yz
7" = (a+p/z)

which projects orthogonally to the desired point
regardless of o and f3

Picking a and f3

If we pick
near + far
a j—
far — near
2near * far
near — far

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mappedtox==1,y==+1

Hence the new clipping volume is the default clipping volume

Normalization Transformation

distorted object
z=x projects correctly

Z= X
N / \ e

z = -far \
\< k / . o f x =]
Z = -near s
/ \)< 4
original clipping ~%; /]

volume original Obj ect new C]ipping T
volume

Normalization and

Hidden-Surface Removal

 Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, i1t was chosen so that if z; > z, 1n the
original clipping volume then the for the
transformed points z,” > z,’

 Thus hidden surface removal works 1f we first apply
the normalization transformation

 However, the formula z” = -(a+f/z) implies that the
distances are distorted by the normalization which

can cause numerical problems especially if the near
distance 1s small

OpenGL Perspective

eglFrustum allows for an unsymmetric
viewing frustum (although gluPerspective

does not)
Z =2 .

/ min

(qux' Ymax’ Zmox)
(Xmin' Y min ch:x} 4]

pre—

COP

OpenGL Perspective Matrix

* The normalization in glFrustum requires
an 1nitial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally, the
perspective matrix results in needing only a
final orthogonal transformation

P =NSH

N

our previously defined shear and scale
perspective matrix

Why do we do it this way?

* Normalization allows for a single pipeline

for both perspective and ortl

* We stay 1n four dimensional

nogonal viewing

- homogeneous

coordinates as long as possi!
three-dimensional informati
hidden-surface removal and

* We simplify clipping

ble to retain
on needed for
shading

