
Vectors and Transforms

In
3D Graphics

Skämtbild om matte på KTH-animationskurs

Course registration:

GU-students that are admitted to courses in
Study Period 2 register themselves on the
same day as the course starts. They do that via
the Student Portal at GU.

Important info for GU-students and non-registered Chalmers/
GU-students

Studentrepresentatives
Philip Ekman ekman1991@gmail.com
Sebastian Bellevik bellevik@gmail.com

Course Structure
•  14 lectures

–  Book is the verbal format / more meticulous explanations
–  Lecture slides are only short summary

•  Perhaps not enough to fully understand

–  Exam (salstentamen):
•  I will only assume that you have studied the topics covered by the slides.
•  Reading instructions are pointers to more verbal descriptions in the book
•  May come a few “harder” questions, intended to force you to think beyond

what’s in the slides (and that could of course accidentally be covered by the
book).

•  Tutorials – the practical experience
–  1-6 “holds your hand”. Very fast. Intentionally lots of copy/paste.

Do them in 2 weeks. No need to wait for their deadlines.
–  7 – Here, you apply the knowledge from tutorial 1-6, so you must

have understood them.
•  You will need the 3 weeks for lab 7.

–  (Either 3D render engine or path tracer.)

 Department of Computer Engineering

The Bonus Material

•  Bonus material on home page
–  http://www.cse.chalmers.se/edu/course/TDA361/

schedule.html
–  Purpose: only to be of help in case lectures and course

book is not enough for you to understand! Sometimes, it
helps having same topics explained in a second way.

–  Skip the bonus material, if you are not very interested.
–  Mostly in Swedish
–  No exam questions on bonus material!

Quick Repetition of Vector Algebra

Reading instructions
VERY IMPORTANT
•  READ HOME PAGE in connection to each lecture

–  Course book reading advice in schedule on home page
•  COURSE HOME PAGE is located here:

 http://www.cse.chalmers.se/edu/course/TDA361/

COURSE HOME PAGE

Structure
•  Matrices

–  Matrix mult.
–  Pipeline
–  Practical usage
–  Rotations
–  Translations
–  Homogeneous coordinates
–  Shear / scale / normal matrix
–  Euler matrices
–  Quaternions
–  Projections

•  Bresenham’s line drawing algorithm

Tomas Akenine-Mőller © 2002

Why transforms?
l We want to be able to animate objects

and the camera
–  Translations
–  Rotations
–  Shears
–  …

l We want to be able to use projection
transforms

Tomas Akenine-Mőller © 2002

How implement transforms?
l Matrices!
l Can you really do everything with a

matrix?
l Not everything, but a lot!
l We use 3x3 and 4x4 matrices

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

222120

121110

020100

mmm
mmm
mmm

p
p
p

z

y

x

Mp

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

Matrix multiplication

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zyx

zyx

zyx

z

y

x

pmpmpm
pmpmpm
pmpmpm

p
p
p

mmm
mmm
mmm

222120

121110

020100

222120

121110

020100

camera

Model space
World space

View space

Model to World
Matrix

World to
View
Matrix

ModelViewMtx = ”Model to View
Matrix”

ModelViewMtx = (MW->V * MM->W)

x

y

z

camera
Model space World space View space

Model to World
Matrix

World to View
Matrix

ModelViewMtx = ”Model to View Matrix”

ModelViewMtx * v = (MW->V * MM->W) * v

Full projection:

Vscreen_space = projectionMatrix * ModelViewMatrix * vmodel_space

x

y

z

Projection
Matrix

Ulf Assarsson© 2007

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

eye
space

clip
space

(normalized
device coords)

window
coords

l  other calculations during
the pipeline

–  Color / normal per vertex
–  (backface culling)
–  clipping

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

The OpenGL Pipeline

From http://deltronslair.com/glpipe.html

How do I use transforms
practically?
l  Say you have a circle with origin at (0,0,0) and with

radius 1 – unit circle

l  Mtx4f m;
l  m.translate(8,0,0); // create translation matrix
l  RenderCircle(m); // Draw circle using m as
 // model-to-world matrix

l  Mtx4f s,t;
l  s.scale(2,2,2); // create scaling matrix
l  t.translate(3,2,0); // create translation matrix
l  RenderCircle(t*s); // use matrix (t*s)

What happens?
See next slide...

Cont’d from previous slide
A simple 2D example
l A circle in model space

x

y

Mtx4f m;
m.translate(8,0,0);
renderCircle(m);

Mtx4f s,t;
s.scale(2,2,2);
t.translate(3,2,0);
RenderCircle(t*s); // Effect= first scaling, then translation

Cont’d from previous slide
A simple 2D example
l A circle in model space

x

y
Mtx4f s,t;
s.scale(2,2,2);
t.translate(3,2,0);
RenderCircle(s*t); // Effect= first translation, then scaling.

 // Each vertex in the sphere will first
 // be translated (3,2,0) and then have its
 // coordinate doubled in x,y,z

 // This is less intuitive so humans
 // prefer to do scaling first and then
 // translation.

Moving an object

Demo

Rotation (2D)
Consider rotation about the origin by θ degrees

– radius stays the same, angle increases by θ

x’=x cos θ –y sin θ
y’ = x sin θ + y cos θ

x = r cos φ
y = r sin φ

x' = r cos (φ + θ)
y' = r sin (φ + θ)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

y
x

y
x

??
??

'
'

Answer:

Tomas Akenine-Mőller © 2002

Derivation of rotation matrix in 2D

T

T
yx

TT
yx

iii

i

r

rnn

rrpp
ir
r

iir
erepe

irre i
e

))cossinsin(cos

),sinsincos(cos(),(

)sin,cos(),(
)cossinsin(cos
)sinsincos(cos

)]sin)(cossin[(cos

)sin(cos]by mult is[rotation

φαφα

φαφα

φφ

φαφα

φαφα

φφαα

φφ
φαα

φ α

+

−==

==

+

+−=

=++=

===

+==

n

p

n
p

?pRn z=

p

n

α
In vector form:

Derivation 2D rotation, cont’d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=

+

−==

==

y

x

y

x

zz

T

T
yx

TT
yx

p
p

z

n
n

r

rnn

rrpp

!! "!! #$
R

RpRn

n

p

αα

αα

φαφα

φαφα

φφ

cossin
sincos

? is what
))sincoscos(sin

),sinsincos(cos(),(

)sin,cos(),(
In vector form:

l Same as in 2D for Z-rotations, but with a
3x3 matrix

l For X

l For Y
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

=⇒⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

αα

αα

α

αα

ααα

αα

αα

α
αα

αα
α

cos0sin
010

sin0cos
)(

cossin0
sincos0
001

)(

100
0cossin
0sincos

)(
cossin
sincos

)(

y

x

zz

R

R

RR

Rotations in 3D

x

y

z

y

z

x

=
x

z

-y
α

x

z
y -α

Y: Rot around –y is equal to neg. rot. around y. So, negate α and note that cosα=cos-α

Tomas Akenine-Mőller © 2002

Translations must be simple?

l Rotation is matrix mult, translation is add
l Would be nice if we could only use matrix

multiplications…
l Turn to homogeneous coordinates
l Add a new component to each vector

Rpntpp =+=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

???
???
???

Rotation n Translatio

Tomas Akenine-Mőller © 2002

Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:
l Also allows for projections (later)

1

1
)(

1000
100
010
001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+

+

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

zz

yy

xx

z

y

x

z

y

x

tp
tp
tp

p
p
p

t
t
t

!! "!! #$
tT

()Tzyx ppp 1=p

()Tzyx ddd 0=d
dTd =

l  Just add a row at the bottom, and a
column at the right:

l Similarly for X and Y
l  det(R)=1 (for rot. matrices)
l Trace(R)=1+2cos(alpha) (for any rot-

matrix,3x3)

Rotations in 4x4 form

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ −

=

1000
0100
00cossin
00sincos

)(
αα

αα

αzR

Change of Frames
• How to get the Mmodel-to-world matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

(0,5,0,1)

E.g.: pworld = Mm→w pmodel = Mm→w (0,5,0,1)T = 5 b + o

b

x

y

z

c

a

o

world space

model space

(Both coordinate systems are right-handed)

P=

0
5
0
1

!

"

#
#
#
#

$

%

&
&
&
&

The basis vectors a,b,c
are expressed in the
world coordinate system

Tomas Akenine-Mőller © 2002

l  In , the rotation is done first

More basic transforms
l Scaling

l Shear

l  Rigid-body: rotation and/or (then) translation

TRX =
l  Concatenation of matrices

TRRT ≠
TRX =

l  Inverses and rotation about arbitrary axis:
l  Rigid body: X-1 = XT

l  Not commutative, i.e.,

Tomas Akenine-Mőller © 2002

Normal transforms
Not so normal…

l  M works for rotations and translations, though

() MMN of instead :Use 1 T−=

l  Cannot use same matrix to transform normals

The Euler Transform
l  Assume the camera or object

looks down the negative z-
axis, with up in the y-direction,
x to the right

l  h=head
l  p=pitch
l  r=roll
l  Optional

l  You may read about Gimbal lock in book, p: 67
l  See also

l  http://mathworld.wolfram.com/EulerAngles.html

Head:
l  Rotate around y-axis
l  Recompute x- and z-axes

l  By rotating them as vectors

Pitch:
l  Rotate around x’-axis
l  Recompute y- and z’-axes

Roll:
l  Rotate around z’’-axis
How do we rotate vectors (axes)
and points around an arbitrary axis?

Using Euler transforms
x

y

z

x'

y

z'

x''
y'

z''

Quaternions

l Extension of imaginary numbers
l Compact+fast representation of rotations
l Focus on unit quaternions:

–  Norm (or length):

wzyx

wzyxwv

qkqjqiq
qqqqq

+++=

==),,,(),(ˆ qq

1)ˆ(2222 =+++= wzyx qqqqn q

l A unit quaternion can be written as:
1|||| where)cos,(sinˆ == qq uuq φφ

Unit quaternions are perfect for
rotations!
l Compact (4 components)
l Can show that 1ˆˆˆ −qpq

l  Interpolation from one quaternion to another is
much simpler, and gives optimal results

l …represents a rotation of
2φ radians around uq of p

)cos,(sinˆ φφ quq =

l That is: a unit quaternion represents a
rotation as a rotation axis and an angle

l  rotate(ux,uy,uz,angle);
l  See p:76 how to convert q to matrix.

Tomas Akenine-Mőller © 2002

Projections
l Orthogonal (parallel) and Perspective

Tomas Akenine-Mőller © 2002

Orthogonal projection
l Simple, just skip one coordinate

–  Say, we’re looking along the z-axis
–  Then drop z, and render

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⇒

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1
0

1

1000
0000
0010
0001

y

x

z

y

x

orthoortho

p
p

p
p
p

MM

z z

Tomas Akenine-Mőller © 2002

Orthogonal projection
l Not invertible! (determinant is zero)

–  i.e., depth information is lost

l For Z-buffering
–  It is not sufficient to project to a plane
–  Rather, we need to ”project” to a box

eye

image plane near

far

Unit cube: [-1,-1,-1] to [1,1,1]

l Unit cube is also used for perspective proj.
l Simplifies clipping

Tomas Akenine-Mőller © 2002

Orthogonal projection
l The ”unitcube projection” is invertible
l Simple to derive

–  Just a translation and scale

left right

bottom

top

near

far

Tomas Akenine-Mőller © 2002

What about those homogenenous
coordinates?
()Twzyx pppp=p

l  pw=0 for vectors, and pw=1 for points
l What if pw is not 1 or 0?
l Solution is to divide all components by pw

()Twzwywx pppppp 1///=p
l Gives a point again!

l Can be used for projections, as we will
see

Tomas Akenine-Mőller © 2002

Perspective projection

zx

x

p
d

p
q −

=
z

x
x p

pdq −=⇒
z

y
y p

p
dq −= :yFor

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

0/100
0100
0010
0001

d

pP

Tomas Akenine-Mőller © 2002

Perspective projection

l  The ”arrow” is the
homogenization process

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

0/100
0100
0010
0001

d

pP qpP =p

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

10/100
0100
0010
0001

z

y

x

p p
p
p

d

pP ⇒

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

dp
p
p
p

z

z

y

x

/ ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=

1

/
/

1
/
/
/

d
pdp
pdp

pdp
pdp
pdp

zy

zx

zz

zy

zx

q

z

x
x p

pdq −=
z

y
y p

p
dq −= dqz −=

Tomas Akenine-Mőller © 2002

Perspective projection
l Again, the determinant is 0 (not invertible)
l To make the rest of the pipeline the same

as for orhogonal projection:
–  project into unit-cube

l Not much different from Pp
l Do not collapse z-coord to a plane

Tomas Akenine-Mőller © 2002

Understanding the projection matrix

l  Scaling
l  Due to homogenization, this becomes the translation
l  Keep z-info
l  Perspective foreshortening

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

10/100
00

00
00

z

y

x

z

y

x

p p
p
p

d
cs

bs
as

pP ⇒

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

+

+

+

=

dp
cps
bpps
apps

z

zz

zyy

zxx

/ ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−

+−

+−

=

1
/)(
)/(
)/(

zzz

zyy

zxx

pcps
bpps
apps

q

Tomas Akenine-Mőller © 2002

Perspective projection matrices
l See ”Från Värld till Skärm” secion 4 for

more details.

l BREAK...

Quick Repetition of Vector Algebra
Length of vector:

Normalizing a vector:

Normal:
(usualy needs to be normalized as well)

Cross Product:

•  Perpendicular vector, Area
•  sin α:

Dot product:

() x
xxx =

++
=

222
ˆ

zyx

()222 zyx ++=x

() ()0201 vvvvn −×−=

sinα = va × vb
va vb

ê, where ê is perp. to va and vb.

ba

ba

vv
vv •

=αcos

)(zzyyxx bababa ++=•ba

=

α

Ulf Assarsson © 2011

Ray/Plane Intersections

• Ray: r(t)=o+td
• Plane: n•x + d = 0; d=-n•p0
• Set x=r(t):

n•(o+td) + d = 0
n•o+t(n•d) + d = 0
t = (–d –n•o) / (n•d)

n

o
d

p0

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)
{

 float t=(-d-n.dot(o)) / (n.dot(dir));
 return o + dir*t;

}

Ulf Assarsson © 2006

Line/Line intersection in 2D
l  r1(s) = o1+sd1
l  r2(t) = o2+td2

l  r1(s) = r2(t) (1)
l  o1+sd1= o2+td2 (2)

noting that d•d┴=0, [d=(a,b) → d┴=(b,-a)]

sd1•d2

┴ = (o2-o1) • d2
┴

td2•d1
┴ = (o1-o2) • d1

┴

€

s =
(o2 −o1) • d2

⊥

(d1 • d2
⊥)

€

t =
(o1 −o2) • d1

⊥

(d2 • d1
⊥)

See book, p: 780

Ulf Assarsson © 2006

Line/Line intersection in 3D
l  r1(s) = o1+sd1
l  r2(t) = o2+td2

l  r1(s) = r2(t) (1)
l  o1+sd1= o2+td2 (2)

noting that d x d=0

sd1 x d2

 = (o2-o1) x d2
td2 x d1

 = (o1-o2) x d1

s (d1 x d2) • (d1 x d2) = ((o2-o1) x d2) • (d1 x d2)
t (d2 x d1) • (d2 x d1) = ((o1-o2) x d1) • (d2 x d1)

2
21

21212

)(
),,det(

dd
dddoo

×

×−
=s 2

21

21112

)(
),,det(

dd
dddoo

×

×−
=t

 = 0 means parallel lines 2
21)(dd ×

s, t correspond to closest
points

See book, p: 781-782

Ulf Assarsson © 2006

Area and Perimeter
For polygon p0, p1...pn

Perimeter = omkrets = sum of length of each
edge in 2D and 3D:

 () () ()∑∑
−

=
+++

−

=
+ −+−+−=−=

1

0

2
1

2
1

2
1

1

0
1

n

i
iiiiii

n

i
ii zzyyxxppO

∑
−

=
++ −=

1

1
112

1 n

i
iiii yxyxA

Area in 2D:

p0

p1

p2

v1

v2

We can understand the formula from using Greens theorem: integrating over
border to get area
Choose arbitrary point to integrate from, e.g. Origin (0,0,0)

Works for non-convex polygons as well

()212
1 vvAtriangle ×=

Ulf Assarsson © 2006

Ulf Assarsson © 2006

Volume in 3D
The same trick for computing area in 2D can be
used to easily compute the volume in 3D for
triangulated objects

()),,det(
!3
1

!3
1 cbacba =×•=ntetrahedroV

Again, choose arbitrary point-of-integration, e.g. Origin (0,0,0)

With respect to point-of-integration

•  For all backfacing triangles, add volume

•  For all frontfacing triangles, subtract volume

Works for non-convex polygons as well

()∑
=

×•=
n

i
objectV

1!3
1 cba

The sign of the determinant will
automatically handle positive and
negative contribution

where
a = p1 – origin
b = p2 – origin
c = p3 – origin

Scan Conversion of Line
Segments

• Start with line segment in window
coordinates with integer values for
endpoints

• Assume implementation has a
write_pixel function

y = kx + m

x
yk
Δ

Δ
=

DDA Algorithm

• Digital Differential Analyzer
– DDA was a mechanical device for numerical
solution of differential equations

– Line y=kx+ m satisfies differential equation
 dy/dx = k = Δy/Δx = y2-y1/x2-x1

• Along scan line Δx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
 write_pixel(x, round(y), line_color)
 y+=k;
}

Problem

• DDA = for each x plot pixel at closest y
– Problems for steep lines

Using Symmetry

• Use for 1 ≥ k ≥ 0
• For k > 1, swap role of x and y

– For each y, plot closest x

•  The problem with DDA is that it uses floats
which was slow in the old days

•  Bresenhams algorithm only uses integers

Bresenham’s line drawing
algorithm

•  The line is drawn between two points (x0, y0)
 and (x1, y1)

•  Slope (y = kx + m)

•  Each time we step 1 in x-direction, we should increment y with k.
Otherwise the error in y increases with k.

•  If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y, simultaneously decreasing the error by 1

Ulf Assarsson © 2006

)(
)(

01

01

xx
yyk

−

−
=

See also http://en.wikipedia.org/wiki/
Bresenham's_line_algorithm

function line(x0, x1, y0, y1)
 int deltax := abs(x1 - x0)
 int deltay := abs(y1 - y0)
 real error := 0
 real deltaerr := deltay / deltax
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error + deltaerr
 if error ≥ 0.5
 y := y + 1
 error := error - 1.0

Bresenham’s line drawing
algorithm

•  Now, convert algorithm to only using integer computations
•  Trick: multiply the fractional number, deltaerr, by deltax

–  enables us to express deltaerr as an integer.
–  The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Ulf Assarsson © 2006

Old float version:

function line(x0, x1, y0, y1)
 int deltax := abs(x1 - x0)
 int deltay := abs(y1 - y0)
 real error := 0
 real deltaerr := deltay / deltax
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error + deltaerr
 if error ≥ 0.5
 y := y + 1
 error := error - 1.0

New integer version:

function line(x0, x1, y0, y1)
 int deltax := abs(x1 - x0)
 int deltay := abs(y1 - y0)
 real error := 0
 real deltaerr := deltay
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error + deltaerr
 if 2*error ≥ deltax
 y := y + 1
 error := error - deltax

The first case is allowing us to draw
lines that still slope downwards, but
head in the opposite direction. I.e.,
swapping the initial points if x0 >
x1.

To draw lines that go up, we check if y0
>= y1; if so, we step y by -1 instead
of 1.

To be able to draw lines with a slope
less than one, we take advantage
of the fact that a steep line can be
reflected across the line y=x to
obtain a line with a small slope. The
effect is to switch the x and y
variables.

function line(x0, x1, y0, y1)
 boolean steep := abs(y1 - y0) > abs(x1 - x0)
 if steep then
 swap(x0, y0)
 swap(x1, y1)
 if x0 > x1 then
 swap(x0, x1)
 swap(y0, y1)
 int deltax := x1 - x0
 int deltay := abs(y1 - y0)
 int error := 0
 int ystep
 int y := y0
 if y0 < y1 then ystep := 1 else ystep := -1
 for x from x0 to x1
 if steep then plot(y,x) else plot(x,y)
 error := error + deltay
 if 2×error ≥ deltax
 y := y + ystep
 error := error - deltax

Complete Bresenham’s line
drawing algorithm

Ulf Assarsson © 2006

Swap loop axis

Swap start and end
points

You need to know
–  How to create a simple Scaling matrix, rotation matrix,

translation matrix and orthogonal projection matrix
–  Change of frames (creating model-to-view matrix)
–  Understand how quaternions are used
–  Understanding of Euler transforms
–  DDA line drawing algorithm
–  Understand what is good with Bresenhams line

drawing algorithm, i.e., uses only integers.

Most of the following slides are from

Ed Angel
Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

The following slides are simply extra non-
compulsory material that explains the content of the
lecture in a different way.

Scalars
• Need three basic elements in geometry

– Scalars, Vectors, Points
• Scalars can be defined as members of sets which

can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutivity, inverses)

• Examples include the real and complex number
systems under the ordinary rules with which we are
familiar

• Scalars alone have no geometric properties

Vector Operations
• Physical definition: a vector is a quantity with two attributes

– Direction
– Magnitude

• Examples include
– Force
– Velocity
– Directed line segments

•  Most important example for graphics
•  Can map to other types. Every vector can be multiplied by a scalar.

• There is a zero vector
– Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

v -v αv
v

u

w

Vectors Lack Position

• These vectors are identical
– Same length and magnitude

• Vectors insufficient for geometry
– Need points

Points
• Location in space
• Operations allowed between points and
vectors

– Point-point subtraction yields a vector
– Equivalent to point-vector addition

P=v+Q

v=P-Q

Affine Spaces
• Point + a vector space
• Operations

– Vector-vector addition
– Scalar-vector multiplication
– Point-vector addition
– Scalar-scalar operations

• For any point define
– 1 • P = P
– 0 • P = 0 (zero vector)

Lines
• Consider all points of the form

– P(α)=P0 + α d
– Set of all points that pass through P0 in the

direction of the vector d

Parametric Form
• This form is known as the parametric form of
the line

– More robust and general than other forms
– Extends to curves and surfaces

• Two-dimensional forms
– Explicit: y = kx + m
– Implicit: ax + by +c =0
– Parametric:
 x(α) = αx0 + (1-α)x1
 y(α) = αy0 + (1-α)y1

Rays and Line Segments
• If α >= 0, then P(α) is the ray leaving P0 in
the direction d

 If we use two points to define v, then
P(α) = Q + α (R-Q)=Q+αv
=αR + (1-α)Q
For 0<=α<=1 we get all the
points on the line segment
joining R and Q

Planes
• A plane can be defined by a point and two
vectors or by three points

P(α,β)=R+αu+βv P(α,β)=R+α(Q-R)+β(P-Q)

u

v

R

P

R
Q

Triangles

convex sum of P and Q

convex sum of S(α) and R

for 0<=α,β<=1, we get all points in triangle

u

v

P

Normals
• Every plane has a vector n normal (perpendicular,

orthogonal) to it
• From point/vector form

– P(α,β)=R+αu+βv
 we know we can use the cross product to find

– n = u × v
• Plane equation:

– n ⋅x – d = 0,
– where d = -n ⋅p and p is any point in the plane

Normal for Triangle

p0

p
1

p2

n
plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

normalize n ← n/ |n|

p

Note that right-hand rule determines outward face

Convexity
• An object is convex iff for any two points in
the object all points on the line segment
between these points are also in the object

P

Q Q

P

convex not convex

Affine Sums
• Consider the “sum”
P=α1P1+α2P2+…..+αnPn
Can show by induction that this sum makes
sense iff
α1+α2+…..αn=1
in which case we have the affine sum of the
points P1,P2,…..Pn

• If, in addition, αi>=0, we have the convex
hull of P1,P2,…..Pn

Convex Hull
Consider the linear combination
P=α1P1+α2P2+…..+αnPn
• If α1+α2+…..αn=1

–  (in which case we have the affine sum of the points P1,P2,…..Pn)

 and if αi>=0, we have the convex hull of P1,P2,…..Pn

• Smallest convex object
 containing P1,P2,…..Pn

Frames

• A coordinate system is insufficient to
represent points

• If we work in an affine space we can add a
single point, the origin, to the basis vectors
to form a frame

P0

v1

v2

v3

Representing one basis in terms
of another

Each of the basis vectors, u1,u2, u3, are vectors that
can be represented in terms of the first basis

 u1 = γ11v1+γ12v2+γ13v3

u2 = γ21v1+γ22v2+γ23v3
u3 = γ31v1+γ32v2+γ33v3

v

Matrix Form
The coefficients define a 3 x 3 matrix

and the bases can be related by
 a=MTb

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γγγ

γγγ

γγγ

3231

232221

131211

33

M =

Translation

• Move (translate, displace) a point to a new
location

• Displacement determined by a vector d
– Three degrees of freedom
– P’=P+d

P

P’

d

How many ways?
Although we can move a point to a new location in

infinite ways, when we move many points there is
usually only one way

object translation: every point displaced
 by same vector

Translation Using
Representations

Using the homogeneous coordinate
representation in some frame

 p=[x y z 1]T

 p’=[x’ y’ z’ 1]T

 d=[dx dy dz 0]T

Hence p’ = p + d or
 x’=x+dx
 y’=y+dy
 z’=z+dz

note that this expression is in
four dimensions and expresses
point = vector + point

Translation Matrix
We can also express translation using a
4 x 4 matrix T in homogeneous coordinates
p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine

transformations can be expressed this way and multiple
transformations can be concatenated together

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
d100
d010
d001

z

y

x

Homogeneous Coordinates
The homogeneous coordinates form for a three dimensional

point [x y z] is given as
p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w≠0) by
x←x’/w
y←y’/w
z←z’/w
If w=0, the representation is that of a vector
Note that homogeneous coordinates replaces points in three

dimensions by lines through the origin in four dimensions
For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates
and Computer Graphics

• Homogeneous coordinates are key to all
computer graphics systems

– All standard transformations (rotation,
translation, scaling) can be implemented with
matrix multiplications using 4 x 4 matrices

– Hardware pipeline works with 4 dimensional
representations

– For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

– For perspective we need a perspective division

Rotation about the z axis
• Rotation about z axis in three dimensions leaves all

points with the same z
– Equivalent to rotation in two dimensions in

planes of constant z

– or in homogeneous coordinates
 p’=Rz(θ)p

x’=x cos θ –y sin θ
y’ = x sin θ + y cos θ
z’ =z

Rotation Matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θθ

θ−θ

1000
0100
00 cossin
00sin cos

R = Rz(θ) =

Rotation about x and y axes
• Same argument as for rotation about z axis

– For rotation about x axis, x is unchanged
– For rotation about y axis, y is unchanged

R = Rx(θ) =

R = Ry(θ) =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θθ

θθ

1000
0 cos sin0
0 sin- cos0
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θθ

θθ

1000
0 cos0 sin-
0010
0 sin0 cos

Scaling

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

s
s

s

S = S(sx, sy, sz) =

x’=sxx
y’=syx
z’=szx

p’=Sp

Expand or contract along each axis (fixed point of origin)

Reflection

corresponds to negative scale factors

original sx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Inverses
• Although we could compute inverse matrices by

general formulas, we can use simple geometric
observations

– Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

– Rotation: R -1(θ) = R(-θ)
• Holds for any rotation matrix
• Note that since cos(-θ) = cos(θ) and sin(-
θ)=-sin(θ)

R -1(θ) = R T(θ)

– Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

Concatenation

• We can form arbitrary affine transformation
matrices by multiplying together rotation,
translation, and scaling matrices

• Because the same transformation is applied to
many vertices, the cost of forming a matrix
M=ABCD is not significant compared to the cost
of computing Mp for many vertices p

• The difficult part is how to form a desired
transformation from the specifications in the
application

Order of Transformations

• Note that matrix on the right is the first
applied

• Mathematically, the following are equivalent
 p’ = ABCp = A(B(Cp))
• Note many references use column matrices
to represent points. In terms of column
matrices

 p’T = pTCTBTAT

General Rotation About the
Origin

θ

x

z

y
v

A rotation by θ about an arbitrary axis
can be decomposed into the concatenation
of rotations about the x, y, and z axes

R(θ) = Rz(θz) Ry(θy) Rx(θx)

θx θy θz are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

Rotation About a Fixed Point
other than the Origin

Move fixed point to origin
Rotate
Move fixed point back
M = T(pf) R(θ) T(-pf)

Instancing

• In modeling, we often start with a simple
object centered at the origin, oriented with
the axis, and at a standard size

• We apply an instance transformation to its
vertices to
 Scale
 Orient
 Locate

Shear

• Helpful to add one more basic transformation
• Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot θ
y’ = y
z’ = z

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ θ

1000
0100
0010
00cot 1

H(θ) =

OpenGL Transformations

Objectives

• Learn how to carry out transformations in
OpenGL

– Rotation
– Translation
– Scaling

• Introduce OpenGL matrix modes
– Model-view
– Projection

Clarification (by Ulf)

•  Note that the following slides explain the old
deprecated (before OpenGL 3.0) way to modify
the modelview matrix and projection matrix in
OpenGL. These were fixed function built in
OpenGL-matrices. Today, we instead send the
modelview and projection matrix ourselves to the
vertex shader. But the principles of the following
slides still apply. We just have to create and send
the matrices to the shaders manually instead of
having them built in.

OpenGL Matrices

• In OpenGL matrices are part of the state
• Multiple types

– Model-View (GL_MODELVIEW)
– Projection (GL_PROJECTION)
– Texture (GL_TEXTURE) (ignore for now)
– Color(GL_COLOR) (ignore for now)

• Single set of functions for manipulation
• Select which to manipulated by
– glMatrixMode(GL_MODELVIEW);
– glMatrixMode(GL_PROJECTION);

Current Transformation Matrix
(CTM)

• Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that is part of the state and is applied
to all vertices that pass down the pipeline

• The CTM is defined in the user program and loaded
into a transformation unit

CTM vertices vertices
p p’=Cp

C

CTM operations
• The CTM can be altered either by loading a new

CTM or by postmutiplication
Load an identity matrix: C ← I
Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T
Load a rotation matrix: C ← R
Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM
Postmultiply by a translation matrix: C ← CT
Postmultiply by a rotation matrix: C ← C R
Postmultiply by a scaling matrix: C ← C S

Rotation about a Fixed Point

Start with identity matrix: C ← I
Move fixed point to origin: C ← CT

Rotate: C ← CR
Move fixed point back: C ← CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.

Reversing the Order

We want C = T –1 R T
so we must do the operations in the following order

C ← I
C ← CT -1
C ← CR
C ← CT

Each operation corresponds to one function call in the

program.

Note that the last operation specified is the first executed in

the program

CTM in OpenGL
• OpenGL has a model-view and a projection
matrix in the pipeline which are concatenated
together to form the CTM

• Can manipulate each by first setting the
correct matrix mode

Rotation, Translation,
Scaling

glRotatef(theta, vx, vy, vz)

glTranslatef(dx, dy, dz)

glScalef(sx, sy, sz)

glLoadIdentity()

Load an identity matrix:

Multiply on right:

theta in degrees, (vx, vy, vz) define axis of rotation

Each has a float (f) and double (d) format (glScaled)

Example
• Rotation about z axis by 30 degrees with a fixed

point of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the program
is the first applied

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

Arbitrary Matrices
• Can load and multiply by matrices defined in
the application program

• The matrix m is a one dimension array of 16
elements which are the components of the
desired 4 x 4 matrix stored by columns

• In glMultMatrixf, m multiplies the existing
matrix on the right

glLoadMatrixf(m)
glMultMatrixf(m)

Matrix Stacks
• In many situations we want to save
transformation matrices for use later

– Traversing hierarchical data structures (Chapter 10)
– Avoiding state changes when executing display lists

• OpenGL maintains stacks for each type of
matrix

– Access present type (as set by glMatrixMode) by
glPushMatrix()
glPopMatrix()

Reading Back Matrices
• Can also access matrices (and other parts of the

state) by query functions

• For matrices, we use as

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

double m[16];
glGetFloatv(GL_MODELVIEW, m);

Using the Model-view
Matrix

• In OpenGL the model-view matrix is used to
– Position the camera

• Can be done by rotations and translations but
is often easier to use gluLookAt

– Build models of objects
• The projection matrix is used to define the view

volume and to select a camera lens

Quaternions

• Extension of imaginary numbers from two to three
dimensions

• Requires one real and three imaginary components
i, j, k

• Quaternions can express rotations on sphere
smoothly and efficiently. Process:

– Model-view matrix → quaternion
– Carry out operations with quaternions
– Quaternion → Model-view matrix

q=q0+q1i+q2j+q3k

Computer Viewing

Ed Angel
Professor of Computer Science,

Electrical and Computer Engineering,
and Media Arts

University of New Mexico

Objectives

• Introduce the mathematics of projection
• Introduce OpenGL viewing functions
• Look at alternate viewing APIs

Computer Viewing
• There are three aspects of the viewing
process, all of which are implemented in the
pipeline,

– Positioning the camera
• Setting the model-view matrix

– Selecting a lens
• Setting the projection matrix

– Clipping
• Setting the view volume
•  (default is unit cube, R3, [-1,1])

Default Projection
Default projection is orthogonal

clipped out

z=0

2

Moving the Camera Frame
• If we want to visualize object with both positive and

negative z values we can either
– Move the camera in the positive z direction

• Translate the camera frame
– Move the objects in the negative z direction

• Translate the world frame
• Both of these views are equivalent and are
determined by the model-view matrix

– Want a translation (glTranslatef(0.0,0.0,-d);)
– d > 0

Moving the Camera
• We can move the camera to any desired
position by a sequence of rotations and
translations

• Example: side view
– Rotate the camera
– Move it away from origin
– Model-view matrix C = TR

OpenGL code

• Remember that last transformation specified
is first to be applied

glMatrixMode(GL_MODELVIEW)
glLoadIdentity();
glTranslatef(0.0, 0.0, -d);
glRotatef(90.0, 0.0, 1.0, 0.0);

The LookAt Function

• The GLU library contains the function gluLookAt to
form the required modelview matrix through a
simple interface

• Note the need for setting an up direction
• Still need to initialize

– Can concatenate with modeling transformations
• Example: isometric view of cube aligned with axes

glMatrixMode(GL_MODELVIEW):
glLoadIdentity();
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0., 1.0. 0.0);

gluLookAt
glLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy,
upz)

Other Viewing APIs

• The LookAt function is only one possible
API for positioning the camera

• Others include
– View reference point, view plane normal, view

up (PHIGS, GKS-3D)
– Yaw, pitch, roll
– Elevation, azimuth, twist
– Direction angles

OpenGL Orthogonal Viewing
glOrtho(left,right,bottom,top,near,far)

near and far measured from camera

OpenGL Perspective
glFrustum(left,right,bottom,top,near,far
)

Using Field of View
• With glFrustum it is often difficult to get the
desired view
• gluPerpective(fovy, aspect, near,
far) often provides a better interface

aspect = w/h

front plane

Projections explained differently

•  Read the following slides about orthogonal
and perspective projections by your selves

•  They present the same thing, but explained
differently

Projections and Normalization

• The default projection in the eye (camera) frame
is orthogonal

• For points within the default view volume

• Most graphics systems use view normalization
– All other views are converted to the default view by

transformations that determine the projection matrix
– Allows use of the same pipeline for all views

xp = x
yp = y
zp = 0

Homogeneous Coordinate
Representation

xp = x
yp = y
zp = 0
wp = 1

pp = Mp

M =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0000
0010
0001

In practice, we can let M = I and set
the z term to zero later

default orthographic projection

Simple Perspective

• Center of projection at the origin
• Projection plane z = d, d < 0

Perspective Equations
Consider top and side views

xp =

dz
x
/

dz
x
/

yp =
dz
y
/

zp = d

Homogeneous Coordinate Form

M =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0/100
0100
0010
0001

d

consider q = Mp where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

dz
z
y
x

/

q = ⇒ p =

Perspective Division
• However w ≠ 1, so we must divide by w to
return from homogeneous coordinates

• This perspective division yields

the desired perspective equations
• We will consider the corresponding clipping
volume with the OpenGL functions

xp =
dz
x
/

yp =
dz
y
/

zp = d

Normalization

• Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

• This strategy allows us to use standard
transformations in the pipeline and makes for
efficient clipping

Pipeline View

 modelview
transformation

 projection
transformation

perspective
 division

clipping projection

nonsingular
4D → 3D

against default cube 3D → 2D

Notes
• We stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

– Both these transformations are nonsingular
– Default to identity matrices (orthogonal view)

• Normalization lets us clip against simple cube
regardless of type of projection

• Delay final projection until end
– Important for hidden-surface removal to retain

depth information as long as possible

Orthogonal Normalization
glOrtho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert
specified clipping volume to default

Orthogonal Matrix
• Two steps

– Move center to origin
T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

– Scale to have sides of length 2
S(2/(left-right),2/(top-bottom),2/(near-far))

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+

−

−

+
−

−

−

−
−

−

1000

200

020

002

nearfar
nearfar

farnear

bottomtop
bottomtop

bottomtop

leftright
leftright

leftright

P = ST =

Final Projection
• Set z =0
• Equivalent to the homogeneous coordinate

transformation

• Hence, general orthogonal projection in 4D is

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0000
0010
0001

Morth =

P = MorthST

General Shear

top view side view

Shear Matrix
xy shear (z values unchanged)

Projection matrix

General case:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

1000
0100
0φcot10
0θcot01

H(θ,φ) =

P = Morth H(θ,φ)

P = Morth STH(θ,φ)

Effect on Clipping
• The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

top view

DOP DOP

near plane

far plane

object

clipping
volume

z = -1

z = 1

x = -1
x = 1

 distorted object
(projects correctly)

Simple Perspective
Consider a simple perspective with the COP (=center

of projection) at the origin, the near clipping plane at
z = -1, and a 90 degree field of view determined by
the planes

 x = ±z, y = ±z

Perspective Matrices

Simple projection matrix in homogeneous
coordinates

Note that this matrix is independent of the far
clipping plane

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 0100
0100
0010
0001

M =

Generalization

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 0100
βα00
0010
0001

N =

after perspective division, the point (x, y, z, 1) goes to

x’’ = x/z
y’’ = y/z
Z’’ = -(α+β/z)

which projects orthogonally to the desired point
regardless of α and β

Picking α and β
If we pick

α =

β =

nearfar
farnear

−

+

farnear
farnear2

−

∗

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume

Normalization Transformation

original clipping
 volume original object new clipping

 volume

distorted object
projects correctly

Normalization and
Hidden-Surface Removal

• Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z1 > z2 in the
original clipping volume then the for the
transformed points z1’ > z2’

• Thus hidden surface removal works if we first apply
the normalization transformation

• However, the formula z’’ = -(α+β/z) implies that the
distances are distorted by the normalization which
can cause numerical problems especially if the near
distance is small

OpenGL Perspective
• glFrustum allows for an unsymmetric
viewing frustum (although gluPerspective
does not)

OpenGL Perspective Matrix

• The normalization in glFrustum requires
an initial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally, the
perspective matrix results in needing only a
final orthogonal transformation

P = NSH

our previously defined
 perspective matrix

shear and scale

Why do we do it this way?

• Normalization allows for a single pipeline
for both perspective and orthogonal viewing

• We stay in four dimensional homogeneous
coordinates as long as possible to retain
three-dimensional information needed for
hidden-surface removal and shading

• We simplify clipping

