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Typical Exam Questions 
l Prev Lecture: 

–  Describe one intersection test for  
l  ray/triangle – (e.g. analytically, Jordans Cross theorem or 

summing angles) 
l  Ray/box (slabs) 
l  View Frustum Culling using spheres 

–  Culling – VFC, Portal, Detail,  
          Backface, Occlusion 
–  What is LODs 
–  Describe how to build and use BVHs, AABSP-

tree, Polygon aligned BSP-tree. 
–  Describe the octree/quadtree. 
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What is ray tracing? 
l Another rendering algorithm 

–  Fundamentally different from polygon 
rendering (using e.g., OpenGL) 

–  OpenGL 
l  renders one triangle at a time 
l  Z-buffer sees to it that triangles appear ”sorted” from 

viewpoint 
l  Local lighting   --- per vertex 

–  Ray tracing 
l Gives correct reflections! 
l Renders one pixel at a time 
l Sorts per pixel 
l Global lighting equation (reflections, shadows) 
 



What is the point of ray tracing? 
l Higher quality rendering 

–  Global lighting equation (shadows, reflections, 
refraction) 

–  Accurate shadows, reflections, refraction 
–  More accurate lighting equations 

l  Is the base for more advanced algorithms 
–  Global illumination, e.g., path tracing, photon 

mapping 
l  It is extremely simple to write a (naive) 

ray tracer 
l A disadvantage: it is inherently slow! 
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Some simple, ray traced images… 
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Again: it is simple to write a ray 
tracer!               A la Paul Heckbert 

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ 
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, 
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1., 
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A 
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* 
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt( 
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s= 
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s 
->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u: 
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; 
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return 
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen 
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l 
->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e 
,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta* 
eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt 
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, 
color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) 
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., 
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/ 



Which rendering algorithm will win 
at the end of the day? 
l  Ray tracing or polygon rendering? 
l  Ray tracing is: 

–  Slow 
–  But realistic 
–  Therefore, focus is on creating faster algorithms, and 

possible hardware acceleration (GPU, RPU) 
l  Polygon rendering (OpenGL) is: 

–  Fast (simple to build hardware) 
–  Not that realistic 
–  Therefore, focus is on creating more realistic images 

using graphics hardware 
l  Answer: right now,  it depends on what you 

want, but for the future, no one really knows  



Side by side comparison 
Images courtesy of Eric Haines 



To be physically correct, follow 
photons from light sources… 
l Not what we do for a simple ray tracer 

–  Though this is almost what we do for more 
advanced techniques (photon mapping) 

Light source Image plane 

l Not effective, not many rays will arrive at 
the eye 



This image was generated in 1991 by simulating 
the motion of 29.8 Billion photons in a room. 
The room is 2 meters cubed with a 30 cm 
aperture in one wall. The opposite and adjacent 
walls are mirrors, so this is a 'tunnel of mirrors'. 
The depth of field is very shallow. In the 
foreground is a prism, resting on the floor. A 
beam of light emerges from the left wall, goes 
through the prism and makes a spectrum on the 
right wall. About 1 in 177 photons made it 
through the aperture.  
 
The image took 100 Sun SparcStation1s 1 month 
to generate using background processing time. 
This represents 10 CPU years of processing time. 
If the lights are 25 watt bulbs this represents a 
few picoseconds of time.   

29.8 Billion photons 



Same image but with 382 Billion 
Photons 



Follow photons backwards from 
the eye: treat one pixel at a time 
l  Rationale: find photons that arrive at each pixel 
l  How do one find the visible object at a pixel? 
l  With intersection testing 

–  Ray, r(t)=o+td, against geometrical objects 
–  Use object that is closest to camera! 
–  Valid intersections have t > 0 
–  t is a signed distance 

Image plane 

Closest intersection point 



Finding closest point of 
intersection 
l Naively: test all geometrical objects in the 

scene against each ray, use closest point 
–  Very very slow! 

l Be smarter: 
–  Use spatial data structures, e.g.: 
–  Bounding volume hierarchies 
–  Octrees 
–  BSP trees 
–  Grids (not yet treated) 
–  Or a combination (hierarchies) of those 

l We will return to this topic a little later 



trace() and shade(): 
Recursion 

l  First call trace() to find first intersection 
l  trace() then calls shade() to compute 

lighting 
l  shade() then calls trace() for reflection and 

refraction directions 

trace() 

shade() 

Image plane 
light 

trace() 

shade() 

trace() 

Point is in shadow 



trace() in detail 
Color trace(Ray R) 
{ 

 float t;     
 bool hit; 
 Object O; 
 Color col; 
 Vector P,N; // point & normal at intersection point 
 hit=findClosestIntersection(R,&t,&O); 
 if(hit) 
 { 
  P=R.origin() + t*R.direction(); 
  N=computeNormal(P,O); 
  // flip normal if pointing in wrong dir. 
  if(dot(N,R.direction()) > 0.0) N=-N; 
  col=shade(t,O,R,P,N);   
 } 
 else col=background_color; 
 return col; 

} 



In trace(), we need a function 
findClosestIntersection() 
l  Use intersection testing (from a previous 

lecture) for rays against objects 
l  Intersection testing returns signed distance(s), 

t, to the object 
l  Use the t that is smallest, but >0 
l  Naive: test all objects against each ray 

–  Better: use spatial data structures (more later) 
l  Precision problems (exaggerated): 

point of intersection: p 

eye ray 

light 
The point, p, can be incorrectly 
self-shadowed, due to imprecision 
Solution: after p has been computed, 
update as: p’=p+εn   
(n is normal at p, ε is small number >0) 



Example of Surface Acne 

Image from Joe Doliner 



shade() in detail 
Color shade(Ray R, Mtrl &m, Vector P,N) 
{ 

 Color col; 
 Vector refl,refr; 
 for each light L 
 { 
  if(not inShadow(L,P)) 
   col+=DiffuseAndSpecular(); 

 
 } 
 col+=AmbientTerm(); 
 if(recursed_too_many_times()) return col; 
 refl=reflectionVector(R,N); 
 col+=m.specular_color()*trace(refl); 
 refr=computeRefractionVector(R,N,m); 
 col+=m.transmission_color()*trace(refr); 
 return col; 

} 



Who calls trace() or shade()? 
l  Someone need to spawn rays 

–  One or more per pixel 
–  A simple routine, raytraceImage(), computes rays, 

and calls trace()for each pixel. 

l Use camera parameters to compute rays 
–  Resolution, fov, camera direction & position & up 



When does recursion stop? 
l  Recurse until ray does not hit something? 

–  Does not work for closed models 
l  One solution is to allow for max N levels of 

recursion 
–  N=3 is often sufficient (sometimes 10 is sufficient) 

l  Another is to look at material parameters 
–  E.g., if specular material color is (0,0,0), then the object 

is not reflective, and we don’t need to spawn a reflection 
ray 

–  More systematic: send a weight, w, with recursion 
–  Initially w=1, and after each bounce, 

w*=O.specular_color();   and so on. 
–  Will give faster rendering, if we terminate recursion when 

weight is too small (say <0.05) 
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When to stop recursion 



Reflection vector (recap) 

l  Reflecting the incoming 
ray v around n: 

l  Note that the incoming 
ray is sometimes called 
–v depending on the 
direction of the vector. 

l  r can be computed as v
+(2a). I.e.,  

r = v− 2(n ⋅v)n

n 

v r 

v 

n ⋅ (−v)

a = (n ⋅ (−v))n

^ 



Refraction:  
Need a transmission direction vector, t 
l  n, i, t are unit vectors 
l  η1 & η2 are refraction indices 
l  Snell’s law says that: 

l  sin(θ2)/sin(θ1)= η1/η2  = η, where η is 
relative refraction index. 

l  How can we compute the 
refraction vector t ? 

l  This would be easy in 2D: 
–  tx=-sin(θ2)   
–  ty=-cos(θ2) 
–  I.e.,  
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Refraction:  

l  But we are in 3D, not in 2D!
l  So, the solution will look like: 

 instead of  
 where v2=n and v1 is 
perpendicular to n and lies in 
the reflection plane. 

l  Similar to how we computed 
the reflection ray, such a 
vector is 

 v1= -i – (-i�n)n = -i - cos(θ1)n 
    (also normalize v1) 
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Refraction:  

l  We also need to normalize the vectors to get 
unit vectors: 
–  v2= n, because n already normalised  
–  Normalized v1= v1 / || v1 ||, where  

l  Snell’s law gives: 
–  sin(θ2) = η sin(θ1) 
–  => θ2 = arcsin(η sin(θ1))   

l  We now have everything to compute  
–       where v1= -i + cos(θ1)n and v2=n. 

 
l  But let us continue simplifying… to avoid computing the 

expensive arcsin(θ2) and cos(θ2) 
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Refraction 
The plan is to remove the expensive sin(θ2) and 
cos(θ2) and express them by the cheap cos(θ1) 

l   Cheap, because cos(θ1)= -i�n which is a simple dot product 

By using: 
 sin(θ2) = η sin(θ1) 

  cos(θ2)2 + sin(θ2)2  = 1 
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Bonus 



Refraction:  
 
l  If we are smart, we realize from the 

trigonometric laws (see figure) that 
the length of v1 = sin(θ1) 
 I.e., || v1 || = sin(θ1) 

 
l  We already know that 

   = v1 / || v1  || = -(i+cos(θ1)n)/ sin(θ1) 
 v2= n (assuming that n is normalized) 

Thus:  t = sin(θ2)(i+cos(θ1)n)/ sin(θ1) 
  - cos(θ2)n 
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Refraction:  
 n 

-i 

t 

θ1

θ2 -cos(θ2)n 

sin(θ2)m 

η1

η2

l  t = sin(θ2) (i+cos(θ1)n)/sin(θ1) - cos(θ2)n  
l  Use Snell’s law:  

–  sin(θ2)/sin(θ1)= η1/η2  = η

l  i.e., t = ηi + (ηcos(θ1) - cos(θ2)) n   
cos(θ2) is still expensive to compute 

since: cos(θ2)=cos(arcsin(ηsin(θ1)) 
So we continue simplifying… 
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l  Simplify: cos(θ2) =sqrt[ 1 – η2(1-(cos(θ1))2) ] , since 
1.  Pythagorean theorem: cos(θ2)2

 = 1 - sin(θ2)2  
2.  Snell’s Law: sin(θ2) = η sin(θ1)   
3.  (1) + (2)2 gives: cos(θ2)2 = 1 - η2 (sin(θ1)2)
4.  (3) + (1)    gives: cos(θ2)2 = 1-η2 (1-cos(θ1)2)

Bonus 



Refraction 
l Thus: 

 t = ηi + (ηcos(θ1) - sqrt[ 1 – η2(1-(cos(θ1))2) ] )n 
 This is fast to compute since  
  cos(θ1)=-n.i 
 which only requires a simple dot product 

 

Bonus 
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Image with a refractive object 



Some refraction indices, η 
l  Measured with respect to vacuum 

–  Air: 1.0003 
–  Water: 1.33   
–  Glass: around 1.45 – 1.65 
–  Diamond: 2.42 
–  Salt: 1.54 
–  Lead (bly): 2.6 

l  Note 1: the refraction index varies with 
wavelength, but we often only use one index 
for all three color channels, RGB 

l  Note 2: can get Total Internal Reflection (TIR) 
–  Means no transmission, only reflection 
–  θ2 = arcsin(η sin(θ1))  
–  TIR occurs when |η sin(θ1)| > 1, i.e., arcsin() undefined 

n 

i t θ1θ2
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Supersampling 
l Evenly distribute ray samples over pixel 
l Use box (or tent filter) to find pixel color 
l More samples gives better quality 

–  Costs more time to render 

l Example of 4x4 samples against 1 
sample: 



Be a bit smarter, make it cheaper: 
Adaptive supersampling (1) 

l  Quincunx sampling pattern to start with  
–  2 samples per pixel, 1 in center,                                           

1 in upper-left 
–  Note: adaptive sampling is not feasible in                            

graphics hardware, but simple in a ray tracer 
l Colors of AE, DE are quite similar,                            

so don’t waste more time on those. 
l The colors of B & E are different, so                      

add more samples there with the same               
sampling pattern 

l  Same thing again, check FG, BG, HG, EG: 
only EG needs more sampling 

l  So, add rays for J, K, and L 



Adaptive supersampling 
(2) 
l  C & E were different too 
l  Add N & M 
l  Compare EM, HM, CM, NM 

l  C & M are too different 
l  So add rays at P, Q, and R 

l  At this point, we consider the entire 
pixel to be sufficiently sampled 

l  Time to weigh (filter) the colors of 
all rays 
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Adaptive supersampling (3) 
l Final sample pattern for pixel: 

l How filter the colors of the                     
rays? 

l Think of the pattern differently: 

l And use the area of each  ray 
sample as its weight: 



Adaptive Supersampling 
Pseudo code: 
Color  AdaptiveSuperSampling() { 

–  Make sure all 5 samples exist 
l  (Shoot new rays along diagonal if necessary)   

–  Color col = black; 
–  For each quad i 

l  If the colors of the 2 samples are fairly similar 
–  col += (1/4)*(average of the two colors) 

l  Else  
–  col +=(1/4)* adaptiveSuperSampling(quad[i]) 

–  return col; 
} 



Caveats with adaptive 
supersampling (4) 
l May miss really small objects anyway 
l  It’s still supersampling, but smart 

supersampling 
–  Cannot fool Nyquist! 
–  Only reduce aliasing – does not eliminate it 



Antialiasing - example 



Patterns 
l Texture zoomed out until square < 1 pixel 



Moire example 

Noise + gaussian blur 

(no moire patterns) 

Moire patterns 



Why 

“Moiré effects occur whenever tiny image structures (like the 
pattern on a shirt) can not be resolved sufficiently by the 
resolution of the image sensor. According to the Nyquist 

theorem, each period of an image structure must be covered 
with at least two pixels. When this is not the case, Moiré 
effects are the consequence. To avoid Moiré Effects the 
manufacturers of CCD camera systems use a filter that 

diffuses the light hitting the sensor area in such a way that it 
corresponds to the resolution of the ccd. “ 



Ulf Assarsson © 2008 
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Jittered sampling 

l Works as before 
–  Replaces aliasing with noise 
–  Our visual system likes that better 

l This is often a preferred solution 
l Can use adaptive strategies as well 



Typical Exam Questions 
l  Describe the basic ray tracing algorithm (see next slide) 
l  Compute the reflection + refraction vector 

–  You do not need to use Heckbert’s method 

l  Describe an adaptive super sampling scheme  
–  Including recursively computing weights  

l  What is jittering? 

Ulf Assarsson © 2008 

Pseudo code: 
Color  AdaptiveSuperSampling() { 

–  Make sure all 5 samples exist 
l  (Shoot new rays along diagonal if necessary)

  
–  Color col = black; 
–  For each quad i 

l  If the colors of the 2 samples are fairly similar 
–  col += (1/4)*(average of the two colors) 

l  Else  
–  col +=(1/4)* adaptiveSuperSampling(quad[i]) 

–  return col; 
} 
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Summary of the Ray tracing-
algorithm: 

l  main()-calls trace() for each pixel 
l  trace(): should return color of closest hit point along ray.  

1.   calls findClosestIntersection()  
2.   If any object intersected → call shade(). 

l  Shade(): should compute color at hit point  
1.  For each light source, shoot shadow ray to determine if light source is visible  

If not in shadow, compute diffuse + specular  contribution. 
2.  Compute ambient contribution 
3.  Call trace() recursively for the reflection- and refraction ray. 

trace() 

shade() 

Image plane 
light 

trace() 

shade() 

trace() 

Point is in shadow 

07 + 08. Ray Tracing 



Real-Time Ray Tracing 
l  Low level optimizations 

–  SSE, GPU 
–  Precomputation of constants per frame, e.q., ray-AABB 

test, primary rays 

l  Low resolution (320x200 – 640x400) 
l  Adaptive sub sampling 
l  Frameless rendering (motion blur) 
l  Others, like reprojection, reuse shading 

computations, simple shadows, single-level 
reflections... 

DEMO 



Frameless Rendering – updating e.g. only10% of all pixels each frame 



Reprojec(on	
  

(r,g,b) and (x,y,z) 
per pixel 

(x´,y´,z) reprojected 
but same (r,g,b) 

•  Gaps 
•  pixel with <1 sample 

Ø  trace new ray 
•  pixel with >=1 sample 

Ø  use closest (smallest z) 
•  Does not work for spec 
   mtrl 
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