Ray lracing I:
Switching gears...



CHALMERS

For your convenience

e Half-Time

Anmalningskod (for www.studera.nu): CTH-23630 s adits —
Examiner:

uffe@ce.chalmers.se
S l I I I l I I l al Home Schedu Literature Tutorials Exam
SCHEDULE:
[} = Alllectures are in ED, located in the EDIT-building at Campus Johanneberg
S llde S = for lecture hall and tutorial rooms

Lectures

Mondays 13-15 in HB1, week 5-7

Wednesdays 13-15 in HB1, week 1-7.

Fridays 13-15 in HC3, week 1-7.

The following plan may change during the course. The links for the Bonus-OH are located under the table.
Bonus material is simply non-compulsory additional material that is fun or highlighting for the interested reader.
The column "Tutorial” states when it is wise to start working on the corresponding tutorial.

Losenordsskyddade bonusfiler packas upp med Isenord "datorgrafik”.

All self-studies below are non-compulsory

NOTE: If you are using the 2:nd edition of Real-Time Rendering, for the compulsory RTR-chapter hints, see last year's schedule

Lecture |[Readings/Lasanvisningar |[Tutorial |[Deadlines

week 1 | | |
Compulsory: RTR chapter 2, ch 15.2.

Wed. lecture 1 -
Introduction +

Pipeline and OpenGL |[BONUS: 1116, i -the testapplicat‘i:z;\hshown atlecture,
Self studies -
Languages (non- - Read briefly in and only if you find itinteresting
e o o

Compulsory: \ ,RTR ch: 14: 14.1 (skip 14.1.4), 14.2,14.3, 144,145,
Fri. lecture 6 - 14.6 (skip 14.6.1, 14.6.2, 14.6.3), 14.7 RTR ch: 16 (skip: 16.1, 16.4, 16.7.2, 16.7.3, 16.10.2,
Intersections and 16.11,16.12,16.13.4, for 16.13.5 — see Sep Axis Theorem in slides, 16.14.1, 16.15,
Spatial data 16.17), 16.14 briefly.
structures

Bonus: OH 309-320
Self studies |[Bonus: , OH 17-26, OH 65-79 och OH 281-282. | |
e — ——
week 4 | | |

\Wed lecture 7 - Ray

Tracing 1

Self studies: Textures
in Art of lllusion and  |[Bonus: OH 175-200
Perlin-noise
Fri. lecture 8 - Ray

Tracing 2

% o B ol o Bl 1 1 1

Tutorial 2 ‘




Typical Exam Questions

e Prev Lecture:

- Describe one intersection test for
e ray/triangle — (e.g. analytically, Jordans Cross theorem or

summing angles)
:H:/ e Ray/box (slabs)
¢ e View Frustum Culling using spheres
(\

|
- _ Culling — VFC, Portal, Detail,
Backface, Occlusion

_ What is LODs ..

— Describe how to build and use BVHSs, AABSP-
tree, Polygon aligned BSP-tree.

- Describe the octree/quadtree.




What is ray tracing?

e Another rendering algorithm
- Fundamentally different from polyg
rendering (using e.g., OpenGL) :
- OpenGL

e renders one triangle at a time
e Z-buffer sees to it that triangles appear "so

viewpoint
e Local lighting --- per vertex
- Ray tracing
e Gives correct reflections!
e Renders one pixel at a time
e Sorts per pixel
e Global lighting equation (reflections, shadows)




What is the point of ray tracing?
e Higher quality rendering

- Global lighting equation (shadows, reflections,
refraction)

— Accurate shadows, reflections, refraction
- More accurate lighting equations

e |s the base for more advanced algorithms
— Global illumination, e.g., path tracing, photon
mapping
e |t is extremely simple to write a (naive)
ray tracer

e A disadvantage: it is inherently slow!



" -~

ple, ray traced images..







Again: it is simple to write a ray
tracer! A la Paul Heckbert

typedef struct{double x,y,z} vec;vec U,black,amb={.02,.02,.02} ;struct sphere {

vec cen,color;double rad,kd, ks, kt,kl,ir} *s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1..5.,0.,0.,0.,.51 _5,};§7Y;dnuh]e u,h,tmin}Sqrt(),mn();dnuh]e VdOt(A,R)VQC A

,B;{return A x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A .x;B.y+t=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(

vdot(A,A)),A,black);} struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s
->rad,u=u>07sqrt(u):1e31,u=b-u>1e-7?7b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:

tmin;return best; } vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;

struct sphere*s, *L;if(!level--)return black;if(s=dntersect(P,D));else return
amb;color=amb;eta=s->1ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));1f(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=]
->kl*vdot(N,U=vunit(vcomb(-1.,P,I->cen))))>0&&intersect(P,U)==l)color=vcomb(e
,I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*
eta*(1-d*d);return vcomb(s->kt,e>07trace(lzvel,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->ks trace(Iovel,P,vcomb(2*d,N,D)),vcomb(s->kd,

color,vcomb(s->kl,U,black))));} main() {printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U); } /*minray!*/




Which rendering algorithm will win
at the end of the day?

e Ray tracing or polygon rendering?
e Ray tracing is:
- Slow
— But realistic
- Therefore, focus is on creating faster algorithms, and
possible hardware acceleration (GPU, RPU)
e Polygon rendering (OpenGL) is:
- Fast (simple to build hardware)
— Not that realistic

- Therefore, focus is on creating more realistic images
using graphics hardware

e Answer: right now, it depends on what you
want, but for the future, no one really knows



Side by side com g,JrLJn
Images courtesy of Eric Haines




To be physically correct, follow
photons from light sources...

e Not what we do for a simple ray tracer

— Though this is almost what we do for more
advanced techniques (photon mapping)

Image plane Light source

<

e Not effective, not many rays will arrive at
the eye






Same image but with 382 Billion
Photons




Follow photons backwards from
the eye: treat one pixel at a time

e Rationale: find photons that arrive at each pixel
e How do one find the visible object at a pixel?
e \With intersection testing

- Ray, r(f)=o+td, against geometrical objects

- Use object that is closest to camera!

— Valid intersections have > 0

— tis a signed distance
Image plane

S

Closest intersection point



Finding closest point of
intersection

e Naively: test all geometrical objects in the
scene against each ray, use closest point
- Very very slow!
e Be smarter:
— Use spatial data structures, e.g.:
- Bounding volume hierarchies
— Octrees
- BSP trees
— Grids (not yet treated)
— Or a combination (hierarchies) of those

e \We will return to this topic a little later



trace () and shade () :

ReC urs | on Point is in shadow
light

Image plane ,\trace ()
E ~shade ()

1 trace()

<

trace ()

e First call trace () to find first intersection

e trace () then calls shade () to compute
lighting

e shade () then calls trace () for reflection and
refraction directions




trace () In detail

Color trace (Ray R)
{
float t;
bool hit;
Object O;
Color col;
Vector P,N; // point & normal at intersection point
hit=findClosestIntersection (R, &t, &0) ;
if(hit)
{
P=R.origin() + t*R.direction();
N=computeNormal (P,O) ;
// flip normal if pointing in wrong dir.
if (dot(N,R.direction()) > 0.0) N=-N;
col=shade(t,O,R,P,N) ;
}
else col=background color;
return col;



In trace (), we need a function
findClosestIntersection ()

e Use intersection testing (from a previous
lecture) for rays against objects

e Intersection testing returns signed distance(s),
t, to the object

e Use the ¢ that is smallest, but >0

e Naive: test all objects against each ray
- Better: use spatial data structures (more later)

e Precision problems (exaggerated):

light : :
The point, p, can be incorrectly

< self-shadowed, due to imprecision
Cy€ ray Solution: after p has been computed,
update as: p’=p+en
point of intersection: (n is normal at p, ¢ is small number >0)



N [ ' a -H Ny "-r o o - a
CXampie or surrace Acne




shade () In detail

Color shade (Ray R, Mtrl &m, Vector P, N)
{
Color col;
Vector refl, refr;
for each light L
{
if (not inShadow(L,P))
col+=DiffuseAndSpecular() ;

}
col+=AmbientTerm() ;

if (recursed too many times()) return col;
refl=reflectionVector (R,N) ;
col+=m.specular color() *trace(refl);
refr=computeRefractionVector (R,N,m) ;
col+=m.transmission color () *trace (refr);
return col;



Who calls trace () or shade () ?

e Someone need to spawn rays
— One or more per pixel

- A simple routine, raytracelImage (), computes rays,
and calls trace () for each pixel.

4

[/ S/

N

' S S S

/

[ [/

[ S S S

N
™
N
N
N

/

[/ S/
[ /S S S

N
™
IS
N
N
N

N
N
N
N
N

[/ [/

S

N

N
e Use camera parameters to compute rays
- Resolution, fov, camera direction & position & up



When does recursion stop?

e Recurse until ray does not hit something?
— Does not work for closed models

e One solution is to allow for max N levels of

recursion
- N=3 is often sufficient (sometimes 10 is sufficient)

e Another is to look at material parameters
- E.qg., if specular material color is (0,0,0), then the object
IS not reflective, and we don’t need to spawn a reflection
ray
- More systematic: send a weight, w, with recursion
— Initially w=1, and after each bounce,
w*=0.specular_color(); and so on.

— WiIll give faster rendering, if we terminate recursion when
weight is too small (say <0.05)



When to

L
Yo ¢
.('." . |
...n‘ '\‘ :
: R ‘]
2 B iy ”
. 1 o X .
:.‘lkl" ! O t- ;
ol ™. . o |
PR &
AR Ly (s TPRRALLE LT S e e
[Chies raa e EAN A
AT TSy v - :
il T — LN
- "UA’,-. vy o ¢ Vi o
) L & e R e i
..d'.\-wnr\?'s,' vride oy o g R .",,
'Y.'(' ! "" \ iy 4 '." ‘,lb«l." ~ f-‘ 1
WAL O YA o v N el e
4 gL ) ~
}" \',.-‘ .‘,“\' N N\-)-w e e -.—u

d--"*
( . 2
g ® -

»-“ Sa

e

v
.)!' 'v (-‘5‘.'..

;{.'_"‘J_A"_{.“f-‘f
ARRARARN A

..'r‘,lr‘lh 9 e e ' .
AV T »q o q‘ s ' > :‘
LA ""‘.‘ P A “
L ) ‘

: ¥y

: <~
.'.w'. v

-
£
o

.4.’. i !.‘ » ‘.‘._.._>.'

N Ny At
' g‘\,' VLA N .’»"
o A ,‘ rz P ¢ (R

: ¥
i -~ ~ ‘-(»-:.Q Ve N
\'.‘u"" .’ SRV ¥
LY RLATS 8 e )y 22 .
",'.U ~I. * -’“:’ "{’ A . ] o
YU S 2 S N L g 7 ]
- ! - A nA v “ '/ > _’



Reflection vector (recap)

e Reflecting the incoming
ray v around n: S

e Note that the incoming
ray is sometimes called
—v depending on the v
direction of the vector.

e rcan be computed as v ElelCHGAINL

+(2a). l.e.,




Known as Heckbert’s method

Refraction:
Need a transmission direction vector, t

e n, i, t are unit vectors

e 1, & m, are refraction indices

e Snell's law says that: ﬁx/:i

e sin(0,)/sin(8,)=N,/M, =M, Where n is
relative refraction index.

e How can we compute the
refraction vector t ?

. . 2D np“
e This would be easy in 2D:
_ t=-sin(0,) 0 -l
P lw'[
- l.e., t = —sin(f, )X —cos(b,)y .

m




Known as Heckbert’s method

__________________________

Refraction:

e But we are in 3D, not in ZD!
e So, the solution will look like:

where v,=n and v, is
perpendicular to n and lies in "
the reflection plane.

e Similar to how we computed 0, i
the reflection ray, such a
vector is

V.= -i — (-i*n)n = -i - cos(6,)n
(also normalize v,)




Known as Heckbert’s method

Refraction:

e \We also need to normalize the vectors to get
unit vectors:
— V,= N, because n already normalised

- Normalized v=v, /|| v4 ||, where [ZES sk
e Snell’s law gives:

- sin(6,) = n sin(0,)

- =>0, = arcsin(n sin(6,))
e \We now have everything to compute

- [EESCAYAICAA \Where v,= -i + cos(0;)n and v,=n.

So we could concider us done

e But let us continue simplifying... to avoid computing the
expensive arcsin(6,) and cos(6,)



Bonus

Refraction

The plan is to remove the expensive sin(6,) and
cos(6,) and express them by the cheap cos(6,)

e Cheap, because cos(6,)= -i*n which is a simple dot product
By using:
sin(6,) = n sin(0,)
cos(6,)? + sin(B,)? =



Bonus Refraction: v, M

e If we are smart, we realize from the 0, -
trigonometric laws (see figure) that
the length of v, = sin(0,)

l.e., || v4 || = sin(B,)

e \We already know that

t = —sin(6,)V, —cos(6,)V, LB
=v, /|| v4 || = -(i+cos(6,)n)/ sin(0,) n|
V,= n (assuming that n is normalized) : 0,
Thus: t = sin(0,)(i+cos(6,)n)/ sin(6,)

- cos(0,)n

Known as Heckbert’s method




Bonus Refraction:

Known as Heckbert’s method

m

e t=sin(0,) (i+cos(6,)n)/sin(6,) - cos(B,)n SIN(B2)mM Vi
e Use Snell’s law

S | ...
e i.e.,, t=mi+ (ncos(6,)-cos(6,)) n

- sin(B,)/sin(84)= 1,/M, =

cos(0,) is still expensive to compute
since: cos(0,)=cos(arcsin(msin(0,))

So we continue simplifying...

e Simplify: cos(6,) =sqrt[ 1 —n?*(1-(cos(64))?) ], since
1. Pythagorean theorem: cos(6,)?= 1 - sin(6,)?
2. Snell's Law: sin(6,) =1 sin(6,)
3. (1) + (2)2 gives: cos(0,)? =1 - 12 (sin(0,)?)
4. (3)+ (1) gives: cos(0,)? =1-n2 (1-cos(0,)?)



Bonus

Refraction

e [hus:
t =i + (Ncos(8,) - sartf 1 -n2(1-(cos(8,))?) 1)n
This is fast to compute since
cos(04)=-n1
which only requires a sitmple dot product

L L
n

91/:i

A



-
—

.

H
o

Image with a refractivg object




Some refraction indices, n

e Measured with respect to vacuum
— Air: 1.0003
- Water: 1.33

- Glass: around 1.45 - 1.65 V
— Diamond: 2.42
— Salt: 1.54

- Lead (bly): 2.6

e Note 1: the refraction index varies with
wavelength, but we often only use one index
for all three color channels, RGB

e Note 2: can get Total Internal Reflection (TIR)
- Means no transmission, only reflection
- 0, = arcsin(n sin(0,))
- TIR occurs when |n sin(64)| > 1, i.e., arcsin() undefined




As the angle of incidence increases from 0 to greater angles ...

...the refracted ray becomes dimmer (there is less refraction)
...the reflected ray becomes brighter (there is more reflection)

...the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.




Supersampling III

e Evenly distribute ray samples over pixel
e Use box (or tent filter) to find pixel color

e More samples gives better quality
— Costs more time to render

e Example of 4x4 samples against 1
sample:



Be a bit smarter, make it cheaper:
Adaptive supersampling (1)

e Quincunx sampling pattern to start with

- 2 samples per pixel, 1 in center,
1 in upper-left

- Note: adaptive sampling is not feasible in
graphics hardware, but simple in a ray tracer

® Colors of AE, DE are quite similar,
so don’t waste more time on those.

® The colors of B & E are different, so
add more samples there with the same

sampling pattern
® Same thing again, check FG, BG, HG, EG:

only EG needs more sampling
® So, add rays for J, K, and L




Adaptive supersampling
v
e C & E were different too

e Add N & M
e Compare EM, HM, CM, NM

® C & M are too different
® So add rays at P, Q, and R

® At this point, we consider the entire
pixel to be sufficiently sampled

® Time to weigh (filter) the colors of
all rays




Adaptive supersampling (3)E

e Final sample pattern for pixel:

® How filter the colors of the
rays?
® Think of the pattern differently:

® And use the area of each ray

sample as 1ts weight:

1 (A+E , D+E _1 L+K E+K}
s (A2 + 20 | ]

1
+3[2+2+2+4

E+M . H+M _ N+M 1{M+Q P+Q , C+Q R+Q}]

2 T2 T2 tT



Adaptive Supersampling

Pseudo code:
Color AdaptiveSuperSampling() {

- Make sure all 5 samples exist
e (Shoot new rays along diagonal if necessary)

— Color col = black;

- Foreach quadi
e If the colors of the 2 samples are fairly similar
— col += (1/4)*(average of the two colors)
e Else
— col +=(1/4)* adaptiveSuperSampling(quad[i])

— return col;



Caveats with adaptive
supersampling (4)

e May miss really small objects anyway

e It's still supersampling, but smart
supersampling
— Cannot fool Nyquist!
— Only reduce aliasing — does not eliminate it



- example

lasing

Antial

-

>
"

voiC

4

-




Patterns

e Texture zoomed out until square < 1 pixel




Moire example

|

D ‘ \\\\\.‘.\\‘.*{:” AR
% 7/ Z // i il

7

?

’
1/,
177
"/’//’/ ,//’/"rz
/',I g

", P ~ )
» _ - - y
— o V)Y

; ‘, ’
il f, ' /
g NI
i i ‘ /I
( ‘ T //‘ll
1) ' ;‘ iI’'1
f E ' | :‘ ’
i i ; 'l/‘,
: ‘l".'o',
. ' i "‘,‘
‘ " 1
. " 4]1 11 ' ",‘.
e ~ -'n. 1S 11 :
M i \‘.‘\' \.h .
Wi : “\‘\‘\-\'I
1 . . 1\ '\ A\
. A .
: \ ) : ‘ (\\‘\“\
1 ) M . \'\\\

F
’/,I,t'/ ; ‘ |
//’ Wit
A I
‘ ; |
: sl
: : : :

e ,, /’/’ "' ’,,«/ (l;,//l "
// _ i
'S/
A

Moire patterns Noise + gaussian blur

(no moire patterns)



Why

Moiré Effekt /

“Moiré effects occur whenever tiny image structures (like the
pattern on a shirt) can not be resolved sufficiently by the
resolution of the image sensor. According to the Nyquist

theorem, each period of an image structure must be covered
with at least two pixels. When this 1s not the case, Moiré
effects are the consequence. To avoid Moiré¢ Effects the
manufacturers of CCD camera systems use a filter that
diffuses the light hitting the sensor area in such a way that it
corresponds to the resolution of the ccd. “



VAT AY YT
S i .." ")
i "u.l. .
Tnian 110N vt : .
) "“u.'-"H;.. :t't'l ..... A
.."‘«-“‘]”h' 13 ‘-1"“”|' LU
M i WYY
My M It 1..;. AR AR
I A AR AL L LR
S gy ') 11 Al 1) . . : N
*"-'.-"'1'.'.".f.'."""“.'L‘H.'II.I‘H ! LA RTE LY RRLUARARARNARNANANS







Jittered sampling

e \Works as before
- Replaces aliasing with noise
— Our visual system likes that better

e This is often a preferred solution
e Can use adaptive strategies as well



Typical Exam Questions

e Describe the basic ray tracing algorithm (see next slide)

e Compute the reflection + refraction vector
-~ You do not need to use Heckbert's method

e Describe an adaptive super sampling scheme
— Including recursively computing weights

e What is jittering?

Pseudo code:

Color AdaptiveSuperSampling() {
- Make sure all 5 samples exist
e (Shoot new rays along diagonal if necessary)

Color col = black;
For each quad i
e |[f the colors of the 2 samples are fairly similar
- col += (1/4)*(average of the two colors)
e Else
- col +=(1/4)* adaptiveSuperSampling(quadli])

return col;



07 + 08. Ray Tracing
Summary of the Ray tracing-

a]_go rithm: " Point is in shadow
1ght
Image plane 2 trace()
< ; shade ()
E — trace ()

(ﬁﬁ&;
N

e main()-calls trace() for each pixel

e trace(): should return color: of closest hit point along ray.
1. calls findClosestintersection()
2. If'any object intersected — call shade().

e Shade(): should compute color at hit point

1. For each light source, shoot shadow ray to determine if light source is visible
If not in shadow, compute diffuse + specular contribution.
2. Compute ambient contribution

3. Call trace() recursively for. the reflection- and refraction ray.



Real-Time Ray Tracing

e Low level optimizations
- SSE, GPU

- Precomputation of constants per frame, e.q., ray-AABB
test, primary rays

e Low resolution (320x200 — 640x400)
e Adaptive sub sampling
e Frameless rendering (motion blur)

e Others, like reprojection, reuse shading
computations, simple shadows, single-level

reflections...
DEMO



Frameless Rendering L updating e.g. only10% of all pixels each frame



Reprojection

(ragab) and (X9Y9Z)
per pixel

(x",y’,z) reprojected
but same (r,g,b)

2N

* Gaps
* pixel with <I sample
» trace new ray
* pixel with >=1 sample
» use closest (smallest z)
* Does not work for spec

mtrl






