Intersection Testing
I = me==is = semy Chapter 16

1.7." i =i y/ '/{;'-i' "“ dr 1
e 002120 ,&?ﬁq,‘ ;M,\QQ 5% 005 conso

— RS

trace ray

screen-Pixels shadows

Department of Computer
Engineering

Chalmers University of
Technology

Tutorial7 [
Two options: =
e Default:

- 3D World + 3DSMax Design tutorial:

e Your own render engine

or

e Optionally, on your risk: '
— Path tracing lab

e The most recent way to
implement path tracing.

— Autodesk’s way
(Erik Sintorn 6 months internship).

nnnnnnnnn

What for?

e A tool needed for the graphics people all the
time...

e Very important components:
-~ Need to make them fast!

e Finding if (and where) a ray hits an object
— Picking
- Ray tracing and global illumination

e For speed-up techniques
e Collision detection (treated in a later lecture)

g s

E S

=T

- M-, =

,imi!\'.i\!

b 4™

— o
- - P 4
- = o ~ W - "2
- p— v e
2 =
WJ??‘A’ =)
3 = -
- X L= Z— ;
= . - u
—— P -
—

Midtown Madness 3, DICE

Some basic geometrical primitives

e Ray:

e Sphere: Q

e Box
— Axis-aligned (AABB)

_ Oriented (OBB) &

e k-DOP +4
£ N
)/

N\
N/
N

Four different techniques

e Analytical

e Geometrical

e Separating axis theorem (SAT)
e Dynamic tests

e Given these, one can derive many tests
quite easily

- However, often tricks are needed to make them
fast

Analytical: q
Ray/sphere test

e Sphere center: ¢, and radius r

e Ray: r(r)=o+td @
e Sphere formula: ||p-c||=r

e Replace p by r(7), and square it:
(r(t)-c)-(r(t)-c)-r> =0

(0+td—c)-(o+td—c)—-r" =0

(td+(0-c¢)) (td+(0-c¢)) —7r> =0
(d-d)t* +2((0-¢)-d)t+(0-c¢)-(0-¢c)—-r" =0
t*+2((o-c¢)-d)t+(0-¢)(0-¢c)-r=0 | d|=1

Analytical, continued
t*> +2((0-c)-d)t+(0—c) (0 - c) r’ =0

45

e Be a little smart.. /

(0—¢):d>07?
(0-¢)-(0-¢)-r" <0 ? g
e Such tests are called '
e Other shapes: [Z2E32
(p,/a) +(p,/b)" +(p./c

(p./a)’ +(p,/b)*—p. =0

Geometrical:
Ray/Box Intersection

e Boxes and spheres often used as
bounding volumes

e A slab is the volume betweeW
parallell planes: /

e A box is the logical intersection of three
slabs (2 in 2D):

BOX

Geometrical:
Ray/Box Intersection (2)

e Intersect the 2 planes of each slab with
the ray

e Keep max of #*and min of ¢
o |f n < fmaxthen we got an intersection

e Special case when ray parallell to slab

Separating Axis Theorem (SAT)
Page 563 in book

e Two convex polyhedrons, A and B, are
disjoint if any of the following axes
separate the objects:

— An axis orthogonal to a face of A
— An axis orthogonal to a face of B

- An axis formed from the cross product of one
edge from each of A and B

-

axis

A and B overlaps on this axis

SAT example:
Triangle/Box

e E.g an axis-aligned box and a triangle

e 1) test the axes that are orthogonal to the
faces of the box

e Thatis, x,y,and z

v

Triangle/Box with SAT (2)

e Assume that they overlapped on x,y,z
e Must continue testing
e 2) Axis orthogonal to face of triangle

axis

Triangle seen from side

Triangle/Box with SAT (3)

e |f still no separating axis has been found...
e 3) Test axis: t=e,,, X €,y

e Example:
- x-axis from box: e, .=(1,0,0)
- e‘[ri.':mgle=Vl-VO

e [est all such combinations

e If there is at least one separating axis,
then the objects do not collide

e Else they do overlap

Rules of Thumb for.
Intersection Testing

e Acceptance and rejection test
- Try them early on to make a fast exit

e Postpone expensive calculations if
possible

e Use dimension reduction

- E.g. 3 one-dimensional tests instead of one
complex 3D test, or 2D instead of 3D

e Share computations between objects if
possible

e Timing!!!

Another analytical example: Ray/

Triangle in detalil
\b.

e Ray: r(¢)=o+td

: : : \ \%
e [riangle vertices: v,, v,, v, v, -V,
e A point in the triangle: /

1
1~V

® t(u,v)=vytu(v,-vy) tw(v,-v,)= Yo
=(1-u-v)vytuv,+vv, [u,v>=0, u+v<=I]

e Set t(u,v)=r(r), and solve!

det(s, ;. ¢,)
det(-d,s,e,)
det(-d,e,,s)

| | (! |
-d v,-v, v,=-v,[lu|=|0-V,
A |

det(s, ;. ¢,)
det(-d,s,e,)
det(-d,e,,s)

1

ul=—-—#¥———
det(_da €.,¢,)

Use thisfact: det(a,b,c)=(axb)-¢c=—-(axc)-b

e Share factors to speed up computations

Ray/Triangle (3)
Implementation

e Be smart!
- Compute as little as possible. Then test

e Examples: JEl
a=p-¢
f=1/a

e Compute
e [hen test valid bounds

@ 1f (u<0 or u>l) exit;

Plane: 7:n'p+d=0

Point/Plane

e Insert a Eoint x Into plane equation:

f(x)=n-x+d =0 forx'son the plane

Negative
half space

f(x)=n-x+d <0 forx'son oneside of the plane
f(x)=n'x+d >0 forx'son the other side

Positive
half space

origin

2

Plane: 7:n'p+d=0

Sphere/Plane Sphere: ¢ r
Box/Plane AABB: b™ B

e Sphere: compute

e /(c) Is the signed distance (n normalized)
e abs(f(¢c))>r no collision

e abs(f(¢c))=r sphere touches the plane
e abs(f(¢))<r sphere intersects plane

e Box: insert all 8 corners

e If all /'s have the same sign, then all
points are on the same side, and no
collision

Plane: 7:n'p+d=0

Sphere: ¢ r
AABB/plane Box: b™ pme

e The smart way (shown in 2D)

e Find the two vertices that have the most
positive and most negative value when tested

againt the plane

Vs = (n, > O)?bmaxl‘_ :
Voo, =@, >0)?b,,

Vs =M >0)?b, . :

Need only test
the red points

A (n, < 0)?bmaxx :
Vieg, = (n, < O)?bmax_\, :

Vnegz = (nz S O)?bmaxz :

OBB almost as easy. Just first project
n on OBB’s axes — see p: 757

Ray/Polygon: very briefly

e Intersect ray with polygon plane
e Project from 3D to 2D °
e How?

e Find max(|n,|,|n,|,|n|)

e Skip that coordinate!
e Then, count crossing in 2D

If:
any of object A’s (X,y,2),,;, are larger
than object B’s (X,¥,2) .«

Volume/Volume tests -

any of object B’s (X,y,z) ,,;, are larger
than object A’s (X,¥,Z) 1ax
then there is no intersection.

o Used In CO”ISIOn deteCthn Otherwise there is.
e Sphere/sphere

- Compute squared distance between sphere
centers, and compare to (r,+r,)?

e Axis-Alignhed Bounding Box (AABB)

— Testin 1D for x,y, and z -

A Xmaxﬂymax

e Oriented Bounding boxes , — B
- Use SAT [detalils in book]

View frustum testing

e View frustum is 6 planes:
e Near, far, right, left, top,

e Create planes from projection matrix
- Let all positive half spaces be outside frustum
-~ Not dealt with here --p. 773-774, 3rd ed.

e Sphere/frustum common approach:

- Test sphere against each of the 6 frustum planes:
e If outside the plane => no intersection
e [f intersecting the plane or inside, continue

— If not outside after all six planes, then conservatively
concider sphere as inside or intersecting

e Example follows...

View frustum testing example

/)//outside)/’/
\/ \/

4—

\

frustum —

—> -« —>

~— intersecting

frustum

\ \

e Not exact test, but not incorrect
— A sphere that is reported to be inside, can be outside
— Not vice versa

e Similarly for boxes

Dynamic Intersection Testing
[In book: 620-628]

e Testing is often done every rendered
frame, i.e., at discrete time intervals

e Therefore, you can get "quantum effects”
Frame n Frame n+1
e Dynamic testing deals with this

e IS more expensive

e Deals with a time interval: time between
WY eRIEINER

Dynamic intersection testing
Sphere/Plane

I=n : :
_‘@\V s. & s, are signed distances

e No collision occur: e

- If they are on the same side of the plane (s.s,>0)
e and: |s |>r and |s, |>r

e Otherwise, sphere can move |s |-r
e Time of collision: [t

S, =S

c e

e Response: reflect v around n, and move

(1-z.)r (r=refl vector)

BONUS
Dynamic Separating Axis Theorem

e SAT: tests one axis at a time for overlap

...........

e Same with DSAT, but:

- Use a relative system where B is fixed
- l.e., compute A's relative motion to B.

- Need to adjust A’s projection on the axis so that the interval
moves on the axis as well

e Need to test same axes as with SAT

e Same criteria for overlap/disjoint:
- If no overlap on axis => disjoint

— If overlap on all axes => objects overlap

BONUS
Dynamic Sweep-and-Prune

e http://graphics.idav.ucdavis.edu/~dcoming/papers/coming_staadt_vriphys05.pdf

Exercises

e Create a function (by writing code on
paper) that tests for intersection between:
- two spheres
— aray and a sphere
- view frustum and a sphere

Scan Line Fill

Aya_________ A

Set active edges to AB and AC /‘
Fory=A.y, A.y-1,....Cy . .
If y=B.y — exchange AB with BC BV |

Compute xstart and xend.
Interpolate color, depth, texcoords
etc for points (xstart,y) and Cy

(xend,y) xstart xend
For x = xstart, xstart+1, ...,.xend

Compute color, depth etc for
(X,y) using interpolation. This is one modern
way to rasterize a
triangle

Using Interpolation

C, C, C; specified by glColor or by vertex shading
C, determined by interpolating between C, and C,
C, determined by interpolating between C, and C;
interpolate between C, and C; along span

¢

C4

scan line

Rasterizing a Tria

—Convex Polygons only

—Nonconvex polygons assumed to have been
tessellated

—Shader results (e.g. colors) have been
computed for the vertices. Depth occlusion
resolved with z-buffer.

* March across scan lines interpolating vertex
shader output parameters, as input to the
fragment shader.

* Incremental work small

Flood Fill

* Fill can be done recursively if we know a seed
point located inside (WHITE)

« Scan convert edges into buffer in edge/inside

color (BLACK)
flood fill(int x, int y) {
if (read pixel(x,y)= = WHITE) ({

write pixel (x,y,BLACK);
flood fill(x-1, y);
flood fill (x+1, y);
flood fill(x, y+1);
flood fill(x, y-1);

What you need to know

Analytic test:
— Be able to compute ray vs sphere or other formula
— ray vs triangle
Geometrical tests
— Ray/box with slab-test
— Ray/polygon (3D->2D)
— AABB/AABB
Other:
— Point/plane
— Sphere/plane
— Box/plane, AABB/plane
SAT

Know what a dynamic test is
Understand floodfill

