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Tutorial 7 
Two options: 
l Default: 

–  3D World + 3DSMax Design tutorial: 
l  Your own render engine  

   or 
l Optionally, on your risk: 

–  Path tracing lab 
l  The most recent way to  

implement path tracing. 
–  Autodesk’s way  

(Erik Sintorn 6 months internship). 



What for? 
l  A tool needed for the graphics people all the 

time… 
l  Very important components: 

–  Need to make them fast! 

l  Finding if (and where) a ray hits an object 
–  Picking 
–  Ray tracing and global illumination 

l  For speed-up techniques 
l  Collision detection (treated in a later lecture) 



Example 

Midtown Madness 3, DICE 



Some basic geometrical primitives 
l Ray: 
l Sphere: 
l Box 

–  Axis-aligned (AABB) 
–  Oriented (OBB) 

l  k-DOP 



Four different techniques 
l Analytical 
l Geometrical 
l Separating axis theorem (SAT) 
l Dynamic tests 

l Given these, one can derive many tests 
quite easily 
–  However, often tricks are needed to make them 

fast 



Analytical: 
Ray/sphere test 
l Sphere center: c, and radius r 
l Ray: r(t)=o+td 
l Sphere formula: ||p-c||=r 
l Replace p by r(t), and square it: 
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Analytical, continued 
0)()())((2 22 =−−⋅−+⋅−+ rtt cοcοdcο
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Geometrical: 
Ray/Box Intersection 
l Boxes and spheres often used as 

bounding volumes 
l A slab is the volume between two 

parallell planes: 

l A box is the logical intersection of three 
slabs (2 in 2D): 

BOX 



Geometrical: 
Ray/Box Intersection (2) 
l  Intersect the 2 planes of each slab with 

the ray 

min
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l Keep max of tmin and min of tmax 

l  If tmin < tmax then we got an intersection 
l Special case when ray parallell to slab 



Separating Axis Theorem (SAT) 
Page 563 in book 
l Two convex polyhedrons, A and B, are 

disjoint if any of the following axes 
separate the objects: 
–  An axis orthogonal to a face of A 
–  An axis orthogonal to a face of B 
–  An axis formed from the cross product of one 

edge from each of A and B 

A and B overlaps on this axis 

axis 



SAT example: 
Triangle/Box 
l E.g an axis-aligned box and a triangle 
l  1) test the axes that are orthogonal to the 

faces of the box 
l That is, x,y, and z 



Triangle/Box with SAT (2) 
l Assume that they overlapped on x,y,z 
l Must continue testing 
l  2) Axis orthogonal to face of triangle 

Triangle seen from side 

axis 



Triangle/Box with SAT (3) 
l  If still no separating axis has been found… 
l  3) Test axis: t=ebox x etriangle  
l Example: 

–  x-axis from box: ebox=(1,0,0) 
–  etriangle=v1-v0 

l Test all such combinations 
l  If there is at least one separating axis, 

then the objects do not collide 
l Else they do overlap 



Rules of Thumb for 
Intersection Testing 
l Acceptance and rejection test 

–  Try them early on to make a fast exit 
l Postpone expensive calculations if 

possible 
l Use dimension reduction 

–  E.g. 3 one-dimensional tests instead of one 
complex 3D test, or 2D instead of 3D 

l Share computations between objects if 
possible 

l Timing!!! 



Another analytical example: Ray/
Triangle in detail 

l Ray: r(t)=o+td 
l Triangle vertices: v0, v1, v2 
l A point in the triangle: 
l  t(u,v)=v0+u(v1 - v0 ) +v(v2 - v0 )=                 

=(1-u-v)v0+uv1+vv2      [u,v>=0, u+v<=1] 

l Set t(u,v)=r(t), and solve! 
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Ray/Triangle (2) 

l Solve with Cramer’s rule: 
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Ray/Triangle (2) 

l Solve with Cramer’s rule: 
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l Share factors to speed up computations 
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Ray/Triangle (3) 
Implementation 
l Be smart! 

–  Compute as little as possible. Then test 

l Examples: 
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l Compute  )( sp ⋅= fu

l Then test valid bounds 
l if (u<0 or u>1) exit; 



Point/Plane 
l  Insert a point x into plane equation: 

0:    :Plane =+⋅ dpnπ

f (x) = n ⋅x+ d
plane on the s'for      0)( xxnx =+⋅= df
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Sphere/Plane 
Box/Plane 
l Sphere: compute 

0:    :Plane =+⋅ dpnπ
r            :Sphere c

AABB:    bmin    bmax

df +⋅= cnc)(
l  f (c) is the signed distance (n normalized) 

l Box: insert all 8 corners 
l  If all f ’s have the same sign, then all 

points are on the same side, and no 
collision 

l  abs( f (c)) > r      no collision 
l  abs( f (c)) = r      sphere touches the plane 
l  abs( f (c)) < r      sphere intersects plane 



n

AABB/plane 
l  The smart way (shown in 2D) 
l  Find the two vertices that have the most 

positive and most negative value when tested 
againt the plane 

OBB almost as easy. Just first project 
n on OBB’s axes – see p: 757 

Need only test 
the red points 

0:    :Plane =+⋅ dpnπ
r            :Sphere c

maxmin        :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz



Tomas Akenine-Mőller © 2003 

Ray/Polygon: very briefly 
l  Intersect ray with polygon plane 
l Project from 3D to 2D 
l How? 
l Find max(|nx|,|ny|,|nz|) 
l Skip that coordinate! 
l Then, count crossing in 2D 



Volume/Volume tests 
l Used in collision detection 
l Sphere/sphere 

–  Compute squared distance between sphere 
centers, and compare to (r1+r2)2 

l Axis-Aligned Bounding Box (AABB) 
–  Test in 1D for x,y, and z 

l  Oriented Bounding boxes 
–   Use SAT [details in book] 

xmax,ymax 

xmin,ymin 

If : 
any of object A’s (x,y,z)min are larger 
than object B’s (x,y,z)max 
or 
any of object B’s (x,y,z) min are larger 
than object A’s (x,y,z) max,  
then there is no intersection.  
Otherwise there is. 

xmax,ymax 

xmin,ymin 

A 

B 



View frustum testing 
l  View frustum is 6 planes: 
l  Near, far, right, left, top,                            bottom 
l  Create planes from projection matrix  

–  Let all positive half spaces be outside frustum  
–  Not dealt with here  -- p. 773-774, 3rd ed. 

l  Sphere/frustum common approach: 
–  Test sphere against each of the 6 frustum planes: 

l  If outside the plane => no intersection 
l  If intersecting the plane or inside, continue 

–  If not outside after all six planes, then conservatively 
concider sphere as inside or intersecting 

l  Example follows… 



View frustum testing example 

l  Not exact test, but not incorrect 
–  A sphere that is reported to be inside, can be outside 
–  Not vice versa 

l  Similarly for boxes 

outside 
frustum 

intersecting 
frustum 



Dynamic Intersection Testing 
[In book: 620-628] 

l Testing is often done every rendered 
frame, i.e., at discrete time intervals 

l Therefore, you can get ”quantum effects” 

Frame n Frame n+1 

l Dynamic testing deals with this 
l  Is more expensive 
l Deals with a time interval: time between 

two frames 



Dynamic intersection testing 
Sphere/Plane 

l No collision occur: 
–  If they are on the same side of the plane (scse>0) 

l  and: |sc|>r and |se|>r 

l Otherwise, sphere can move |sc|-r 
l Time of collision: 

e 

r 
sc 

se 

sc & se are signed distances t=n 

t=n+1 

ec

c
cd ss

rsnt
−

−
+=

l Response: reflect v around n, and move 
(1-tcd)r      (r=refl vector) 

r 
v c 

n 



Dynamic Separating Axis Theorem 
l SAT: tests one axis at a time for overlap 
 

l  Same with DSAT, but: 
–  Use a relative system where B is fixed 

–  i.e., compute A’s relative motion to B. 
–  Need to adjust A’s projection on the axis so that the interval 

moves on the axis as well 

 
l  Need to test same axes as with SAT 
l  Same criteria for overlap/disjoint: 

–  If no overlap on axis => disjoint 
–  If overlap on all axes => objects overlap 

 

BONUS 



Dynamic Sweep-and-Prune 
l  http://graphics.idav.ucdavis.edu/~dcoming/papers/coming_staadt_vriphys05.pdf 

BONUS 



Exercises 
l Create a function (by writing code on 

paper) that tests for intersection between: 
–  two spheres 
–  a ray and a sphere 
–  view frustum and a sphere 



Scan Line Fill  
Set active edges to AB and AC 
For y = A.y, A.y-1,...,C.y 

 If  y=B.y → exchange AB with BC  
 Compute xstart and xend. 
Interpolate color, depth, texcoords 
etc for points (xstart,y) and 
(xend,y) 
 For x = xstart, xstart+1, ...,xend 
  Compute color, depth etc for 

 (x,y) using interpolation. 

xend 

This is one modern 
way to rasterize a 
triangle 



Using Interpolation 

span 

C1 

C3 

C2 

C5 

C4 
scan line 

C1 C2 C3 specified by glColor or by vertex shading 
C4 determined by interpolating between C1 and C2 
C5 determined by interpolating between C2 and C3 
interpolate between C4 and C5 along span  
 



Rasterizing a Triangle 

– Convex Polygons only 
– Nonconvex polygons assumed to have been 
tessellated 

– Shader results (e.g. colors) have been 
computed for the vertices. Depth occlusion 
resolved with z-buffer. 
• March across scan lines interpolating vertex 
shader output parameters, as input to the 
fragment shader. 

• Incremental work small 



Flood Fill 

• Fill can be done recursively if we know a seed 
point located inside (WHITE) 

• Scan convert edges into buffer in edge/inside 
color (BLACK) 
flood_fill(int x, int y) { 
    if(read_pixel(x,y)= = WHITE) { 
       write_pixel(x,y,BLACK); 
       flood_fill(x-1, y); 
       flood_fill(x+1, y); 
       flood_fill(x, y+1); 
       flood_fill(x, y-1); 
}   } 



What you need to know 
•  Analytic test:  

–  Be able to compute ray vs sphere or other formula 
–  ray vs triangle 

•  Geometrical tests 
–  Ray/box with slab-test 
–  Ray/polygon (3D->2D) 
–  AABB/AABB 

•  Other: 
–  Point/plane 
–  Sphere/plane 
–  Box/plane, AABB/plane 

•  SAT 
•  Know what a dynamic test is 
•  Understand floodfill 


