
Intersection Testing
 Chapter 16

Department of Computer
Engineering
Chalmers University of
Technology

Tutorial 7
Two options:
l Default:

–  3D World + 3DSMax Design tutorial:
l  Your own render engine

 or
l Optionally, on your risk:

–  Path tracing lab
l  The most recent way to

implement path tracing.
–  Autodesk’s way

(Erik Sintorn 6 months internship).

What for?
l  A tool needed for the graphics people all the

time…
l  Very important components:

–  Need to make them fast!

l  Finding if (and where) a ray hits an object
–  Picking
–  Ray tracing and global illumination

l  For speed-up techniques
l  Collision detection (treated in a later lecture)

Example

Midtown Madness 3, DICE

Some basic geometrical primitives
l Ray:
l Sphere:
l Box

–  Axis-aligned (AABB)
–  Oriented (OBB)

l  k-DOP

Four different techniques
l Analytical
l Geometrical
l Separating axis theorem (SAT)
l Dynamic tests

l Given these, one can derive many tests
quite easily
–  However, often tricks are needed to make them

fast

Analytical:
Ray/sphere test
l Sphere center: c, and radius r
l Ray: r(t)=o+td
l Sphere formula: ||p-c||=r
l Replace p by r(t), and square it:

0))(())((2 =−−⋅− rtt crcr

1|||| 0)()())((2 22 ==−−⋅−+⋅−+ dcοcοdcο rtt

0)()(2 =−−+⋅−+ rtt cdocdo

0)()())((2)(22 =−−⋅−+⋅−+⋅ rtt cοcοdcοdd

o

d

c
r

€

(td+ (o − c))⋅ (td+ (o − c)) − r2 = 0

Analytical, continued
0)()())((2 22 =−−⋅−+⋅−+ rtt cοcοdcο

l Be a little smart…
? 0)(>⋅− dcο

c

o
d

? 0)()(2 <−−⋅− rcοcο
l Such tests are called ”rejection tests”
l Other shapes: 222 rpp yx =+

1)/()/()/(222 =++ cpbpap zyx

0)/()/(22 =−+ zyx pbpap

Geometrical:
Ray/Box Intersection
l Boxes and spheres often used as

bounding volumes
l A slab is the volume between two

parallell planes:

l A box is the logical intersection of three
slabs (2 in 2D):

BOX

Geometrical:
Ray/Box Intersection (2)
l  Intersect the 2 planes of each slab with

the ray

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax

l  If tmin < tmax then we got an intersection
l Special case when ray parallell to slab

Separating Axis Theorem (SAT)
Page 563 in book
l Two convex polyhedrons, A and B, are

disjoint if any of the following axes
separate the objects:
–  An axis orthogonal to a face of A
–  An axis orthogonal to a face of B
–  An axis formed from the cross product of one

edge from each of A and B

A and B overlaps on this axis

axis

SAT example:
Triangle/Box
l E.g an axis-aligned box and a triangle
l  1) test the axes that are orthogonal to the

faces of the box
l That is, x,y, and z

Triangle/Box with SAT (2)
l Assume that they overlapped on x,y,z
l Must continue testing
l  2) Axis orthogonal to face of triangle

Triangle seen from side

axis

Triangle/Box with SAT (3)
l  If still no separating axis has been found…
l  3) Test axis: t=ebox x etriangle
l Example:

–  x-axis from box: ebox=(1,0,0)
–  etriangle=v1-v0

l Test all such combinations
l  If there is at least one separating axis,

then the objects do not collide
l Else they do overlap

Rules of Thumb for
Intersection Testing
l Acceptance and rejection test

–  Try them early on to make a fast exit
l Postpone expensive calculations if

possible
l Use dimension reduction

–  E.g. 3 one-dimensional tests instead of one
complex 3D test, or 2D instead of 3D

l Share computations between objects if
possible

l Timing!!!

Another analytical example: Ray/
Triangle in detail

l Ray: r(t)=o+td
l Triangle vertices: v0, v1, v2
l A point in the triangle:
l  t(u,v)=v0+u(v1 - v0) +v(v2 - v0)=

=(1-u-v)v0+uv1+vv2 [u,v>=0, u+v<=1]

l Set t(u,v)=r(t), and solve!

v2

v1

v0

v1 -v0

v2 -v0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

|

|

|||

|||

00201 vovvvvd
v
u
t

Ray/Triangle (2)

l Solve with Cramer’s rule:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

|

|

|||

|||

00201 vovvvvd
v
u
t

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

),,det(
),,det(
),,det(

),,det(
1

1

2

21

21 sed
esd
ees

eed
v
u
t

0022011 vosvvevve −=−=−=

€

| | |
−d e1 e2
| | |

$

%
% %

&

'

(
((

t
u
v

$

%
% %

&

'

(
((

=

|
s
|

$

%
% %

&

'

(
((A x = b

Ray/Triangle (2)

l Solve with Cramer’s rule:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

|

|

|||

|||

00201 vovvvvd
v
u
t

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

),,det(
),,det(
),,det(

),,det(
1

1

2

21

21 sed
esd
ees

eed
v
u
t

0022011 vosvvevve −=−=−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅×

⋅×

⋅×

⋅×
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

des
sed
ees

eed
)(
)(
)(

)(
1

1

2

21

12v
u
t

l Share factors to speed up computations

bcacbacba ⋅×−=⋅×=)()()det(:fact thisUse ,, €

| | |
−d e1 e2
| | |

$

%
% %

&

'

(
((

t
u
v

$

%
% %

&

'

(
((

=

|
s
|

$

%
% %

&

'

(
((

Ray/Triangle (3)
Implementation
l Be smart!

–  Compute as little as possible. Then test

l Examples:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅×

⋅×

⋅×

⋅×
=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

des
sed
ees

eed
)(
)(
)(

)(
1

1

2

21

12v
u
t

af
a

/1
1

2

=

⋅=

×=

ep
edp

l Compute)(sp ⋅= fu

l Then test valid bounds
l if (u<0 or u>1) exit;

Point/Plane
l  Insert a point x into plane equation:

0: :Plane =+⋅ dpnπ

f (x) = n ⋅x+ d
plane on the s'for 0)(xxnx =+⋅= df

1x

0cos|||| 11 >=⋅ φxxn

π

n

origin

2x

0cos|||| 22 <=⋅ γxxn

 sideother on the s'for 0)(xxnx >+⋅= dfPositive
half space

plane theof side oneon s'for 0)(xxnx <+⋅= dfNegative
half space

Sphere/Plane
Box/Plane
l Sphere: compute

0: :Plane =+⋅ dpnπ
r :Sphere c

AABB: bmin bmax

df +⋅= cnc)(
l  f (c) is the signed distance (n normalized)

l Box: insert all 8 corners
l  If all f ’s have the same sign, then all

points are on the same side, and no
collision

l  abs(f (c)) > r no collision
l  abs(f (c)) = r sphere touches the plane
l  abs(f (c)) < r sphere intersects plane

n

AABB/plane
l  The smart way (shown in 2D)
l  Find the two vertices that have the most

positive and most negative value when tested
againt the plane

OBB almost as easy. Just first project
n on OBB’s axes – see p: 757

Need only test
the red points

0: :Plane =+⋅ dpnπ
r :Sphere c

maxmin :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz

Tomas Akenine-Mőller © 2003

Ray/Polygon: very briefly
l  Intersect ray with polygon plane
l Project from 3D to 2D
l How?
l Find max(|nx|,|ny|,|nz|)
l Skip that coordinate!
l Then, count crossing in 2D

Volume/Volume tests
l Used in collision detection
l Sphere/sphere

–  Compute squared distance between sphere
centers, and compare to (r1+r2)2

l Axis-Aligned Bounding Box (AABB)
–  Test in 1D for x,y, and z

l  Oriented Bounding boxes
–  Use SAT [details in book]

xmax,ymax

xmin,ymin

If :
any of object A’s (x,y,z)min are larger
than object B’s (x,y,z)max
or
any of object B’s (x,y,z) min are larger
than object A’s (x,y,z) max,
then there is no intersection.
Otherwise there is.

xmax,ymax

xmin,ymin

A

B

View frustum testing
l  View frustum is 6 planes:
l  Near, far, right, left, top, bottom
l  Create planes from projection matrix

–  Let all positive half spaces be outside frustum
–  Not dealt with here -- p. 773-774, 3rd ed.

l  Sphere/frustum common approach:
–  Test sphere against each of the 6 frustum planes:

l  If outside the plane => no intersection
l  If intersecting the plane or inside, continue

–  If not outside after all six planes, then conservatively
concider sphere as inside or intersecting

l  Example follows…

View frustum testing example

l  Not exact test, but not incorrect
–  A sphere that is reported to be inside, can be outside
–  Not vice versa

l  Similarly for boxes

outside
frustum

intersecting
frustum

Dynamic Intersection Testing
[In book: 620-628]

l Testing is often done every rendered
frame, i.e., at discrete time intervals

l Therefore, you can get ”quantum effects”

Frame n Frame n+1

l Dynamic testing deals with this
l  Is more expensive
l Deals with a time interval: time between

two frames

Dynamic intersection testing
Sphere/Plane

l No collision occur:
–  If they are on the same side of the plane (scse>0)

l  and: |sc|>r and |se|>r

l Otherwise, sphere can move |sc|-r
l Time of collision:

e

r
sc

se

sc & se are signed distances t=n

t=n+1

ec

c
cd ss

rsnt
−

−
+=

l Response: reflect v around n, and move
(1-tcd)r (r=refl vector)

r
v c

n

Dynamic Separating Axis Theorem
l SAT: tests one axis at a time for overlap

l  Same with DSAT, but:
–  Use a relative system where B is fixed

–  i.e., compute A’s relative motion to B.
–  Need to adjust A’s projection on the axis so that the interval

moves on the axis as well

l  Need to test same axes as with SAT
l  Same criteria for overlap/disjoint:

–  If no overlap on axis => disjoint
–  If overlap on all axes => objects overlap

BONUS

Dynamic Sweep-and-Prune
l  http://graphics.idav.ucdavis.edu/~dcoming/papers/coming_staadt_vriphys05.pdf

BONUS

Exercises
l Create a function (by writing code on

paper) that tests for intersection between:
–  two spheres
–  a ray and a sphere
–  view frustum and a sphere

Scan Line Fill
Set active edges to AB and AC
For y = A.y, A.y-1,...,C.y

 If y=B.y → exchange AB with BC
 Compute xstart and xend.
Interpolate color, depth, texcoords
etc for points (xstart,y) and
(xend,y)
 For x = xstart, xstart+1, ...,xend
 Compute color, depth etc for

 (x,y) using interpolation.

xend

This is one modern
way to rasterize a
triangle

Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span

Rasterizing a Triangle

– Convex Polygons only
– Nonconvex polygons assumed to have been
tessellated

– Shader results (e.g. colors) have been
computed for the vertices. Depth occlusion
resolved with z-buffer.
• March across scan lines interpolating vertex
shader output parameters, as input to the
fragment shader.

• Incremental work small

Flood Fill

• Fill can be done recursively if we know a seed
point located inside (WHITE)

• Scan convert edges into buffer in edge/inside
color (BLACK)
flood_fill(int x, int y) {
 if(read_pixel(x,y)= = WHITE) {
 write_pixel(x,y,BLACK);
 flood_fill(x-1, y);
 flood_fill(x+1, y);
 flood_fill(x, y+1);
 flood_fill(x, y-1);
} }

What you need to know
•  Analytic test:

–  Be able to compute ray vs sphere or other formula
–  ray vs triangle

•  Geometrical tests
–  Ray/box with slab-test
–  Ray/polygon (3D->2D)
–  AABB/AABB

•  Other:
–  Point/plane
–  Sphere/plane
–  Box/plane, AABB/plane

•  SAT
•  Know what a dynamic test is
•  Understand floodfill

