
Collision Detection

Originally created by
Tomas Akenine-Möller
Updated by Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

Tomas Akenine-Mőller © 2002

Introduction
l  Without collision detection (CD), it is practically

impossible to construct e.g., games, movie
production tools (e.g., Avatar)

l  Because, without CD, objects will pass/slide
through other objects

l  So, CD is a way of increasing the level of
realism

l  Not a pure CG algorithm, but extremely
important
–  And we have many building blocks in place already

(spatial data structures, intersection testing)

Tomas Akenine-Mőller © 2002

What we’ll treat today
l  Three techniques:
l  1) Using ray tracing

–  (Simple if you already have a ray tracer)
–  Not accurate
–  Very fast
–  Sometimes sufficient

l  2) Using bounding volume hierarchies
–  More accurate
–  Slower
–  Can compute exact results

l  3) Efficient CD for several hundreds of objects

Tomas Akenine-Mőller © 2002

In general
l Three major parts

–  Collision detection
–  Collision determination
–  Collision response

l We’ll deal with the first
–  Second case is rarely needed
–  The third involves physically-based animation

l Use rays for simple applications
l Use BVHs to test two complex objects

against each other
l But what if several hundreds of objects?

Tomas Akenine-Mőller © 2002

For many, many objects…
l  Test BV of each object against BV of other

object
l  Works for small sets, but not very clever
l  Reason…
l  Assume moving n objects

l  If m static objects, then: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
2
n

nm

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
n

l  Gives: tests

l  There are smarter ways: third topic of CD
lecture

Example

Midtown Madness 3, DICE

Collision detection with rays
l  Imagine a car is driving on a road sloping

upwards
l  Could test all triangles of all wheels against

road geometry
l  For certain applications, we can approximate,

and still get a good result
l  Idea: approximate a complex object with a set

of rays

CD with rays, cont’d
l Put a ray at each wheel
l Compute the closest intersection

distance, t, between ray and road
geometry

l  If t=0, then car is on the road
l  If t>0, then car is flying above road
l  If t<0, then car is ploughing deep in the

road
l Use values of t to compute a simple

collision response

CD with rays, cont’d
l We have simplified car, but not the road
l Turn to spatial data structures for the

road
l Use BVH or BSP tree or height field, for

example
l The distance along ray can be negative
l Therefore, either search ray in both

positive and negative direction
l Or move back ray, until it is outside the

BV of the road geometry

Another simplification
l  Sometimes 3D can be turned into 2D

operations
l  Example: maze
l  A human walking in maze, can

be approximated by a circle
l  Test circle against lines of

maze

l  Or even better, move walls outwards with circle
radius
l  test center of circle against moved walls

A CD system for accurate detection
and for many objects

l  We’ll deal with ”pruning” and ”exact CD”
l  ”Simulation” is how objects move

Potential overlap?

Complex object against
complex object
l For object against object CD, see http://

www.realtimerendering.com/int/
l  If accurate result is needed, turn to BVHs
l Use a separate BVH for the two objects
l Test BVH against other BVH for overlap
l When triangles overlap, compute exact

intersection, if needed

l But, first, a clarification on BVH building

BVH building example
l Can split on triangle level as well (not

clear from previous presentation)
Use split

plane
Sort using
plane, w.r.t

triangle

centroids

+
Find minimal

boxes =

…and so on.

Pseudo code for BVH against BVH

Pseudocode
deals with 4 cases:

1) Leaf against
 leaf node
2) Internal node
 against internal node
3) Internal against leaf
4) Leaf against internal

A small correction to the pseudo code:
Replace FindFirstHitCD()
with if(FindFirstHitCD())

 return true;

If (not overlap(A,B)) return false

Comments on pseudocode
l The code terminates when it finds the

first triangle pair that collides
l Simple to modify code to continue

traversal and put each pair in a list

l Reasonably simple to include rotations
for objects as well
–  Then, note that if we use AABB for both BVHs,

then the AABB-AABB test becomes an
AABB-OBB test

Tradeoffs
l  The choice of BV

–  AABB, OBB, k-DOP, sphere

l  In general, the tighter BV, the slower test

l  Less tight BV, gives more triangle-
triangle tests in the end

l Cost function:

CD between
many objects
l  Why needed?
l  Consider several hundreds of rocks tumbling

down a slope…
l  This system is often called ”First-Level CD”
l  We execute this system because we want to

execute the 2nd system less frequently
l  Assume high frame-to-frame coherency

–  Means that object is close to where it was previous
frame

–  Reasonable

Sweep-and-prune algorithm
[by Ming Lin]

l Assume objects may translate and rotate
l Then we can find a minimal AABB, which

is guaranteed to contain object for all
rotations

l Do collision overlap three times
–  One for x,y, and z-axes

l  Let’s concentrate on one axis at a time
l Each AABB on this axis is an interval,

from si to ei, where i is AABB number

Tomas Akenine-Mőller © 2002

1-D Sweep and Prune

Original by Michael Zyda

Sweep-and-prune algorithm

l Sort all si and ei into a list
l Traverse list from start to end
l When an s is encounted, mark

corresponding interval as active in an
active_interval_list

l When an e is encountered, delete the
interval in active_interval_list

l All intervals in active_interval_
list are overlapping!

Sweep-and-prune algorithm
l Now sorting is expensive: O(n*log n)
l But, exploit frame-to-frame coherency!
l The list is not expected to change much
l Therefore, ”resort” with bubble-sort, or

insertion-sort
l Expected: O(n)

BUBBLE SORT
for (i=0; i<n-1; i++) {
 for (j=0; j<n-1-i; j++)

 //compare the two neighbors
 if (a[j+1] < a[j]) {

 // swap a[j] and a[j+1]
 tmp = a[j];
 a[j] = a[j+1];
 a[j+1] = tmp;
 }
 }

Sweep-and-prune algorithm

l  Keep a boolean for each pair of intervals
l  Invert boolean when sort order changes
l  If all boolean for all three axes are true, à

overlap

If (swap(s,e)
or swap(e,s))
 -> flip bit

Efficient updating of the list of
colliding pairs (the gritty details)

Only flip flag bit when a start and end point is swapped.
When a flag is toggled, the overlap status indicates one of three situations:

1.  All three dimensions of this bounding box pair now overlap. In this case,

we add the corresponding pair to a list of colliding pairs.

2. This bounding box pair overlapped at the previous time step. In this case,
we remove the corresponding pair from the colliding list.

3. This bounding box pair did not overlap at the previous time step and does

not overlap at the current time step. In this case, we do nothing.

Bonus:

CD Conclusion
l Very important part of games!
l Many different algorithms to choose from
l Decide what’s best for your case,
l  and implement…

Important in this
lecture:
•  Ray tracing vs BVHs
•  BVH/BVH-test
•  Sweep & Prune

You can also use grids as
mentioned on lecture and

also will be mentioned next
Friday in the second ray

tracing lecture.

