Computer Graphics

Curves and Surfaces
Hermite/Bezier Curves, (B-)S

,,,,,,

-

Most of the material is originally made by Edwe
adapted to this course by Ulf Assarsson. Some

nake
W
Magnus Bondesson “Nﬂ

¥

Utah Teapot

* Most famous data set in computer graphics

* Widely available as a list of 306 3D vertices and

the indices that define 32 Bezier patches

P30

P33

Poo Pos
A Bezier patch

Objectives

* Introduce types of curves and surfaces
—EXxplicit
—Implicit
—Parametric

Modeling with Curves

O O

\ / iInterpolating data point

data points
approximating curve

What Makes a Good
Representation?

* There are many ways to represent curves
and surfaces

* Want a representation that is
—Stable
—Smooth
—Easy to evaluate

—Must we interpolate or can we just come close
to data?

—Do we need derivatives?

Explicit Representation

* Most familiar form of curve in 2D
y=t(x) |

« Cannot represent all curves Y N
—Vertical lines
—Circles x

 Extension to 3D y
—y=1(x), z=g(x) — gives a curve
—The form y = f(x,z) defines a surface

Z

Implicit Representation

* Two dimensional curve(s)
g(X,y)=0
* Much more robust
—All lines ax+by+c=0
—Circles x*+y?-r>=0

* Three dimensions g(x,y,z)=0 defines a
surface

—(we could intersect two surfaces to get a curve)

Parametric Curves

» Separate equation for each spatial variable
x=x(u)
y=y(u) p(w)=[x(w), y(u), z(w)]"

z=z(1)

*Foru,_,, =u=u,, we trace out a curve in two or
three dimensions

=
/ P(U)

p (umin)

Selecting Functions

 Usually we can select “good” functions
— not unique for a given spatial curve
— Approximate or interpolate known data
—Want functions which are easy to evaluate
— Want functions which are easy to differentiate
« Computation of normals
» Connecting pieces (segments)

—Want functions which are smooth

Parametric Lines

We can let u be over the interval (0,1)

Line connecting two points p, and p, p(1)=p,

p(w)=(1-u)pytup,

p(0) = p,
Ray from p, in the direction d p(1)=p,+d

p(u)=p;+ud /

p(0) = p,

Parametric Surfaces

» Surfaces require 2 parameters

x=x(u,v) Y
y=y(u,V) p(0,v)
z=7z(u,V)

p(u,v) = [x(u,v), y(u,v), z(w,v)]T * p(u,0)

* \Want same properties as curves:
—Smoothness
—Differentiability
—Ease of evaluation

Normals

We can differentiate with respect to u and v to
obtain the normal at any point p

Ox(u,v)/ ou] ; OX(u,v)/ v’

apgu,v) = | dy(u,v)/ du pg/‘t/,v) = | dy(u,v)/ dv
U

0z(u,v)/ ou 0z(u,v)/ 0v.

\'

_9p,v) dpu,v)
ou Y

n

Parametric Planes

point-vector form

p(u,v)=p,tuq+vr
op(u,v) y op(u,v)

ou v n=qxr

(three-point form

q=P;— Py
r=p,—p,)

Curve Segments

* After normalizing u, each curve is written

p(u)=[x(u), y(u), z(u)]', 1=zu=0
* In classical numerical methods, we design a
single global curve

* In computer graphics and CAD, it is better to
design small connected curve segments

join point p(1) = q(0)

p(w)
(0 w q(l)

How should we describe curve segments?

We choose Polynomials

« Easy to evaluate

» Continuous and differentiable everywhere

—Must worry about continuity at join points
including continuity of derivatives

p(u)

N
\

join point p(1) = q(0)
butp’ (1) = q’ (0)

Let’ s worry about that later. First let’ s scrutinize the polynomials!

Parametric Polynomial Curves

x(u) = Ecxzu y(u) = Ecy, z(u) = ZCsz

. . . Remember: p(u)
*Cubic polynomials gives N=M=[=3 x=x(u
poly g (1) % M(u

y=y(u) GPHmin max)

z=z(u)

*Noting that the curves for x, y and z are independent,
we can define each independently in an 1dentical manner

L
*We will use the form p(u) = 2 cru'

where p can be any of X, y, z
Let’ s assume cubic polynomials!

Cubic Parametric Polynomials

 Cubic polynomials give balance between ease of
evaluation and erx;biIity In design

p(u) = ;) cru

* Four coefficients to determine for each of x, y
and z

« Seek four independent conditions for various
values of u resulting in 4 equations in 4
unknowns for each of x, y and z

—Conditions are a mixture of continuity
requirements at the join points and conditions
for fitting the data

Objectives

* Introduce the types of cu Po P
— Interpolating

 Blending polynomials for interpolation of 4 control points (fit curve to 4
control points)

— Hermite ;
« fit curve to 2 control points + 2 derivatives (tangents)
— Bezier
« 2 interpolating C
tangents
— B-spline
« To get C'and C? continuity
—NURBS

« Different weights of the control points
* Analyze them

p’(0) p'(1)

p(0) p(1)
oints + 2 intermediate points to define the

P)

Po Ps

Matrix-Vector Form

p(u) = Z cru

Co 1]
_ Ci u
define c¢= u=| |
C2 u
3
C3 _u -

then p(u) = lch = CTU

Interpolating Curve

P P3

Py P,

Given four data (control) points p, , p;.pP, > P3
determine cubic p(u) which passes through them

Must find ¢, ,¢, ,¢, , €;

Let’ s create an equation system!

pt

P 3
Interpolation Equations p/\/p

0 P,

p(u) = ¢ + C4U + CoU2 + Ul 0 13 23 1 U
apply the interpolating conditions at u=0, 1/3, 2/3, 1
po=p(0) =c¢
p,=p(1/3)= cy+(1/3)c,+(1/3)*c,+(1/3)’c,
p,=p(2/3)= cyt(2/3)c,+(2/3)*c,+(2/3)3¢c,4
ps=p(l) =cyte,te,te,

or in matrix form with p = [p, py p, Ps]"
1 0 0 0

MR

p=Ac p= =Ac=

S RGN .
I.e., C=A'1p - J72 | 3 3 3 - C, |

Interpolation Matrix

Solving for ¢ we find the interpolation matrix

-1

M;=A =

c=M,p

X:X(u):CxO + Cx1u 3 Cx2u2 " Cx3u3

y=y(u)=Cyg *+ CyqU + CU% + Cyu° /

Z=2(U)=Cyg + CyqUl + CoU% + Cppl®

where

cx = MI px
c,=M;p,
c,=M;p,

1
-5.5
9

-4.5

0
9
—-22.5
13.5

0 0]
-4.5 1

18 -45
-13.5 45

L pl
W{B

pO

/p3

)

Interpolating Multiple Segments

p ~~s~..-""
Po 1 / P \ P
P,

use p = [Py P1 P Pal” use p = [P3 P4 Ps Pel’

Get continuity at join points but not
continuity of derivatives

Blending Function%\/m

Rewriting the equation for p(u) Po P>
p(w)=u'c=u'M;p = b(v)'p

where b(u) = [b,(u) b,(u) by(u) by(u)]'is
an array of blending polynomials such that

p(u) = by(u)pyt by (w)p;+ by(u)p,+ bs(u)p;

by(u) = -4.5(u-1/3)(u-2/3)(u-1)
b,(u) = 13.5u (u-2/3)(u-1)
b,(u) =-13.5u (u-1/3)(u-1)
b;(u) =4.5u (u-1/3)(u-2/3)

Blending Functlonsﬁ\/m

Po |)

A b] (U) bg(u)
] bo(u) e

-
..-h--’

p(u) = by(w)py+ by (u)p,+ b,(w)p,+ bs(u)p;

Blending Patches

Curve: p(u)=u'c=u'M,p =b)'p v
3 3 . Pio
Patch: p(u,v) = E E cil v Po

i=0 j=0
3

3 z
puv) = N bi(u)b;(v) p,; = u" M;PM] v

i=0 j=0

Each b;(u)b;(v) is a blending patch

Shows that we can build and analyze surfaces
from our knowledge of curves

Hermite Curves and Surfaces

* How can we get around the limitations of
the interpolating form et p.: ~~~~~~ AP
—Lack of smoothness P,
—Discontinuous derivatives at join points
*We have four conditions (for cubics) that
we can apply to each segment
—Use them other than for interpolation

—Need only come close to the data

Hermite Form

p’ (0) p (1)

p(0) p(1)

Use two 1nterpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments

p oy

Equations PO P

p(u) = cytuc,+u?c,+udc,

Interpolating conditions are the same at ends

p(0) =py= ¢,
p(1) =p; = cyte te,te,

Differentiating we find p’ (u) = ¢,+2uc,+3uc,

Evaluating at end points

po 1 0 0 0
P (0)=p ,=c p| 11 11
p ()=p ;=cT2¢c,13c, q= P, = 010 0
p,] (0 1 2 3

Matrix Form
p,] [T 0 0 O
p,| [1 1 1 1

= C
p,|] [0 1 0 O
p‘l 0 1 2 3]

p (N)

p(0) p(1)

Solving, we find ¢=M,q where M/, 1s the Hermite matrix

M.,

2

1

0
-3

0

0

3
-2

0
1
-2
1

0

0
—1

1

p(u) =ulc=>
p(u) =u'Myq

Blending Polynomials

p(u) =u™yq => p(u) =b()'q

b(u) =

Although these functions are smooth, the Hermite form
1s not used directly in Computer Graphics and CAD

-2u3—3u2+1-
—2u3+3u2

u3—2u2+u
2

3
u —u

because we usually have control points but not derivatives

However, the Hermite form 1s the basis of the Bezier form

Continuity

A) Non-continuous

B) C°-continuous Real e Rondering.
C) G'-continuous sraed

D) C'-continuous

(C?-continuous)

Example

* Here the p and g have the same tangents
at the ends of the segment but different
derivatives

- Generate different q(0) /
Hermite curves

* This techniques Is used

iIn drawing applications

q(l)

P10} //quu\\ P11

Reflections should be at least C’

Bezier Curves

*|In graphics and CAD, we do not usually
have derivative data

* Bezier suggested using the same 4 data
points as with the cubic interpolating curve
to approximate the derivatives in the
Hermite form

Approximating Derivatives

P1 P

p, located at u=1/3 p, located at u=2/3

dp(u =0)
du

' p3_p2
1) =
p'(1) 173

P~ Po
1/3

=p'(O)=

slope p’ (0) ™ /slope p (1)

Po u . Ps3

Equations

Interpolating conditions are the same

p(0) =py= ¢,
p(1) = p;=¢ytc teyte,

Approximating derivative conditions

! pl_po— ’
’ (O)zﬁ P (0) =3(p;-py) = ¢,
p(1)~ 2Pz p (1) = 3(ps-py) = ¢;+2¢,13¢;
1/3

-

Solve four linear equations for c=Mp

Po Ps

p(u) = cytuc,+u?c,+usc,

p (u) = ¢, +2uc,+3u’c,

= Bp=Ac
= ¢=A"'Bp

Bezier Matrix

1 0 0 0
3 3 0 0
M:=3 6 3 o
1 3 -3 1

p(u) =u'Mgzp =b(w)'p

/

blending functions

Blending Functions

i (1 _ u)3 } 0.83
3u(l-u) .-
b(u) = 2() 04F
2u (1 - Z/l) -
3 0.2;

" OO 0.2 O!AI Olé 0.8

Note that all zeros are at 0 and 1 which forces
the functions to be smoother over (0,1)

Smoother because the curve stays inside the convex

hull, and therefore does not have room to fluctuate so
much.

Convex Hull Property

* All weights within [0,1] and sum of all weights = 1
(at given u) ensures that all Bezier curves lie in
the convex hull of their control points

* Hence, even though we do not interpolate all the
data, we cannot be too far away

P | %)
.——— convex hull

Bezier curve

Po P

Bezier Patches 3

(u V) E Ecijuivj

i=0o j=0
Using same data array P=[p;] as with interpolating form

p(u,v) = EEb(u)b (V) pyy=u' MsP M5

xuv)

=0 j=

P3

Patch lies in
convex hull

Analysis

* Although the Bezier form is much better than the
interpolating form, the derivatives are not
continuous at join points

1

Po P3

\What shall we do to solve this?

B-Splines

* Basis splines: use the data at
pP=[p.» pi; P; P.;]" to define curve only between
p;.; and p;
* Allows us to apply more continuity
conditions to each segment

* For cubics, we can have continuity of the
function and first and second derivatives at
the join points

M3

Cubic B-spline

4 1 0] P, ®
0 3 0 o
6 3 0 P

Po®
3-3 1

d o

p(l)
.p3

Blending Functions

b(u)=—

(1-u)

3
u

1 4—6u2+3u3

6 [1+3u+3y" -3y

p(w) = u'Mgp = b(u)'p =>

p(u) = by(w)pyt+ by(w)p;+ by(w)p,+ by(u)p;

— o O O

convex hull property

Po

P

by (u)

bo(u)

B-Spline Patches

3 3
puv) = ¥ biu)b;(v) p, = u" MsPMbv

i=0 j=0
defined over only 1/9 of region

P30 /

P33

pOO p03

Splines and Basis

*|If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through the
blending functions) to four segments

*We can rewrite p(u) in terms of all the data
points along the curve as

plu) =S Bwp,

defining the basis functions {B.(u)}

p(u)= Bi(u)l?i = Bo(u)l?o + ---Bn_l(u)pn_l : ot
"

In terms of the blending polynomials
(0 u<i-2 1

bo(u+2) i-2=<su<i-l1

b (u+1) i-lsu<i

Biu) = b, (1) i<su<i+l

b;(u-1) i+l=su<i+?2

0 U=i+2

Pe

°Ps

Weigh"ts for each point a:long the curve

One more example

Ps Po P1 P2 P3 Ps Po

0 I > u u=27

u=27 0] p3

p(u) = By(w)pyt+ B, (w)p,+ By(w)p,+ B;(w)p; + By(w)p, 2

e plu)= Y B(u)p,

SUMMARY

B-Splines

These are our control points, py,-pg, to
which we want to approximate a curve

o Pg®
po+ ‘
l% o > U
u=0 8

lllustration of how the control points are evenly (uniformly)
distributed along the parameterisation u of the curve p(u).

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding control points. Below are shown
the weights for each control point along u=0—38

pd P Ps Ps P, Ps

100
%

»

v

SUMMARY

100
%

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding points. Below are shown the

weights for each point along u=0—38

A Blendfunction B,(u)
: for point p;,

P : of P P : Pz Ps

— —»

The weight function (blend function) B, (u () for a pomt p; can thus be written
as a translation of a basis function B(t). B;(u) = By(u-i)

3(6). 100%.
(t): Our complete B-spline curve

/ \ p(u) can thus be written as:
" pw)=YBwp,

»

\
’

Generalizing Splines

*We can extend to splines of any degree

* Data and conditions do not have to be
given at equally spaced values (the knots)

—Nonuniform and uniform splines

—Can have repeated knots
» Easiest implemented by just repeating a ctrl point

 Can force spline to interpolate points

 (Cox-deBoor recursion gives method of evaluation (also
known as deCasteljau-recursion, see page 579, RTR 3:rd

Ed. for details)) DEMO of B-Spline Demo located in

curve: (make Bezier/dist/Bezier.jar
duplicate knots)

NURBS

* Nonuniform Rational B-Spline curves and
surfaces add a fourth variable w to x,y,z

—Can interpret as weight to give more
Importance to some control data

—Can also interpret as moving to homogeneous
coordinate

 (Requires a perspective division
—NURBS act correctly for perspective viewing
 Quadrics are a special case of NURBS)

control point)

NURBS

NURBS is similar to B-Splines except that: .

1. The control points can have different weights, w;,
(heigher weight makes the curve go closer to that

2. The control points do not have to be at uniform

distances (u=0,1,2,3...)
tion u. E.g.: u=0, 0.5,

ong the parameterisa-
9, 4,14,...

NURBS = Non-Uniform Rational B-Splines
The NURBS-curve is thus defined as:

Division with the sum of the weights,
to make the combined weights sum
up to 1, at each position along the
curve. Otherwise, a translation of the
curve is introduced (which is not
desirable)

NURBS

« Concider a control point in 3 dimensions:
P; = [xi?yiﬂzi]

* The weighted homogeneous-coordinate is:
oh
Vi
q, =W,
Zi
1

* The idea is to use the weights w, to increase or
decrease the importance of a particular control
point

NURBS

* The w-component may not be equal to 1.

* Thus we must do a perspective division to get
the three-dimensional points:

q(u) = 2, OBdep(l)
W(U) EZ_OBZ W,

« Each component of p(u) is now a rational
function in u, and because we have not
restricted the knots (the knots does not have to
be uniformly distributed), we have derived a
nonuniform rational B-spline (NURBS) curve

p(u) =

NURBS

 Allowing control points at non-uniform distances
means that the basis functions B ;() are being
streched and non-uniformly located.

Each curve B () should of course look smooth and C2 —continuous.
But it is not so easy to draw smoothly by hand...

(The sum of the weights are still =1 due to the division in previous
slide)

NURBS Surfaces - examples

NURBS

If we apply an affine transformation to a B-spline curve or
surface, we get the same function as the B-spline
derived from the transformed control points.

Because perspective transformations are not affine, most
splines will not be handled correctly in perspective
viewing.

However, the perspective division embedded in the
NURBS ensures that NURBS curves are handled
correctly in perspective views.

Quadrics can be shown to be a special case of quadratic
NURBS curve; thus, we can use a single modeling
method, NURBS curves, for the most widely used curves

and surfaces WHAT IS
IMPORTANT?

