EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

ﬁ Parallel & Distributed
< Real-Time Systems

Lecture #7

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS | {®})) UNIVERSITY OF GOTHENBURG

Multiprocessor scheduling

How are tasks assigned to processors?

® Static assignment
— The processor(s) used for executing a task are determined
before system is put in mission (“off-line”)
— Approaches: partitioned scheduling, guided search,
non-guided search, ...
® Dynamic assignment
— The processor(s) used for executing a task are determined
during system operation “on-line”
— Approach: global scheduling

NIVERSITY OF GOTHENBURG

Multiprocessor scheduling

How are tasks allowed to migrate?

® Partitioned scheduling (no migration!)
— Each instance of a task must execute on the same processor
— Equivalent to multiple uniprocessor systems!

® Guided search & non-guided techniques

— Depending on migration constraints, a task may or may not
execute on more than one processor

® Global scheduling (full migration!)

— Atask is allowed to execute on an arbitrary processor
(sometimes even after being preempted)

CHALMERS |

NIVERSITY OF GOTHENBURG

Partitioned scheduling

General characteristics:

® Each processor has its own queue for ready tasks

® Tasks are organized in groups, and each task group is
assigned to a specific processor

® When selected for execution, a task can only be
dispatched to its assigned processor




EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Partitioned scheduling

Advantages:

® Mature scheduling framework
— Most uniprocessor scheduling theory also applicable here
— Uniprocessor resource-management protocols can be used

® Supported by automotive industry
— AUTOSAR prescribes partitioned scheduling

Disadvantages:
Cannot exploit all unused execution time
— Surplus capacity cannot be shared among processors
— Will suffer from overly-pessimistic WCET derivation

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Partitioned scheduling

Complexity of schedulability analysis for partitioned
scheduling:

The problem of deciding whet
~asynchronous) is sch
to partitioned

Consequence:

There cannot be any pseudo-polynomial time algorithm for
finding an optimal partition of a set of tasks unless P = NP.

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Partitioned scheduling

Bin-packing algorithms:

® Basic idea:

— The problem concerns packing objects of varying sizes in boxes
("bins”) with the objective of minimizing number of used boxes.

Application to multiprocessor systems:
— Bins are represented by processors and objects by tasks.

— The decision whether a processor is "full” or not is derived from a

utilization-based feasibility test. 5

. a
Assumptions:
— Independent, periodic tasks
— Preemptive, uniprocessor scheduling (RM)
2%

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Partitioned scheduling

Bin-packing algorithms:

Rate-Monotonic-First-Fit (RMFF):
— Let the processors be indexed as 4, 4, ]

— Assign the tasks in the order of increasing periods
(that is, RM order).

— For each task 7;, choose the lowest previously-used j such
that 7,, together with all tasks that have already been
assigned to processor u,can be feasibly scheduled
according to the utilization-based RM-feasibility test.

— Processors are added if needed for RM-schedulability.




CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Partitioned scheduling

Guarantee bound for RMFF:

The utilization guarantee bound U, _for a system with
m processors using the RMFF schedFuIing policy (with
arbitrary task-assignment order) is

'm@“—ﬂsu

Thus: task sets whose utilization do not exceed = 41% of the
total processor capacity is always RMFF-schedulable.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Guided search

Branch-and-bound algorithms:

® Basic idea:

— A set of solutions to a given problem is organized in a search
tree.

— A vertex in the search tree corresponds to a specific solution
structure.

— A goal vertex corresponds to a complete solution to the problem
and is located at the highest level of the search tree.

— The root vertex corresponds to an initial solution at the lowest
level of the search tree.

— The search for a solution starts with only the root vertex.

— Search objective is to find a goal vertex that optimizes a
given cost (performance measure).

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Guided search

Branch-and-bound algorithms:
® Basic idea (cont'd):
— For each vertex, a set of child vertices is generated by modifying
the structure of the current vertex ("branching”).

— To check if a tree branch may lead to an acceptable solution, a
lower-bound function is applied to each of the child vertices.

— If a child vertex looks promising, it will be further investigated.

— If a child vertex will only lead to inferior solutions, that entire
branch is pruned ("bounding”).

Note: An initial solution could be used for making good bounding
operations early in the search. When an acceptable goal vertex is
reached the bounding operation can be made more accurate.

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Guided search

Branch-and-bound algorithms:

® Application to multiprocessor scheduling:

— The search tree represents the set of all task-to-processor
assignments for a given set of tasks and processors.

— A vertex in the search tree is a partial or complete assignment
of tasks to processors.

— The root vertex corresponds to an initial (empty or complete)
schedule.

— A goal vertex corresponds to a complete schedule.

— The purpose of the lower-bound function is to assess whether
a child vertex is feasible, that is, whether the corresponding
branch in the search tree contains a feasible schedule.




EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

CHALMERS |

UNIVERSITY OF GOTHENBURG

Guided search

Branch-and-bound for multiprocessor scheduling:

® |nitial schedule is empty:

— At each vertex in the search tree, a set of ready tasks
(candidates for execution) are available for scheduling.

— Generation of a child vertex corresponds to adding one of the
ready tasks to the schedule in the current vertex.

® |nitial schedule is complete (but possibly suboptimal):
— At each level of the search tree, a set of scheduling changes
(e.g., modified constraints or assignments) are available.
— Generation of a child vertex corresponds to applying one or
more of the changes to the schedule in the current vertex.

CHALMERS |

UNIVERSITY OF GOTHENBURG

An example search tree

tasks assigned to processor #1 tasks assigned to processor #2

n = 3 tasks
m = 2 processors

root vertex

- - goal vertices

CHALMERS |

UNIVERSITY OF GOTHENBURG

Guided search

How do we avoid an exhaustive search?
® Bound pruning
— use optimistic lower bounds
® Redundancy pruning
— exploit symmetries in task set and processors
Algorithm configuration
— use suitable exploration order for promising vertices
® Performance guarantees
— solution is within guaranteed bound from optimum

Local optimization
— only a subset of child vertices are retained

CHALMERS |

UNIVERSITY OF GOTHENBURG

Guided search

How do we avoid an exhaustive search?
® Bound pruning

— use optimistic lower bounds\ -
optimality

® Redundancy pruning | guaranteed
— exploit symmetries in task SW .

® Algorithm configuration guaranieed
— use suitable exploration order for pr

® Performance guarantees
— solution is within guaranteed bound from optimum

® | ocal optimization gg}*gﬂ}gme s
— only a subset of child vertices are retained

fAig vertices




EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Guided search

How do we avoid an exhaustive search?
® Bound pruning
— use optimistic lower bounds\

Additional reading:
Read the paper by . fimality
d

® Performance guarantees —
— solution is within guaranteed bound from optimum

® | ocal optimization
— only a subset of child vertices are retained

optimality
not guaranteed

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

An example of bound pruning

4. If all goal vertices
originating from this
1. Assume this branch is chosen and vertex will have inferior

all tasks are assigned & scheduled costs, no need to further
branch this vertex

2. Calculate the real @

goal vertex cost

/ +——— 3. Estimate optimistic
cost for goal vertex

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

An example of redundancy pruning

2. Assume identical processors

1. Identify “mirrored” branches

\ 3. Redundant branch

that can be ignored

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

An example of local optimization

1. Keep only one vertex at each level

- +———— 2. There will be only one available goal vertex

(not guaranteed to be optimal or even feasible)




EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

CHALMERS |

UNIVERSITY OF GOTHENBURG

Guided search

Some (optimal) branch-and-bound algorithms:

® Distributed real-time systems:

— Minimizes system hazard (maximum normalized task
response time)

— Starts with an empty schedule
® Fault-tolerant real-time systems:

— Maximizes probability of no dynamic failure (probability that all
deadlines are met in the presence of component failures)

— Starts with an empty schedule
— May change degree of replication and restart the algorithm

CHALMERS | (

NIVERSITY OF GOTHENBURG

Guided search

Some (optimal) branch-and-bound algorithms:
® Uniprocessor real-time systems:
— Minimizes maximum task lateness
— Starts with an initial (complete) schedule
— Modifies preemption, precedence and exclusion constraints

® Multiprocessor real-time systems:
— Minimizes maximum task lateness
— Starts with an initial (complete) schedule
— Modifies preemption, precedence and exclusion constraints

UNIVERSITY OF GOTHENBURG

Guided search

Some good local-optimization algorithms:

® Myopic scheduling:

— Promising vertices are explored in the order of increasing
search-tree level; within each level, exploration order is given by
a heuristic function that calculates a weighted sum of task
execution time, deadline, earliest start time and laxity.

— Lower-bound function determines for the current vertex whether
it is strongly feasible, that is, whether a feasible schedule can be
obtained by expanding any of its child vertices.

— Reduces search complexity by only investigating the k child
vertices with closest deadline in the check for strong feasibility.

— Reduces search complexity by limiting the number of allowed
backtracks (to vertices at lower search-tree levels)

NIVERSITY OF GOTHENBURG

Guided search

Some good local-optimization algorithms:

® Pair-wise clustering:

— Promising vertices are explored in the order of increasing
search-tree level; within each level, exploration is made in the
order of increasing task LFT (latest finishing time).

— Lower-bound function determines for the current vertex whether
it is feasible using simple heuristics that keep track of latest start
time and available time resources.

— LFT is derived from task set end-to-end deadlines.

— Pairs of communicating tasks are clustered based on the
communication volume ratio. If the ratio between the task pair's
execution times and communication volume is below a certain
bound, the two tasks are assigned to the same processor.




CHALMERS |

UNIVERSITY OF GOTHENBURG

Non-guided search

General characteristics:

® Each non-guided search is given an initial task-to-
processor assignment from which the search starts.

® Within each iteration step during search, different
derivable alternatives of changing the current
assignment are examined.

® To check whether an alternative is feasible or not, a
run-time efficient feasibility test has to be used.

® |n order to help the search find better assignments, the
number of deadline misses is included as a penalty into
the function calculating the goodness of the assignment.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

CHALMERS |

UNIVERSITY OF GOTHENBURG

Non-guided search

Examples:
® Simulated annealing
® (Genetic optimization

These techniques all have in common that it is sufficient to
state what makes a good solution, not how to get one!

CHALMERS |

UNIVERSITY OF GOTHENBURG

Non-guided search

Simulated annealing:

® Basic idea:

— Simulated annealing is a global optimization technique which
borrows ideas from statistical physics. The technique is derived
from observations of how slowly-cooled molten metal can result
in a regular crystalline structure.

— The salient property of the technique is the incorporation of
random jumps from local minima to potential new solutions. As
the algorithm progresses, this ability is lessened, by reducing a
temperature factor, which makes larger jumps less likely.

— The main objective of the technique is to find the lowest point in
an energy landscape.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Non-guided search

Simulated annealing:

® Application to multiprocessor scheduling:

— The set of all task-to-processor assignments for a given set of
task and processors is called the problem space. A point in the
problem space is an assignment of tasks to processors.

— The neighbor space of a point is the set of points that are
reachable by moving any single task to any other processor.

— The energy of a point in problem space is a measure of the
goodness of the task assignment represented by that point.

— The energy function determines the shape of the problem
space. It can be visualized as a rugged landscape, with
deep valleys representing good solutions, and high peaks
representing poor or infeasible ones.




CHALMERS |

UNIVERSITY OF GOTHENBURG

Non-guided search

Simulated annealing:

® Algorithm:

A random starting point is chosen, and its energy Es is evaluated.
A random point in the neighbor space is then chosen, and its
energy Enis evaluated. This point becomes the new starting
point if either E, <E_ ,orif E > E_and

e 2 random(O,l) where x=—(E, —E,)/C

The control variable C is analogous to the temperature factor in a
thermodynamic system. During the annealing process, C is
slowly reduced (cooling the system), making higher energy
jumps less likely. Eventually, the system freezes into a low
energy state.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

CHALMERS | (

NIVERSITY OF GOTHENBURG

Non-guided search

Simulated annealing:
® |mplementation:
Neighbor function: Choose a random task and move it to a
randomly-chosen processor.
Energy function: The weighted sum of the following
characteristics of the assignment:
* Number of tasks assigned to the wrong processor
* Number of replicas assigned to the same processor
* Number of processors with too high a memory utilization
* Number of tasks which do not meet their deadlines
» Total communication bus utilization

UNIVERSITY OF GOTHENBURG

Non-guided search

Genetic optimization:

® Basic idea:

Based on Darwin’s evolution theory: “Survival of the Fittest”
Solutions to a problem is viewed as individuals forming a
population.

— Pair of individuals can create children (new individuals)

New individuals are created by applying a crossover operator to
the genes of the parents

— Genes of a new individual may mutate

NIVERSITY OF GOTHENBURG

Non-guided search

Genetic optimization:

® Application to multiprocessor scheduling:

— Tasks assignments and orderings are viewed as
“chromosomes”

— Tasks represent “genes”

— Mutation means that a task is moved to another processor




EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #7
Updated March 28, 2014

End of lecture #7




