

CHALMERS | UNIVERSITY OF GOTHENBURG

Lecture #7

Partitioned scheduling

General characteristics:

- Each processor has its own queue for ready tasks
- Tasks are organized in groups, and each task group is assigned to a specific processor
- When selected for execution, a task can only be dispatched to its assigned processor

n = 3 tasks

goal vertices

 $\{\}\{\tau_{3}\}$

m = 2 processors

CHALMERS (E) UNIVERSITY OF GOTHENBURG UNIVERSITY OF GOTHENBURG CHALMERS **Guided search Guided search** Some (optimal) branch-and-bound algorithms: Some (optimal) branch-and-bound algorithms: Distributed real-time systems: (Peng and Shin, 1989) Uniprocessor real-time systems: (Xu and Parnas, 1990) - Minimizes maximum task lateness - Minimizes system hazard (maximum normalized task response time) - Starts with an initial (complete) schedule - Starts with an empty schedule - Modifies preemption, precedence and exclusion constraints • Fault-tolerant real-time systems: (Hou and Shin, 1994) Multiprocessor real-time systems: (Xu, 1993) - Maximizes probability of no dynamic failure (probability that all - Minimizes maximum task lateness deadlines are met in the presence of component failures) - Starts with an initial (complete) schedule - Starts with an empty schedule - Modifies preemption, precedence and exclusion constraints - May change degree of replication and restart the algorithm

Lecture #7

CHALMERS 🛞 UNIVERSITY OF GOTHENBURG	CH
Non-guided search	
Simulated annealing: (Kirkpatrick, Gelatt and Vecchi, 1983)	
Basic idea:	
 Simulated annealing is a global optimization technique which borrows ideas from statistical physics. The technique is derived from observations of how slowly-cooled molten metal can result in a regular crystalline structure. 	
 The salient property of the technique is the incorporation of random jumps from local minima to potential new solutions. As the algorithm progresses, this ability is lessened, by reducing a temperature factor, which makes larger jumps less likely. 	
 The main objective of the technique is to find the lowest point in an energy landscape. 	

Lecture #7

UNIVERSITY OF GOTHENBURG
End of locture #7
End of lecture #7