
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014 Lecture #6
UpdatedMarch 21, 2014

1

Parallel & Distributed

Real-Time Systems

Lecture #6

Professor Jan Jonsson

Department of Computer Science and Engineering

Chalmers University of Technology

Feasibility testing

What techniques for feasibility testing exist?

• Hyper-period analysis (for static and dynamic priorities)

– In a simulated schedule no task execution may miss its deadline

• Guarantee bound analysis (for static and dynamic priorities)

– The fraction of processor time that is used for executing the
task set must not exceed a given bound

• Response time analysis (for static priorities)

– The worst-case response time for each task must not exceed the
deadline of the task

• Processor demand analysis (for dynamic priorities)

– The accumulated computation demand for the task set under a
given time interval must not exceed the length of the interval

Feasibility testing

What techniques for feasibility testing exist?

• Hyper-period analysis (for static and dynamic priorities)

– In a simulated schedule no task execution may miss its deadline

• Guarantee bound analysis (for static and dynamic priorities)

– The fraction of processor time that is used for executing the
task set must not exceed a given bound

• Response time analysis (for static priorities)

– The worst-case response time for each task must not exceed the
deadline of the task

• Processor demand analysis (for dynamic priorities)

– The accumulated computation demand for the task set under a
given time interval must not exceed the length of the interval

Response-time analysis

Response time:

• The response time for a task represents the worst-
case completion time of the task when execution
interference from other tasks are accounted for.

iR iτ

� The response time for a task consists of:

The task’s uninterrupted execution time (WCET)

Interference from higher-priority tasks

iC

i
τ

iI

iii
ICR +=

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014 Lecture #6
UpdatedMarch 21, 2014

2

Response-time analysis

Interference:

• For static-priority scheduling, the interference term is

j

ihpj j

i
i C

T

R
I ∑

∈∀ 










=

)(

where is the set of tasks with higher priority than .iτ)(ihp

• The response time for a task is thus:
i

τ

∑
∈∀ 











+=

)(ihpj

j

j

i
ii C

T

R
CR

Response-time analysis

Response-time calculation:

• The equation does not have a simple analytic solution.

• However, an iterative procedure can be used:

∑
∈∀

+












+=

)(

1

ihpj

j

j

n

i
i

n

i C
T

R
CR

• The iteration starts with a value that is guaranteed to be
less than or equal to the final value of (e.g.)iR 0

i iR C=

• The iteration completes at convergence () or if
the response time exceeds the deadline

iD

1n n

i iR R+
=

Response-time analysis

Schedulability test: (Joseph & Pandya, 1986)

• An exact condition for static-priority scheduling is

ii DRi ≤∀ :

� The test is only valid if all of the following conditions apply:
1. Single-processor system

2. Synchronous task sets

3. Independent tasks

4. Periodic tasks

5. Tasks have deadlines not exceeding the period ()Di ≤ Ti

Response-time analysis

Time complexity:

� the longest period of a task is also the largest number in the
problem instance

Response-time analysis has pseudo-polynomial time complexity

� the procedure for calculating the response-time for all tasks
is therefore of time complexity O(max Ti{ })

Proof:
� calculating the response-time for task requires no more

than iterations Di

iτ

� since the number of iterations needed to calculate
the response-time for task is bounded above by Ti

Di ≤ Ti

iτ

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014 Lecture #6
UpdatedMarch 21, 2014

3

Response-time analysis

Accounting for blocking:

• Blocking caused by critical regions
– Blocking factor represents the length of critical region(s) that

are executed by processes with lower priority than

• Blocking caused by non-preemptive scheduling
– Blocking factor represents largest WCET (not counting)

i
B

i
τ

i
B i

τ

()

i
i i j

jj hp

i

i

R
R C CB

T∀ ∈

 
= + +  

 
∑

Observation: the feasibility test is now only sufficient since the
worst-case blocking will not always occur at run-time.

Response-time analysis

Accounting for blocking: (using PCP or ICPP)

� This occurs if the lower-priority task is within a critical
region when arrives, and the critical region’s ceiling
priority is higher than or equal to the priority of .

iτ
iτ

� When using priority ceiling a task can only be blocked
once by a task with lower priority than .

iτ
iτ

� Blocking now means that the start time of is delayed
(= the blocking factor)

iB
i

τ

� As soon as has started its execution, it cannot be
blocked by a lower-priority task.

iτ

Response-time analysis

Accounting for blocking: (using PCP or ICPP)

Determining the blocking factor for
i

τ

1. Determine the ceiling priorities for all critical regions.

3. Consider the times that these tasks lock the actual critical
regions. The longest of those times constitutes the blocking
factor .

iB

2. Identify the tasks that have a priority lower than and
that calls critical regions with a ceiling priority equal to or higher
than the priority of .

iτ

i
τ

(this page intentionally left blank)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014 Lecture #6
UpdatedMarch 21, 2014

4

Processor-demand analysis

Processor demand:

• The processor demand for a task in a given time
interval is the amount of processor time that the
task needs in the interval in order to meet the deadlines
that fall within the interval.

iτ
[]0, L

� Let represent the number of instances of that must
complete execution before .

L

iN iτ
L

� The total processor demand up to isL

1

(0,)

n

L
P i i

i

C L N C
=

=∑

Processor-demand analysis

Number of relevant task arrivals:

• We can calculate by counting how many times task
has arrived during the interval .

iτ
[]0, iL D−

L

i
N

� We can ignore instance of the task that has arrived during
the interval since for these instances.

i
D L>[],

i
L D L−

1
2

LN =

2
3

L
N =

t0 L

1
τ

2
τ

Processor-demand analysis

Processor-demand analysis:

• We can express as

� The total processor demand is thus

L

iN

1
iL

i

i

L D
N

T

− 
= +  

1

(0,) 1

n

i
P i

ii

L D
C L C

T=

−   
= +     
∑

Processor-demand analysis

Schedulability test: (Baruah et al., 1990)

• A sufficient and necessary condition for EDF scheduling is

: (0,)PL K C L L∀ ∈ ≤

� The test is only valid if all of the following conditions apply:
1. Single-processor system

2. Synchronous task sets

3. Independent tasks

4. Periodic tasks

5. Tasks have deadlines not exceeding the period ()Di ≤ Ti

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014 Lecture #6
UpdatedMarch 21, 2014

5

Processor-demand analysis

Schedulability test: (Baruah et al., 1990)

• The set of control points K is

K = Di

k
Di

k
= kTi + Di , Di

k
≤ L

max
, 1≤ i ≤ n, k ≥ 0{ }

Lmax = max D1, ... , Dn,
(T

i
− D

i
)U

i
i=1

n

∑
1−U















Lmax ≤ max max Di{ } ,
U

1−U
max Ti − Di{ }









≤ max max Ti{ } ,
U

1−U
max Ti{ }









Observation:

Processor-demand analysis

Time complexity:

Processor-demand analysis has pseudo-polynomial time

complexity if total task utilization is less than 100%

Proof:
� the number of control points needed to check the processor

demand is bounded above by

� since is a constant the procedure for calculating the
processor demand is therefore of time complexity O(max Ti{ })

U / (1−U)

QL

max
= max max Ti{ } ,

U

1−U
max Ti{ }









= max 1,
U

1−U








�max Ti{ }

� the longest period of a task is also the largest number in the
problem instance

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

Tasks are assigned static preemption levels:

� The preemption level of task is denoted

� Task is not allowed to preempt another task unless

� If has higher priority than and arrives later, then must
have a higher preemption level than .

τ i
π

i

τ i τ j
π i > π j

τ i τ j
τ i

τ j

Note:

- The preemption levels are static values, even though the tasks
priorities may be dynamic.

- For EDF scheduling, suitable levels can be derived if tasks with
shorter relative deadlines get higher preemption levels, that is:

π
i

> π
j

⇔ D
i

< D
j

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

Resources are assigned dynamic resource ceilings:

� Each shared resource is assigned a ceiling that is always equal
to the maximum preemption level among all tasks that may be
blocked when requesting the resource.

� The protocol keeps a system-wide ceiling that is equal to the
maximum of the current ceilings of all resources.

� A task with the earliest deadline is allowed to preempt only if its
preemption level is higher than the system-wide ceiling.

Note:
� The original priority of the task is not changed at run-time.

� The resource ceiling is a dynamic value calculated at run-time
as a function of current resource availability.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014 Lecture #6
UpdatedMarch 21, 2014

6

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

� Blocking factor represents the length of critical / non-
preemptive regions that are executed by tasks with
lower preemption levels than

� Tasks are indexed in the order of increasing preemption
levels, that is:

C
P

i =
L − D

k

T
k









 + 1







C

k

k =1

i

∑ +
L − D

i

T
i









 + 1







B

i

∀L ∈ K ,∀i ∈ 1,n  : C

P

i (0, L) ≤ L

i
τ

π i > π j ⇔ i < j

iB

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

Determining the blocking factor for

τ

i

1. Determine the worst-case resource ceiling for each critical region,
that is, assume the run-time situation where the corresponding
resource is unavailable.

2. Identify the tasks that have a preemption level lower than and
that calls critical regions with a worst-case resource ceiling equal
to or higher than the preemption level of .

τ

i

τ

i

i
B

3. Consider the times that these tasks lock the actual critical
regions. The longest of those times constitutes the blocking
factor .

End of lecture #6

