Parallel & Distributed
Real-Time Systems

Lecture #6

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #6
Updated March 21, 2014

55 ‘ @UNIVERSITYOFGOTHENBURG
Feasibility testing

What techniques for feasibility testing exist?
® Hyper-period analysis
— In a simulated schedule no task execution may miss its deadline
® Guarantee bound analysis
— The fraction of processor time that is used for executing the
task set must not exceed a given bound
® Response time analysis
— The worst-case response time for each task must not exceed the
deadline of the task
® Processor demand analysis

— The accumulated computation demand for the task set under a
given time interval must not exceed the length of the interval

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG
Feasibility testing

What techniques for feasibility testing exist?

® Hyper-period analysis (for static and dynamic priorities)
— In a simulated schedule no task execution may miss its deadline
® Guarantee bound analysis (for static and dynamic priorities)
— The fraction of processor time that is used for executing the
task set must not exceed a given bound
® Response time analysis
— The worst-case response time for each task must not exceed the
deadline of the task
® Processor demand analysis

— The accumulated computation demand for the task set under a
given time interval must not exceed the length of the interval

Response-time analysis

Response time:

® The response time R, for a task z; represents the worst-
case completion time of the task when execution
interference from other tasks are accounted for.

The response time for a task 7, consists of:
C, The task’s uninterrupted execution time (WCET)
I, Interference from higher-priority tasks

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Response-time analysis

Interference:
® For static-priority scheduling, the interference term is
Ri
I Vjezm;(i)’VTj -‘ C/
where hp(i) is the set of tasks with higher priority than z,.
* The response time for a task z, is thus:

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #6
Updated March 21, 2014

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Response-time analysis

Response-time calculation:

® The equation does not have a simple analytic solution.
® However, an iterative procedure can be used:

Rn+1

The iteration starts with a value that is guaranteed to be
less than or equal to the final value of R, (e.g. R’ =C,)
The iteration completes at convergence (R =R") or if
the response time exceeds the deadline D,

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Response-time analysis

Schedulability test: (Joseph & Pandya, 1986)
® An exact condition for static-priority scheduling is
The test is only valid if all of the following conditions apply:
1. Single-processor system
2. Synchronous task sets
3. Independent tasks

4. Periodic tasks
5. Tasks have deadlines not exceeding the period (D, <T,)

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Response-time analysis

Time complexity:

Proof:
calculating the response-time for task 7, requires no more
than D, iterations
since D, <T,the number of iterations needed to calculate
the response-time for task 7; is bounded above by T;

the procedure for calculating the response-time for all tasks
is therefore of time complexity O(max{7}})

the longest period of a task is also the largest number in the
problem instance

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #6
Updated March 21, 2014

Response-time analysis Response-time analysis
Accounting for blocking: Accounting for blocking:
® Blocking caused by critical regions When using priority ceiling a task z, can only be blocked
— Blocking factor B, represents the length of critical region(s) that once by a task with lower priority than T
are executed by processes with lower priority than 7,
e Blocking caused by non-preemptive scheduling This occurs if the lower-priority task is within a critical

region when , arrives, and the critical region’s ceiling
priority is higher than or equal to the priority of 7,.

Blocking now means that the start time of 7, is delayed
(= the blocking factor B,)

As soon as 7, has started its execution, it cannot be
blocked by a'lower-priority task.

— Blocking factor B, represents largest WCET (not counting 7,)

Observation: the feasibility test is now only sufficient since the
worst-case blocking will not always occur at run-time.

Response-time analysis (this page intentionally left blank)

Accounting for blocking:

Determining the blocking factor for 7,

1. Determine the ceiling priorities for all critical regions.

2. |dentify the tasks that have a priority lower than 7, and
that calls critical regions with a ceiling priority equal to or higher
than the priority of ;.

3. Consider the times that these tasks lock the actual critical

regions. The longest of those times constitutes the blocking
factor B,.

Processor-demand analysis

Processor demand:

® The processor demand for a task 7, in a given time
interval [0, L] is the amount of processor time that the
task needs in the interval in order to meet the deadlines
that fall within the interval.

Let N/ represent the number of instances of 7, that must
complete execution before L .

The total processor demand up to L is

onsig

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #6
Updated March 21, 2014

Processor-demand analysis

Number of relevant task arrivals:

® Wecan calculate N by counting how many times task 7;
has arrived during the interval [0,L—D,]

We can ignore instance of the task that has arrived during
the interval [L—D,,L] since D, > L for these instances.

Processor-demand analysis

Processor-demand analysis:
® Wecan express N/ as

The total processor demand is thus

n

C (0

Processor-demand analysis

Schedulability test: (Baruah et al., 1990)
e A sufficient and necessary condition for EDF scheduling is

wericoned

The test is only valid if all of the following conditions apply:
1. Single-processor system

2. Synchronous task sets

3. Independent tasks

4. Periodic tasks

5. Tasks have deadlines not exceeding the period (D, <T,)

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Processor-demand analysis

Schedulability test: (Baruah et al., 1990)
® The set of control points K is

K ={ D}| D =kT,+

Observation:

L. Smax{max{ D‘.},% max{]"i—Di}} Smax{max{]}},% max{]"i}}

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #6
Updated March 21, 2014

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Processor-demand analysis

Time complexity:

Processor-dem

Proof:

the number of control points needed to check the processor
demand is bounded above by

U U
L =maxymax{T,},—— max{T,} f =maxy 1, —— Omax{T,
0 =max{max(7), U max(7} =max1, L Hrmax()

since U/(1-U)is a constant the procedure for calculating the
processor demand is therefore of time complexity O(max{7;})

the longest period of a task is also the largest number in the
problem instance

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Processor-demand analysis

Accounting for blocking:

Tasks are assigned static preemption levels:
The preemption level of task 7, is denoted 7,
Task 7;is not allowed to preempt another task 7 unless 7, > 7

If 7, has higher priority than 7.and arrives later, then 7, must
have a higher preemption levél than 7.

Note:

- The preemption levels are static values, even though the tasks
priorities may be dynamic.

- For EDF scheduling, suitable levels can be derived if tasks with
shorter relative deadlines get higher preemption levels, that is:

7,>%, © D, <D,

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Processor-demand analysis

Accounting for blocking:

Resources are assigned dynamic resource ceilings:

Each shared resource is assigned a ceiling that is always equal
to the maximum preemption level among all tasks that may be
blocked when requesting the resource.

The protocol keeps a system-wide ceiling that is equal to the
maximum of the current ceilings of all resources.

A task with the earliest deadline is allowed to preempt only if its
preemption level is higher than the system-wide ceiling.

Note:
The original priority of the task is not changed at run-time.

The resource ceiling is a dynamic value calculated at run-time
as a function of current resource availability.

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Processor-demand analysis

Accounting for blocking:

Blocking factor B, represents the length of critical / non-
preemptive regions that are executed by tasks with
lower preemption levels than 7,

Tasks are indexed in the order of increasing preemption
levels, thatis: 7z,>7, i<j

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013 /2014 Lecture #6
Updated March 21, 2014

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

Processor-demand analysis

Accounting for blocking:
Determining the blocking factor for T,

1. Determine the worst-case resource ceiling for each critical region,
that is, assume the run-time situation where the corresponding
resource is unavailable.

2. ldentify the tasks that have a preemption level lower than 7 and
that calls critical regions with a worst-case resource ceiling‘equal
to or higher than the preemption level of 7.

3. Consider the times that these tasks lock the actual critical
;egions. The longest of those times constitutes the blocking
actor B..

CHALMERS ‘ @UNIVERSITYOFGOTHENBURG

End of lecture #6

