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A key parameter of the ring is the walk time Wr, which is the time it takeg
a token to make a complete circuit of the ring. It can be shown that the walk time
in an n-node system is given by

Wr = —1)Dp+ L + Tpop (6.8)
where
n Number of nodes in the ring.
Dp Station delay; delay caused by each node.
L Buffer latency.
Torop Message propagation time round the ring.

Schedulability analysis. We make the assumption that the traffic consists of a
periodic load whose deadline is upper-bounded by the period. Scheduling packets
for transmission is different from scheduling tasks in the following respects.

e A packet transmission cannot be preempted and then resumed without

penalty; if a packet transmission is interrupted, it has to be retransmitted
all over again.

e Overhead is incurred in transmitting a message. It is not just the message
bits that are transmitted, but also a header (consisting of the SD, AC, ED,
and destination and source fields) and a trailer associated with each packet.

e Since the system is distributed, decisions as to which packet has the highest
priority may be made on the basis of outdated information.

Example 6.17. Consider the token ring shown in Figure 6.35. Node 7, has traffic
generated at periods of 5, 6, and 10, respectively; n, periods of 5, 9, and 11, n3
periods of 4 and 6, and n4 of period 10. Table 6.3 shows the priorities of the packets6
awaiting transmission on each node along with their arrival time.

Consider what happens when the token flows past the four nodes at times 6, 7,
9, and 10, respectively. At time 6, node n, writes the priority of its most important
packet on the reservation field. At time 7, n,’s highest priority is the same, solit
does not overwrite the reservation field. At time 9, when the token goes past it,

n
ny 2

ny n; FIGURE 6.35
Token ring for Example 6.17.

6The lower the priority number, the higher the priority.
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TABLE 6.3
Packet priorities and

arrival times

Node (Period, arrival time)

(5. 5), (6, 6). (10, 10)
(5,5). (9. 9), (11, 11)
(5. 5), (4, 10)

(10, 10)

ni
12
n3
14

n3’s highest priority is also the same, and so again the token reservation bits are not
changed. The reservation bits are also unchanged by n4. Suppose the token returns
to n; at time 12. The reservation bits allow transmission of a packet with period 5.
Since 1y has a packet of this period, it is allowed to transmit. At this time, though, it
is not n; but n3 that has the highest-priority packet (of period 4). However, ny will
not have a chance to update the reservation bits until the next transit of the token,
and so the decision to allow n; to transmit is based on outdated information.

We can now write the necessary and sufficient conditions for the set of tasks to be
schedulable. Let d; be the deadline associated with task 7;; we assume d; < P;.
b; is the maximum time for which a 7; packet can be blocked.

Theorem 6.4. The task set 77, 7>, ..., T, is schedulable iff for all i = 1,...,n,
there is some 7, 0 < r < d; such that
i / —I
Z e | — ‘ -+ System overhead + b; <t (6.9)
= A
Proof. This is virtually identical to the corresponding result for uniprocessor sch.edul-
ing in Section 3.2.1 (in Handling Critical Sections) and therefore the proof is omitted.

The necessary and sufficient conditions for schedulability require us to know
€j, P;, b;, and the system overhead. Of these, P; is defined by the application, and
the system overhead is defined by the system. This leaves e;j and b;.

e; is the execution time associated with sending a message of 7;. It has three
components.

L The time it takes to capture the token when the node has the highest-priority
message. Even when a correct reservation has been made and blocking by a
lower-priority packet does not occur, this can be as large as Wr per packet. Fpr
€xample, the node that currently owns the token may have the highest priority
message to transmit next, but it still needs to send the token through all the
other nodes before it can send out the next packet.

2. The time it takes to transmit the message. Suppose we are given that 7; trans-
mits a message of up to m ; bits every P; seconds. Let m.,, be the number of bits
In the encapsulation part of each packet (i.e.. the portion of the packet that is
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not the message bits). Then, each packet can carry up to mpayload = Prax — e
message bits. To transmit m; bits of message thus requires [m; / Mpayload ] Pack-
ets. The total number of bits transmitted for a total of m; message bits is thug
m;j + [m;/Mpayload | Mene bits. If the ring can transmit at the rate of b bits g
second, this takes a total of

m + I—mj /m payload_l Menc
Ttrans — b (6.]0)

seconds.

3. The time it takes to transmit the token when the packet transmission is over,
This is given by Tyken, Which is a system parameter.

Denote by 154 the time taken for the sending node to receive the SA part
of the packet back on the ring. Now, consider two cases.

Case 1. The message fits within one packet. If m; + mene = Wr + 154,
the transmitting node will have received back the header of its own packet
before it finishes transmitting the packet, and recognized it as its own. Hence,
the moment that packet transmission ceases, a new token can be issued. For
this case, we therefore have ¢; = Wr + Tirans + Token- If, on the other hand,
mj 4+ Mene < Wr + Tsa, then the transmitting node will have to wait until it
gets the SA field of its own packet. For this case, ¢; = 2Wr + Tsa + Tioken-
We can therefore write:

0 — { W1 + Tians + Ttoken

/ 2Wr + Tsa + Tioken
Case 2. The message fits within multiple packets. The reasoning is the same
as for Case 1, except that we have to account for multiple waits for the token.
The packets will each be of size Ppay, except possibly the last one, which
may be smaller. Let us make the approximation that all the packets are of
size Puax. Following exactly the reasoning in Case 1, we can write:

0. A m; + [m; /Mpayload | (Tirans + Wr =+ Tioken) if Wr + tsa < Pmax
! [m;/m payload—l (W7t + Tsa + Tioken) otherwise

if mj + Mene = Wr + Tsa

otherwise 6.1D)

(6.12)

Deriving b;, the maximum time for which a T; packet can be blocked, is
somewhat simpler. The worst-case blocking occurs if a higher-priority packet
arrives just after the reservation bits associated with the a lower-priority transmis-
sion have gone past it, and there is another lower-priority packet that has been
successful in setting its reservation bits. We saw an illustration of this in Exam-
ple 6.17. In such a case, the higher-priority packet will have to wait until after
both the ongoing and the following transmission have completed. From this. and
using reasoning similar to that of the derivation for e;, it is possible to show that

b, < { 2(Pmax + Ttoken) + WT
i =

if Wr + tsa < Prax (6.13)
2(Wr + tsa + Tioken) + Wr

otherwise

Some implementation issues. In our derivation, we have assumed that there are
enough reservation bits to express the full range of priority levels. The 802

z
E
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standard specifies three priority bits; that is, it can support up to eight priority
Jevels. If the number of task priority classes is greater than eight, the only recourse
is to map multiple task-priority classes into the same ring-priority levels. This can
cause additional blocking.

Example 6.18. Suppose we have a total of 16 task priority classes. Since we only
have eight priority levels in the ring, we can group priority classes (2/ — 1) and 2i
into ring-priority level i. Thus, priority classes 1 and 2 will be grouped into ring-
priority level 1; classes 3 and 4 into ring-priority level 2, and so on. As the ring
gives the same priority to both classes 3 and 4, and this may cause a class-3 packet
to be blocked by a class-4 packet.

If possible, the implementation should therefore be modified to allow addi-
tional priority levels to be supported. In retrospect, it 1s unfortunate that the 802.5
standard specifies only three bits for priority. Allocating just a few additional bits
would have made the protocol much more useful for real-time systems.

Another issue is Pmax, the maximum packet size. If this is very small, the
overhead associated with the encapsulating bits will be dominant. If it is very
large, this can increase packet blocking. Ppax must be chosen carefully, based on
the designer’s knowledge of the application.

6.3.3 Stop-and-Go Multihop Protocol

The stop-and-go protocol is another technique to meet hard deadlines on packet-
delivery times. Unlike the previous algorithms, it is a multihop packet delivery
algorithm (i.e., there is not necessarily a direct link between source and destina-
tion).

The algorithm meets hard deadlines by assigning fractions of the available
bandwidth on each channel to several traffic classes in such a way that the time
it takes to traverse each of the hops from source to destination is bounded. The
upper bound to the overall packet-delivery time is then simply the sum of the
upper bounds of each hop. The algorithm also bounds the demand for buffer
space.

The concept of the frame is central to this algorithm. A frame is defined as an
interval of time. Frames are associated with network links and are not synchronized
across links. There can be multiple frame types, each defined as a different interval
f)f time. We can visualize the generation of a virtual frame-begin signal at the
input end of each link at appropriate times. This signal travels down the link and
defines the beginning of the frame at each point at which it arrives. That is, the
frame-beginning time varies from point to point along the link. An instance of a
frame of type f; ends when the next instance of f; begins.

Each frame type is associated with a traffic class. When a packet associated
Wwith frame type f;, called a type-i packet, arrives at an intermediate node 7 en
Toute to its destination, it is held by node » at least until the beginning of the next
Instance of its frame f;, and is transmitted during that frame. As long as we can
Suitably bound the number of packets associated with each frame type, we can




266 REAL-TIME SYSTEMS
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FIGURE 6.36
A two-hop path.

n ) 3

ensure that there will be time enough in each frame for every packet associateq
with that frame type to be transmitted during it.

Example 6.19. Consider a type-1 packet, that is, one associated with frame type
/1, which must travel from node n; to node n3 through node n,. See Figure 6.3,
There are two hops to the path taken by the packet. Let the propagation time over
the link £, = 1y — ny and £y3 = 1y — n3 be 112 and 133, respectively. Figure 6.37
shows frames of type f) at the beginning and end of £, and £,3, respectively.

In what follows, we will assume, without loss of generality, that f| > f, >
- > fn;» where there are Ny frame types.

THE PROTOCOL. The stop-and-go protocol is a distributed algorithm; each node
works independently without central control. A type-i packet that arrives at node
n;, and must be retransmitted by that node, becomes eligible for transmission only
on the beginning of the following f; frame. All nodes eligible for transmission
are served in nonpreemptive priority order, with the type-i packet having priority
over all type-k packets for k < i. The node is idle (i.e., does not transmit) only
when there are no packets left to transmit.

Example 6.20. Consider a node n with one incoming and one outgoing link. There
are two traffic types. Figure 6.38 shows the arrival of several packets, when they
become eligible for transmission, and when they are actually transmitted. Class-1
frames at the outgoing link begin at epochs «, B, . §, and class-2 frames at epochs

|<— h f1 i f h

| n, transmission end

~— A U U /i /i /i | IIII'CL‘Ci\'Cl"Sﬂd

h i
11, transmission end
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FIGURE 6.37
Frames at edges £1> and £53.
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FIGURE 6.38
A two-class system.

A, B, C. There are six classjgf;arrivals, labeled 1, 2, 3, 4, 5, 6, and four class-2 1
arrivals, labeled a, b, c, d. - “

PERFORMANCE. If the network loading is kept below a certain limit, a type-
m packet will be transmitted within f,, time units of being marked eligible for
transmission. This places an upper bound on the delay suffered by a packet at
each node in the system.

More precisely, let C é denote the total load on link £ due to class-i packets,
with C, denoting the total capacity of the link. Let I" denote the maximum packet
size. Then, if the following inequalities are satisfied

N r e
. fi fi ; Cy— = ifj=2,...,N

EC’(l—k(—j‘l)——ij{ fi

e fil) f; c. U oirj=1

then every type-m packet will be transmitted within f,, time units of becoming
eligible. Furthermore, the buffer required per link £ for traffic of type i is bounded:

B, <3C}- f; (6.15)

(6.14)

For a pointer to the (somewhat lengthy) proof of this fact, we refer the reader to
Section 6.4.

This algorithm therefore offers a means to meet hard deadlines on packet-
delivery times by bounding the delay at each node. The time taken by a class-i
packet to become eligible is at most f;, and since it is transmitted within f; of
becoming eligible, it is not delayed by more than 2 f; at any node. Adding to this
the message-propagation and packet-processing delays yields the upper bound on
the packet-delivery delay.
~ Given messages of varying deadlines, the designer must provide enough
link capacity, and determine what the frame sizes should be in order to meet

the deadline requirements. Some of the related design issues are explored in the
Exercises.

6.3.4 The Polled Bus Protocol

The polled bus protocol assumes a bus network with a bus-busy line. When a
Processor broadcasts on the bus, it also maintains this line high. When it finishes
brOadcasting, this line is reset. This can be done very easily if the line executes a
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wired-OR operation; by this we mean that if two signals a and b are put out op
the line simultaneously, the resultant signal is a. OR.b.

All the processors are assumed to be tightly synchronized. The time axis ig
divided into slots. Each slot is of duration equal to the end-to-end propagatiop
time of the bus. i

When a processor has something to transmit on the bus, it checks the bus-
busy line to see if it is busy. If it is, it waits until the transmission ceases. If it
is not, it monitors the bus for one slot. If, during that slot, no other processor
makes a request, the processor starts transmitting a poll number on the busg. This
poll number is directly proportional to the priority of the message, as will become
apparent in a moment.

The poll number is transmitted slowly, one bit per slot. After transmitting its
bit, the processor monitors the bus to see if the signal on the bus is the same as its
own output. If it is not, it means that there is a higher-priority processor asking for
access, and this processor drops out of contention and stops transmitting its poll
number. If, on the other hand, the bus signal is the same as the bit it transmitted at
the beginning of the slot, the processor proceeds during the next slot to broadcast
the next bit of the poll number. This process continues until it either sends out
its entire poll number successfully (in which case, it has mastery of the bus and
can start its transmission), or until it has to drop out of contention because it has
detected a processor with a higher-priority message.

Let us examine this protocol. If one processor has already started transmitting
its poll number no other processor can intervene, no matter what the relative
priorities of their messages. If multiple processors transmit their poll numbers
simultaneously, only one of them will not have dropped out by the end of the
poll phase. For example, suppose there are two processors competing for the bus,
with poll numbers A = a;---a, and B = by - - - by, respectively. Since we have
said that no two poll numbers can be identical (we will see later how this can
be ensured), either A > B or A < B. Suppose, without loss of generality, that
B > A. In that case, there must be some i, 1 <i < n such that

e g; =b; forall 1 < j < i (this, obviously, only applies if ; > 1), and
® d; < bi (i.e., a; =0,b;, = 1).

Let By denote the bus output during slot k. Since the bus implements a wired-OR
operation, we have

[} Bj = (ajOij) =a; = bj for all 1 < ] < 1, and
® B,‘ = (CZ,'ORb,‘) = bl' 7‘/—‘ a;.

Thus, at the end of the ith slot, the processor with poll number A will drop out
of contention.

Example 6.21. Suppose A = 01110011, B = 01110100. Figure 6.39 shows what
happens.

REAL-TIME COMMUNICATION 269

A output stops here
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B output

bus output

FIGURE 6.39 ‘
Poll numbers and contention resolution, Example 6.21.

If the slot duration (i.e., the end-to-end bus propagation tirpe) is s and the
poll number has p bits, then the polling procedure takes. sp units Qf time. The
value of p depends on what kind of priority scheme we are implementing. Suppose
that we have a straightforward priority scheme, where each message has_one pf K
priorities. To ensure that the poll number transmitted by each process is unique,
we must append to this priority the id of the processor. If there are 71y Processors,

= K +log, nproc-
"3 %upé)?)%é, in;eac%zthgto Cwe have to implement a deadllipe-drivenr sch.erne. The
poll number will now consist of two fields, a field containing the negative of the
deadline (in 2’s complement), followed by a field containing the processor id. T he
size of the deadline field will depend on the maximum possible deadline that 1s
allowed (relative to some suitably-defined origin).

This approach is very versatile. Suppose, for example, that we want to
implement a combined deadline-driven and priority scheme. If.two.mt.zslsages have
the same deadline, then the tie is broken on the basis of their priorities. If they
have both the same deadline and the same priority level, the tie is broken based
on the processor id. In such a case, we will have three fields in. th§ poll numb;r:
one for the 2’s complement of the deadline, a second for the priority, and a third

- for the processor id. Note that it is essential to have the processor id, since only

that ensures that each processor transmits a unique poll number.
Because of the polling overhead, this algorithm is efficient only on systems
with small end-to-end propagation time.

6.3.5 Hierarchical Round-Robin Protocol

This protocol guarantees that each traffic class i can transmit up to m; packets
every T; time units, for prespecified m; and ;. As with the stop-and-go protocol,
We can bound the delay encountered by a packet at each intermed1at§ nqde. Mul—
tiplying this by the number of hops between the sender and the destination gives
4 upper bound for the total network delay.



270 REAL-TIME SYSTEMS

All traffic is classified into n classes, for a suitable n. Associated with each
traffic class 7 is a three-tuple (n;, b;, ®;), where ®; is the frame associated with
class i. Assume, without loss of generality, that ®; < &, < ... < ®,. The
time unit is the time taken to transmit a single packet. The maximum number of
class-i packets that may be transmitted during any given frame is n;, of which
each source j can be allocated a certain maximum number «; (j). If this numbey
has been transmitted, or there are no class-i packets left for transmission, then the
server goes on to serve class-(i + 1) packets, if any, and so on, for a maximum
of b; packets during that class-i frame. There is no prespecified order in which
the packets must be served, so long as each class receives its allotted service
per frame. Also, this protocol is non-work-conserving, which is to say that it
is possible for the transmitter to be idle even though there are packets awaiting
transmission. This happens when these packets have exhausted their quota under
the current frame and must wait for the next frame.

Example 6.22. Consider a system of three classes, with the following allocations:

__
w W
—_ W

o

10

Source Class Allocation
S1 1 3
8o 1 1
$3 2 2
S4 3 1

Figure 6.40 shows the schedule that results. In each frame @, of duration 6, class-1
traffic takes up three slots and the rest are reserved for classes 2 and 3. Similaﬂ%
in each frame ®, of duration 10, class-2 traffic takes up three slots, with one being
reserved for class 3.

nnnBBnnnEnnnnnnnnnon
0 5 10 15 20

FIGURE 6.40
Schedule for hierarchical round-robin scheduling.
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i
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It is straightforward to compute the maximum delay at each hop, as well as
the buffer requirements. If «; packets are allocated to a source per frame, the buffer
requirement for that source will be upper-bounded by 2¢;. The worst case will oc-
cur when «; packets arrive at the end of one frame and another «; at the beginning
of the next. The delay at a node for class-i traffic will be upper-bounded by 2®;.
The worst-case delay occurs when a packet arrives just after the quota for its class
has been exhausted, and it must wait for its next frame. It follows that messages
that must be delivered quickly must have frames that are particularly short.

6.3.6 Deadline-Based Protocols

A deadline-based protocol on a point-to-point network consists of each node trans-
mitting the packet with the earliest deadline. There are two variations on this, pre-
emptive and nonpreemptive. In preemptive protocols, if a node receives a packet
with a deadline earlier than the one it is currently transmitting, it aborts the cur-
rent transmission, and starts transmitting the new arrival immediately thereafter.
In nonpreemptive protocols, no interruption is allowed. It is also possible to define
a continuum of protocols between these extremes, where an ongoing transmission
is aborted as a function of the deadlines of the packets, and the fraction of the
currently transmitted packet that has already been sent out.

The simplest version of this protocol runs on such networks as unidirec-
tional rings, which have a unique path from any source to any destination. Here
we focus on multihop systems, and present the earliest-due-date-deadline (EDD-D)
protocol. This is designed with local-area networks in mind, rather than multipro-
cessor/distributed system interconnects, but it can be used in either setting.

When sender s wishes to be assured of real-time communication with des-
tination d, EDD-D sets up an s — d channel that has enough capacity to meet
the real-time requirements. EDD-D recognises three kinds of traffic.

Guaranteed traffic: The system must ensure that every packet in such traffic
arrives by its deadline.

Statistical real-time traffic: No more than a certain percentage of these pack-
ets of any stream may miss their deadline.

Nonreal-time traffic: These packets are not deadline-sensitive and may only
be sent over a link when neither of the first two classes requires it.

Associated with these traffic categories are deadline, statistical, and nonreal-time
channels, respectively.
The traffic between any source-destination pair i is characterized as follows.

Xmin,; The minimum interarrival time between successive packets.

\7 The minimum of the average packet interarrival time, over some interval
of duration / for a given number /.

Stmax The maximum packet size.

Inay, The maximum service time at each node for the packets.
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For guaranteed traffic, we specify the packet-delivery deadline; for statistical reg].-
time traffic, both the packet-delivery deadline and the acceptable percentage of
packets that can miss that deadline.

The protocol reserves bandwidth for source-destination pairs, one by one,
When source s wishes to have deadline channel i set up to destination d, the
system sets up a path from s to d. If the path is of length 7, Up t0 Al ; time
can be consumed in the process of storing and forwarding each packet. If the
packet deadline is D;, the available slack is 0; = D; — ntyax.;- This slack ig
divided equally among all the nodes; that is, each node along the way has its own
local deadline and has to forward the packet within §; :‘/(rmax,,' + oj}/n time of
receiving it.

If node s wishes a statistical real-time channel i set up to node d, the
acceptable deadline-missing probability, 7Ty ; is divided among the n nodes on
the s — d path. The slack time is also divided among the nodes in the same
manner as for guaranteed traffic. Each node m along the s — d path must not miss
this deadline with more than probability Tmiss.i.m» Where > Tmiss,i,m < Trmiss, i
We deal below with how to pick Tmiss.im-

NODE CONSTRAINTS. All the nodes on channel i are chosen to satisfy some
constraints. The following constraints are with respect to node . We denote
by D,, and S, the set of deadline and statistical channels passing through m,
respectively. We define Cy = Dy U S

Deterministic constraint. The node must have enough processing capacity to
deal with all the traffic that is passing through it. If C,, is the set of channels
passing through node m, we must have

> tonasjin < 1 (6.16)

J€Dnm

If this bound is not satisfied, the node will not be able to cope with all the
guaranteed packets it has to deal with. Of course, this constraint is vacuous if
D,, = @, (i.e., if node m is not carrying any guaranteed traffic).

Statistical constraint. The statistical constraint applies to nodes that are carrying
statistical real-time traffic. It ensures that the fraction of packets that miss thelr
deadline is below the specified limit. To compute this, we must calculate the
probability of deadline overflow.

The probability that channel i is active (i.e., carrying packets) at a random
epoch in an interval of duration / is given by

6.17)

pPi = xmin,i/xav.i

The probability that at any time, channels in set S C C,, are simultan€0u51y
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active is’
n@s=[p JI a-p 6.18)
ieS ieCpn—S
Define an overflow combination as a set of channels ®,, € C,, such that
Z tmax,j/xmin,j >1 (619)
je(bm

If channels in @, are active for sufficiently long, they will overwhelm node m,
and render it incapable of meeting deadlines. The probability that this happens is
given by [1(®,,). If ®,, is the set of all overflow combinations for node m, then
the probability that node m will suffer deadline overflow is given by

Paom =y, TI(X) (6.20)

Xe®y

The statistical constraint is satisfied if

Pdo,m < TTmiss,i.m (621)

The statistical constraint is not sufficient to ensure that the statistical traffic will
perform as specified. We require a further constraint.

Scheduler saturation constraint. Scheduler saturation occurs whenever it is
mathematically impossible to meet deadline constraints. For example, if a node
receives two packets at times 1 and 2, respectively, each of which has a dead-
line of 10 and requires 9 time units to be forwarded, it is impossible to meet both
deadlines. The scheduler saturation constraint is meant to check for this possibility.

Let us divide the deadline and statistical channels passing through node m
into two sets as follows:

1Cll
A= {i'&- <3 zmax,j} 6.22)

j=1
B=C,—A (6.23)
Without loss of generality, number the channels in set A as 1,..., | A|l, and the
channels in set B as ||A|| +1, ..., |Cnll. Then, we have the scheduler saturation
constraint to be
i
8 z Z fmax,j + max,lf}{’ﬂ::f\“ k (6.24)
=1 ‘-'JE‘Cm ’ , :’l, »u!“%”

_ P 2k £11Cml
It 15 not difficult to show that if Equation (6.24) is satisfied, scheduler saturation
Will not occur. This is left for the reader as an exercise.

7
We assume that these channels are statistically independent.
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Buffer space constraint. How much buffer space must be available at a node ¢,
ensure that no guaranteed or statistical packets are dropped because of insufﬁciem
space? If we assume that a packet is dropped the moment it violates its deadline,
each packet of connection i will.stay in node m for no more than é;. The maximup
space needed by channel-i packets at node m will thus be

,B(is m) = Smax,i |—8i/xmin.i~| (625)
Assume that the nonreal-time packets are dropped to make room for guaranteeq
or statistical packets wherever necessary. The total buffer space needed at node
m is thus equal to

B(m) = Y B(i.m). (6.26)

ieCy

Constraint application. All nodes must satisfy the buffer constraint if no buffer
overflow is to be tolerated for the real-time traffic. A node carrying guaranteed
traffic must satisfy the deterministic and scheduler saturation constraints, and a
node carrying statistical traffic must satisfy the statistical and scheduler saturation
constraints.

As we have said earlier, when s asks to establish a channel to d, the system
picks a path from s to d such that each node on that path satisfies the appropriate
constraints. If the channel being established is statistical, the nodes must be picked
so that Zm Tmiss,i,m < Tmiss,i- (Alternatively, we may set Tyiss jm = Tiniss.i/1-)
The process of establishing the channel consists mainly of trial and error. When
there are multiple paths from s to d, we try them one by one until we can find a
path that meets all constraints.

Each node has three queues, one each for deadline, statistical and nonreal-
time traffic. The packets in the first two queues are stored in increasing order of
deadline. The packets in the deadline queue may have their deadlines transformed
as follows. If we have two packets whose LTTT (to meet their respective dead-
lines) would cause them to overlap, we move the deadline of one of them forward
so that this does not happen.

Example 6.23. Two packets with LTTTs of 30 and 34, respectively, have arrived. It
takes five time units to transmit each of them. If we begin each packet at its LTTT,
they collide. Hence, we adjust the LTTT of the first packet from 30 to 34 — 5=29.

The packet to be transmitted is picked as follows. The deadline of the head-
of-the-line (HOL) packet in the statistical queue is compared with the LTTT of the
HOL packet in the deadline queue. If the former is no sooner than the latter, the
guaranteed packet is transmitted; otherwise the statistical packet is chosen. If both
the deadline and statistical queues are empty, the nonreal-time traffic is served.

It may be possible to provide better service to the nonreal-time que}le by
allowing its packets to be served when that can be done without any deadline of
statistical packet missing its deadline.

DELAY JITTER. Let us now turn to the issue of jitter. Delay jitter is variancekleri
the delay. In many applications, such as multimedia, the early arrival of a pac
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is almost as bad as a late arrival. In addition to the deadline, we can have a jitter
bound for each channel. That is, we can require that packets transmitted on channel
i have a source-to-destination delay in the range [D; — J;, D;]. A guaranteed chan-
nel ensures that each packet satisfies this range; a statistical channel ensures that
the probability of packet-delivery times being outside this range is below s ;.

The EDD-D algorithm can easily be modified to bound the jitter. In addition
to the LTTT, each node has an earliest-time-to-transmit. The details are left for
the reader as an exercise.

6.3.7 Fault-Tolerant Routing

When there is more than one path from a source to a destination, there is the option
of flooding. This is a concept borrowed from packet-radio networks. Multiple
copies of the packet are transmitted, each copy along a different path, (i.e., through
different sets of intermediate nodes). This guards against a single packet being
delayed beyond its deadline by other packets using part of the same path. It also
protects against failures that cause some paths to be broken.

The question now is how many copies to send out. The more copies of a
message we send out, the greater the probability that it will reach its destination
before its deadline. We might, therefore, want to send out many copies of those
messages with tight deadlines. However, if we send out too many copies of such
messages, other time-critical messages with later deadlines may find it impossible
to reach their destinations on time, although multiple copies of the tight-deadline
messages are delivered on time. Given that, on a point-to-point network, each
node has only local information about the traffic, it is impossible to compute the
optimal number of messages to be sent out. It is tempting to conjecture that the
function for the optimal number of copies has the form shown in Figure 6.41.
Packets with very tight deadlines are unlikely to encounter higher-priority packets
on their way, and packets with very loose deadlines are unlikely to require multiple
copies in order to meet their deadlines. The number of copies of such messages
can thus be kept small. However, a proof of this, and of other characteristics of
this protocol, awaits further research.

Number of copies

FIGURE 6.41

Deadline of packet Possible function for the optimal number of copies.
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6.4 SUGGESTIONS FOR FURTHER
READING

Tannenbaum [19] is an excellent introduction to

. . computer networks in a
The VICSMA algorithm was invented by Molle and Kleinrock [15] for geenerql
purpose systems, and modified for real-time traffic by Zhao and Ramarifiral_
[22]. This reference also has detailed simulation studies of the perfor e

. ) m
algorithm, The window protocol is introduced by Zhao, Stankovic aniln;arorfathe
9 m_

ritham [23].

The timed-token protocol is described by Grow
bounds on the token-rotation time are due to Sevc};k and J OI[ESO??I glgld[ioo]- 5
C.heng3 and Zhao [1]. A good description of its fault-tolerance measures DjrawaL
vided in Johnson [11]. The October 1989 issue of JEEE Communication o
excellgnt tutorial introduction to optical networks. Particularly noteworth ) 1fs I
our point of view, are Henry [10], which is a description of optical networ}llq’s r]i)m
and Zah [14], which describes tunable optical transmitters (lasers), and Kobr} Tj
and Cheung [13], which is an excellent source for tunable opticai receivers nSS ;
also [9] for an introduction to optical systems. k-

Implementing the RM algorithm ato
discussed by Sathaye and Strosiider [17]. P the IEHR 802.5 protocal bus beg

Golestani [7] is the source for the discussion of -and- o 1
contains the proof of the delay and buffer upper bountdhsf.: FiopantEo protocs 8

The hierarchical round-robin protocol is due to Kalmanek et al. [12], and
the EDD-D protocol to Ferrari and Verma [4]. A discussion of the buffer ;pace
requirements of the EDD-D protocol is provided in [5], and the modification of
it to bound jitter can be found in [21].

The concept of flooding was first described in connection with packet-radio
networ1-<s. See, for example, Gitman, et al. [6]. Ramanathan and Shin [16] sug-
gested its use for real-time systems, and presented an approximate mathematical
model for its analysis.

The protocols presented here are not by any means the only ones that have
been studied for real-time systems. For example, Choi and Krishna [2] describe
a token—bgsed algorithm that allows a very large number of traffic classes, with
time-varying priority, to share the same network. This is particularly useful when
the volume of ‘real-time traffic that a node must transmit can vary widely from

F:yc[l36 to cycle. Another interesting protocol is weighted fair queueing, described
in [3].

EXERCISES

6.1. Consider the packet arrival times in Example 6.9 and develop a set of clock skews
for which all four packets are successfully transmitted for n=2.

6.2. We always set n > 1 in the VTCSMA algorithm. What would happen if 7 < 1

6.3. Given a five-node system, assume that the packet transmission time is | and the
end-to-end network delay is 4. This means that to meet its deadline of d, a packet

must start its transmission no later than d — 5. Use the VTCSMA-D algorithm to do
the following. =
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{a) Construct a situation (i.e., arrival times and deadlines) in which all packets are
transmitted successtully if n = 10, but some packets miss their deadlines if
= 4.
(b) gonstruct another situation in which all packets are transmitted successfully if

5 = 4, but where some packets miss their deadlines if n = 10.
6.4. Assuming that the clock skews are zero, show that the VTCSMA-A, VICSMA-T,
VTCSMA-D, and VICSMA-L implement the earliest-arrival-first, the minimum-
transmission-time-first, the earliest-deadline-first, and the minimum-laxity priority

algorithms, respectively.

Suppose that 8§ = 10 in the window protocol, run on a network with four nodes. .The
following table shows, for each slot, the LTTT of the packet (if any) that arrived
during that slot. Assume that each packet takes 2 slots to transmit. Determine when

each packet is transmitted.

6.5.

Slet Ny Ny N3 DNy

4 1 33
4 14
9 19 19 9

N = O

6.6. When two messages collide in the window protocol, due to having identical LTTT
values, what would happen if the random number generators associated with the
respective nodes generated the same sequence of random numbers?

6.7. Prove that if no two messages have identical LTTT values, the window protocol
provides service in ascending order of LTTT. Assume clock skews to be zero.

6.8. Tn the window protocol, what factors should you take into account when determining
the default window size 67

6.9. Consider the use of the timed-token protocol in the following situation. We have
five nodes in the system. The real-time requirement is that node n; be able to put
out up to b; bits over each period of duration P;, where b; and P; are as given in

the following table:

Node bi Pi

ni 1K 10,000
n 4K 50,000
n3 16K 90,000
ng4 16K 90,000

The overhead is negligible, and the system bandwidth is 1 K/unit time. (That is, it
takes one unit time to transmit 1 KB of data). Choose an appropriate TTRT and
obtain suitable values of f;.

6.10. Prove Theorem 6.2.

6.11. Assuming Theorem 6.2, prove Corollary 6.1.
6.12. Show that if Equation (6.24) is satisfied, scheduler saturation will not occur.
6.13. Devise a distributed algorithm to set up a statistical or deadline channel in the

EDD-D algorithm.
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6.14. In the EDD-D algorithm, we distribute the slack evenly among all the nodes in the
channel.
(a) This approach has the advantage of simplicity. What are the disadvantages?
(b) Construct an example where the uneven distribution of slack renders a channg]
feasible (i.e., able to meet source-to-destination delay constraints) and an even
distribution renders it infeasible.
(¢) Modify the channel setup procedure in Exercise 6.13 to allow for the unevey
distribution of slack.
(d) Modify the EDD-D algorithm to bound jitter.
6.15. In the 802.5 protocol, derive an expression for the ring utilization for the cageg
WT + Tsa = Pma)o and WT + Tsa > Proax.
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