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FIGURE 6.19
Flowchart of the VTICSMA algorithm.

It is easy to show that VICSMA-A, VICSMA-T, VICSMA-D, and VTCSMA-
L implement the earliest-arrival-first, the minimum-transmission-time-first, the
earliest-deadline, and the minimum-laxity priority algorithms, respectively- The
VC is consistent (plus or minus a small skew) for all the nodes, and the transmis-
sion is based on the relationship between VC and VSX(M) for each packet M.

Example 6.9. As an example of how these algorithms work, consider the VTCSMA-
L algorithm. Let = 2 (i.e., the VC runs twice as fast as the RC when the channel
is idle). Let us assume that the transmission time for each packet is Ty = 15, 2%
that the propagation time is T = 1. Suppose the packets arrive according to the
following table:
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FIGURE 6.20
VC-RC trajectory for Example 6.9: n = 2.

Node M RC at arrival Dy Ly

1 1 0 32 16
2 2 10 36 20
3 3 20 56 40
4 4 20 72 56

Figure 6.20 summarizes what happens. M1 starts transmission at RC = 8 (when
VC = L,) and completes at RC = 8 + 16 = 24. This is too late for M2 to start
transmitting, and so it is discarded. The VC is initialized at 24 and is restarted.
When it reaches L3 = 40, IM3 starts transmitting. And so on.

Note that despite there being sufficient time to transmit all four packets suc-
cessfully, M2 had to be discarded. This is because the channel was needlessly idle
from RC = 0 to RC = 8. This happened because n was not sufficiently large.

Let us see what happens if we make n = 4. Figure 6.21 tells the story—all
four packets get successfully transmitted.

Does this mean that the larger the value of 7, the better the performance
of the system? Not necessarily. Consider the following example. Once again, the
dlgorithm is VTCSMA-L.
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FIGURE 6.21
VC-RC trajectory for Example 6.9: n = 4.

Example 6.10. Let the parameters be as in the following table.

Node M RC at arrival Dy Ly

1 16 2 6
2 2 6 40 24

Let the other parameters be as in Example 6.9. We encourage the reader to d;;’:
the VC-RC trajectory for the cases n = 2 and = 4. F_or n = 2, both Plac M
are successfully transmitted; for n = 4, M1 and M2 collide ar}d', as a resu ty,d A
has to be discarded since there is not time enough after the collision 18 resolve
successfully transmit it.

. : 1
The reader will have noticed that in Example 6.9, the channel is needless Y

. .. . . : ’S to
idle for some time even when it has a packet awaiting transmission. Thlls é .
accomodate later arrivals with tighter deadline requirements, as in Example -

: and the
Example 6.11. The following table lists some packet arrivals. Let 7 = 2 and
other parameters be as in Example 6.9.
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Node M RC at arrival Dy Ly

1 1 0 40 24
2 2 5 24 8

The reader can easily check that keeping the channel idle over the interval [0, 5L
despite M1 awaiting transmission, has enabled M2, which arrived at RC = 5 but had
an earlier deadline, to be transmitted successfully.

Thus far, we have assumed clock skew to be negligible. No systematic

study of the effects of clock skew have been carried out, but its effects are easy
to demonstrate,

Example 6.12. Consider again VTCSMA-L, and the following arrival pattern.

Node M Actual RC at arrival Dy Ly

1 1 8 32 16
2 2 9 36 20

Let the clocks be skewed with respect to the actual real time as follows.

Node RC at node

1 Actual RC — 1
2 Actual RC + 1

We leave it to the reader to show that for n = 2, this will cause nodes 1 and 2 to
transmit their respective packets on the network at the same time, causing a collision
and also ensuring that M1 cannot be successfully transmitted.

Clock skew is not always deleterious. To see this, the reader should consider the

packet arrival times in Example 6.9, and develop a set of skews for which all four
Packets are successfully transmitted for n = 2.

Performance of the VTCSMA algorithm. No analytical model exists to calcu-
late the fraction of packets that miss their deadline under the VTCSMA algorithm.

Owever, simulation studies have been carried out by Zhao and Ramamritham
[22], and the following conclusions can be drawn from them.

L vTCcsma protocols have a better loss rate (i.e., rate at which deadlines are
missed), in general, than the CSMA protocols.

2. The best performance in terms of fraction of loss rate is obtained by the
VTCSMA-D algorithm.
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3. The performance is a function of the value of n; however, as long ag the
transmission delays are not too great and the network is not overloaded the
range of n values over which each protocol performs close to its best is large

ge.

WINDOW PROTOCOL. Like the VTCSMA protocol, the window protoco] is
based on collision sensing. Again, it cannot be guaranteed that messages will be
transmitted in time to meet their deadlines. This protocol is therefore only suitable
for soft real-time systems.

As with VTCSMA, the system consists of a set of nodes connected on a bus,
Each node continuously monitors the bus to receive any messages that may be
addressed to it. Since all activity on the bus is equally visible to all the nodes, we
can assume that each node knows when a transmission has succeeded and whep
multiple simultaneous transmissions collide, even if the transmissions in question
neither originate from, nor are destined for, that node. Events on the bus thus
become a mechanism for synchronizing the actions of the nodes.

The protocol owes its name to the window maintained at each node. The
window is a time interval, and the windows of all the nodes are identical. When
the latest-time-to-transmit (LTTT) of a packet falls within this window and the
channel is idle, the packet is eligible to be transmitted. If more than one packet is
eligible for transmission at a node, one of them is picked based on some criterion
(e.g., LTTT).

We assume that the clock skews are fairly small (i.e., the nodes are tightly
synchronized). The time axis is broken down into slots, where each slot is an
interval of time equal to the end-to-end network propagation time. A node may
begin transmitting a packet only at the beginning of a time slot.

Figures 6.22 to 6.25 describe the window algorithm. We use the following
notation:

) Predefined integer constant.

t Present time.

LTTTy LTTT associated with message M.

Random(a,b) Random number, distributed uniformly between a and b.
Ty Number of slots needed to transmit message M.

The algorithm maintains a stack in each node to record the window history. Each
stack entry is a two-tuple (u,i). The u field reflects the upper bound of a window

in which a collision occurred, and the i field is zero unless the node has a message -

involved in the collision; in such an event, i contains the ID of that message. We
can informally describe the protocol as follows. Central to the algorithm is the
window, which is a duration of time (in integral multiples of slots). Each n(_Dde 1n
the system has exactly the same window. The initial window size is 8. The window
is modified based on events occurring on the bus. Since the bus is continually
monitored by all the nodes, all the nodes can maintain, by means of a distributed
algorithm, an identical copy of the window.

If a node has a packet to transmit, it checks if there is an ongoing trans-
mission on the bus. If there is, it waits until that transmission ceases; this can be
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Initialization:

up (=t +38;

empty the stack;

1f one or more messages have LTTT in the interval [t,up), transmit

the one with minimum LTTT.

& (chlE] beginning of each slot:
Find out if there is any message with (LTTT < t),
and drop it, since it has missed its deadline.

A

Discard any stack contents whose u field is less than t;

1£ the channel is busy due to a collision, then
abort any ongoing transmission by this node;

else if the channel is idle following a collision
contract_window.and_send (up, t);

else if the channel is occupied by a message transmission
continue the transmission, if any;

else if the channel is idle after a successful transmission, then
pop-and_send (up, t);

else if the channel continues idle, then
expand_window_and_send (up, t);

end if;

end;

FIGURE 6.22 ‘ ‘
Window protocol. (W. Zhao, et al., “A Window Protocol for Transmission of TIITHC-COHS'[ra‘t.lnCd
Messages,” IEEE Trans. Computers, Vol. 39, No. 9, 1990. ©IEEE 1990. Reprinted with permission.)

detected by noting that the bus has been idle for at least one slot. The node Fhen
transmits its message on the channel at the beginning of the next slot provided
that the LTTT of that message is within the current window. If more than one
node starts transmitting in the same slot, the packets collide. This collision is
detected, and both transmissions are aborted. The nodes now cause the window
to contract, and then only those messages that have LTTTs within the contr'acte'd
window are transmitted. If there is only one such message, the transmission 1s
successful. If there is more than one message, there is another collision and the
Window contracts again. .

If the contraction of the window is followed by silence on the bus, it means
that none of the packets has an LTTT within the current window. The window
Must then either be expanded or translated to the right. .

If there is a collision despite the window’s shrinking to one slot, it means
that there are multiple packets with the same LTTT. Then, each node

® with probability p, retransmits its message in the next slot (p is a design
parameter set by the user or designer), or
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Procedure contract window_and_send (up, t);
BEGIN
if (up > t) then *
if (up > t+1) then

procedure pop-and-send (up, t);
BEGIN
if the stack is non-empty, then
Pop the stack and set (up = u field of popped item)

if this node was involved in the collision then

i else
i = identifier of its message that collided; up = max(up, t) +38;
else i end if;
i=0; transmit the message with smallest LTTT
end if; if 1ts LTTT is in [t,up);
push (up,i) onto the stack; END
wp=t+[ (up-t)/27;
send out the message if its LTTT is in [t,up);
else FIGURE 6.24 . . . .
procedure pop-and_send. (W. Zhao, et al., “A Window Protocol for Transmission of Time-Constrained
if (this node was involved in the collision) then Messages,” IEEE Trans. Computers, Vol. 39, No. 9, 1990. ©IEEE 1990, Reprinted with permission.)
if (Random(0,1) > P)
retransmit message that collided;
else
if (t is the latest time to transmit Procedure expand window_and_send (up, t);
the message to meet its deadline) then
discard the message that collided; i BEGIN
else J if the stack is empty, then
LTTTy = Random (t+2, Dy-Tym) ; ‘ up =t +34;
/*M is the collided message* Send out message, if any, with minimum LTTT which is in [t,up);
end if; else
end if; Uiop = the u field of the top item in the stack;
end if; itp = the i field of the top item in the stack;
end if; . if (up < ugp - 1) then
else up = [ (up + uep) /2 1;
pop-and_send (up, t) ; Send out message, if any, with minimum LTTT which is in [t,up);
end if; else /* there is a tie between the LTTT of two messages*/
END; if there is a message M in the queue with
identifier equal to itop, then
FIGURE 6.23 : if Random(0,1) > P
Procedure contract_window_and_send. (W. Zhao, et al., “A Window Protocol for Transmission of % transmit M;
Time-Constrained Messages,” IEEE Trans. Computers, Vol. 39, No. 9, 1990. © IEEE 1990. Reprinted - else
| with permission.) set LTTTy = Random(t + 2, Dy - Ty) ;
| end if;
e with probability (1 — p), it does not retransmit in the next slot, but reassigns ] end if;
to the message a new randomly-generated LTTT (which will still enable the Pop the stack and set up = u field of popped item.
message deadline to be met). If this is not possible (i.e., the message must D¢ END; N end ;
transmitted in this slot or it will miss its deadline), the message is discarded- A
FIGURE .25

At the end of this operation, the window is also modified suitably.
Correctly managing the window size is central to the success of this ?1g0'
rithm. If the size is very small, the likelihood increases that the channel will be

Tfocedure expand_window_and_send. (W. Zhao, et al., “A Window Protocol for Transmission of
'Me-Constrained Messages,” IEEE Trans. Computers, Vol. 39, No. 9, 1990. ©IEEE 1990. Reprinted
With permission.)
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idle even though nodes have packets to transmit. If it is too large, the 1ikelih00d
of collisions increases.

Example 6.13. Let us consider the performance of this algorithm for a sysier con.
sisting of three nodes, Ny, N,, and N;. We use 6 = 20, and assume each message
takes one slot to transmit. Assume that, when the algorithm starts, nodes N, Ny
each has one packet awaiting transmission with LTTT values 19, 19, and 3, respec-
tively. The identifier of each of these packets is 1. No other packets arrive oyer the
first dozen slots.

At the beginning of slot 0, the window is set by each node to [0.20), Sipee
each node has a packet in this window, they all attempt to transmit. There is 5
collision and it is detected by the end of the slot. In slot 1, the channel is idle after 5
collision. At the beginning of slot 2, each node contracts its window to [2,11). The
three nodes each push (20,1) into their respective stacks. Only N3 has a packet whoge
LTTT falls within this new window, and it transmits successfully. This transmission
is completed by the end of slot 2, and the channel is idle following a successful
transmission during slot 3.

At the beginning of slot 4, the nodes run the pop-and_send algorithm. The
value of up is changed from 11 back to 20. The window is now [4,20). Nodes
N; and N, both attempt to transmit and then collide. The channel is idle following
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e The window algorithm was compared to an idealized centralized algorithm,

which featured a central controller, with instantaneous knowledge of the
state of each node (e.g., the contents of each buffer, etc.). Centralization
does away with the collisions, since the central controller decides which
node is to transmit at any one time. However, since the overheads associated
with the collection of the status information and with the dissemination of
the control instructions are assumed to be zero, this centralized algorithm is
not realizable in practice. The simulation studies indicate that the window
protocol performs close to that of the centralized algorithm.

It appears that the window protocol is relatively insensitive to the value of §.

As with other collision-detection protocols, this protocol exhibits a deadline

anomaly: If the deadlines of some messages are relaxed, this can actually
worsen system performance.

DISCUSSION. Contention protocols are best when the traffic is light, and the ratio

End-to-end transmission delay

Time to transmit a bit

another collision during slot 5. is low. If the trafﬁg i; heavy, then the probabﬂity‘of cqllisions (and thus the number

At the beginning of slot 6, the nodes run the contract_window_and_send al- of aborted transmissions) increases, and bandwidth is wasted. If the delay-to-bit-
gorithm. The previous value of up is pushed into the stack, and the new value is transmission-time ratio is high, a large number of bits may have been transmitted
calculated as 6+ [(20—6)/2] = 13. Neither N, nor N, can transmit in this window, | by the time a collision is detected. A packet affected by a collision has to be

and so the channel continues to be idle during slot 6. At the beginning of slot 7, retransmitted in its entirety, and so any bits transmitted before a collision is

value of up is reset to [(13 4+ 20)/2] = 17. The window is now [7,17); N, and N>
still cannot transmit.

At the beginning of slot 8, the nodes run the expand-window_and-send algo—
rithm again. The value of up is now changed to [(17 + 20)/2] = 19. On§e again,
since the window is [8,19), no transmission takes place (note that the window 18
open at the right, i.e., the LTTT of 19 is not covered by if). . o

At the beginning of slot 9, the nodes run the expand_wmdow_and_send algo
rithm again. However, since up = 20 — 1, we now detect a tie in LTTT ~va111“l]e“§f
Suppose N; goes ahead and transmits during this interval while ]\{2 resets its L k.
to 16. The channel is idle following a successful transmission during slot 1_0~ At 5
beginning of slot 11, the pop_and_send algorithm is run by each node. This resu
in N, transmitting successfully. .

Now, suppose that § is 10 instead of 20. In such a case, the 1n1t1a} \Y ;
[0,10), and Nj is successful in transmitting during slot 0. The reader is V1
list what happens following this slot in this case.

indow iS
ted to

] of the windoW
were carrie
ons can be

Performance of the window algorithm. No analytical mode .
algorithm has yet been published. However, some simulatipn studies :
out for a Poisson message arrival process, and the following conclusi
drawn from them:?

2Keep in mind that these conclusions may or may not be valid for non-Poisson processe

the nodes run the expand_window_and_send algorithm. Since up = 13 < 201, the ' detected waste the network bandwidth.

6.3.2 Token-based Protocols

A foken is a grant of permission to a node to transmit its packets on the network.
When the token-holding node completes its transmission, it surrenders the token

10 another node. A node is only permitted to transmit on the network if it currently
holds the token.

Example 6.14. Token protocols are typically run on buses or rings. An example
of a typical ring structure is shown in Figure 6.26. It consists of two rings, with
one carrying traffic clockwise and the other counterclockwise. When everything is
operational, we have two independent rings operating. If a link on the ring fails, we
can reconfigure what is left into a single ring; see Figure 6.27. Similarly, there is
the capability to bypass a failed or powered-down node.

Each ring has a token circulating in the appropriate direction. When a node
receives the token, it is allowed to start transmitting its messages. It puts them out
on the ring. Every other node’s network interface receives and then retransmits the
packet. When the packet returns to the sender, this node then removes as much of
it from the ring as it can. Any remaining fragments of the packet are removed by
whichever node currently has the token.

The reason that a node cannot always remove its entire packet from the ring
Is that it is not until after it has read the source address field that it knows that it
was the sender of the packet. By that time, it may have retransmitted the earlier
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Network interface

FIGURE 6.26
Multiring network.
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FIGURE 6.27

Dealing with failure in a multiring network.

bits of the packet—this constitutes the remaining fragment that is then removed bY
the current token-holding node. A token-holding node removes from the ring all the
packets that it receives. Thus, if the sender of a packet is still holding the token!
when one of its packets returns to it, it will remove that packet entirely.

Token algorithms incur the following overheads:
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Medium propagation delay: It takes a certain time for a message to propagate
from one node to the next.

Token transmission time: Sending out the token takes some time. Since the
token is usually much smaller than a frame that contains information, this overhead
is typically very small.

Token capture delay: There is usually some time lag between when a node
captures the token and when it begins transmitting.

Network interface latency: At each network interface, the input is retrans-
mitted to the output (except for packets that are removed from the ring). The
network interface latency is the time between when a bit is received by the net-
work interface and when it is retransmitted.

Token-based protocols are better suited to optical networks than collision-
sensing because the ratio of the end-to-end delay time to the time taken in putting
out a packet on the ring is large in such networks.

TIMED-TOKEN PROTOCOL. The timed-token protocol is a simple mechanism
by which each node is guaranteed timely access 10 the network. It distinguishes
between two basic classes of traffic, synchronous and asynchronous. Synchronous
fraffic is the real-time traffic; the protocol guarantees that each node can send out
up to a certain amount of synchronous traffic every T time units. Asynchronous
traffic is nonreal-time traffic that takes up any bandwidth left unused by the
synchronous traffic. It can itself consist of multiple priority classes, but we shall
not concern ourselves with that here. We will concentrate solely on the way this
protocol handles the synchronous traffic.

The key control parameter of this protocol is the target token-rotation time,
TTRT. The protocol attempts to ensure that the cycle time of the token (i.e., the
time for the token to make a complete circuit around the nodes of the network) is
no more than the TTRT. This is not always possible. However, as we se€ below,
it is possible to guarantee that, barring network failures, the token cycle time is
no more than twice the target time (2 x TTRT). Every time the token visits it,
a node is allowed to transmit up to a preassigned quota of synchronous traffic.
Thus, if it is necessary to ensure that each node can send out some synchronous
traffic once every T units, we can set the TTIRT =T /2. TTRT can thus be set
by interaction between the nodes. Each node indicates the maximum acceptable
interval between two successive visits by the token to that node. The minimum
of these times is halved, and set as the TTRT, so that the constraints of all the
nodes are met. We will return to the choice of the TTRT below.

The total volume of synchronous traffic that can be transmitted during any
Cycle is easy to calculate. Denote by B the bandwidth of the network in bits per
unit time, and by © the control overhead per cycle. Then, the time available to
Carry packets per cycle is given by

t, = TIRT — ©

and the total number of bits of traffic that the network can support during a cycle
18 given by Bt,. Each node i is allocated a fraction of this quantity, f;, that it
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can transmit during any cycle. That is, it is allocated a quota of f;1,B bits of
synchronous traffic that it may transmit during any one cycle.

We now have the background to describe the timed-token protocol. Whep
the system begins operating, no data packets are transmitted during the first cycle,
Instead, the nodes spend the first cycle determining the value of the TTRT. They
do this by broadcasting the value they want (recall that if a node wishes to be
able to broadcast at least once every 7 time units, it needs TTRT = T/2), ang
picking the smallest value requested. During the second cycle of the token, only
synchronous traffic is transmitted. The steady-state portion of the algorithm after
the end of the second cycle is shown in Figure 6.28. When the token arrives, the
node checks to see if the cycle time (i.e., the duration between the current time
and the previous arrival time of the token at that node) is greater than the TTRT.
If it is, the token is said to be late; it transmits only its synchronous traffic (up
to the prescribed maximum) and passes on the token to the next node. If it is not
(i.e., the token is early), it transmits not only the synchronous traffic, but also a
certain amount of asynchronous traffic, if it has any awaiting transmission.

How does each node decide how much of its asynchronous traffic to transmit
per cycle? There are many ways to do this. The standard way is to allow a packet
of asynchronous traffic to begin transmitting so long as the token is not late. That
is, if the token was last released by a node n at time ¢, it will not be allowed to start

Received token.

Transmit up to permitted
number of synchronous
packets.

!

Is the token
running late?

Transmit up to permitted
number of asynchronous
packets.

—

Surrender token.

FIGURE 6.28 .
Flowchart of the timed-token protocol after the second cycle.

I
|
?
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(ransmitting an asynchronous packet if the current time is later than ¢ + TTRT.
Note that under this approach, it is possible to have asynchronous overrun; that
is, it is possible to start transmitting an asynchronous packet just before r + TTRT
so that the token is late when the packet is completed. Asynchronous overrun can
be regarded as another component of the overhead.

Asynchronous overrun can be easily avoided by not starting an asynchronous
packet unless we can ensure that the duration between when the token is given
up by this node during the current cycle and when it was given up during the last
cycle is no greater than the TTRT. This ensures that the target token-rotation time
is not exceeded due to the asynchronous traffic. It is possible to show, although
we will not provide the proof here, that the average token-cycle time is no greater
than the TTRT.

Protocol analysis. The timed-token protocol is attractive to real-time engineers
because it guarantees that the token-cycle time is bounded.

Theorem 6.1. In the absence of failures, the maximum cycle time of the token is
no greater than twice the TTRT.

Proof. For ease of exposition, we ignore the impact of the overhead in this proof;
incorporating the overhead into the result is quite simple, and is left as an exercise.

Denote by (a, b) the ath visit of the token to node b. That is, it is the visit
to node b of the token in the ath cycle. Let ¢(a, b) denote the time when the token
completes its ath visit to node b. The ath token-cycle time, C(a, b) as seen by node
b, C(a, b), is defined as C(a, b) = t(a,b) — t(a — 1, b). That is, it is the interval
between when the token left node b during its ath visit and when it left node b
during its (a — 1)st visit. Figure 6.29 illustrates this.

Let S(x,y) and A(x,y) denote the volume of the synchronous and asyn-
chronous traffic, respectively, transmitted during (x, y). Consider visit (a. b) of the
token. We now consider three cases.

Case 1. The token has been early or on time throughout the entire cycle
preceding visit (a, b). That is, it has not been late during any of the visits

(L1 #(1,2)1(1,3) «1,4) 12, 1) 12,2)

o || I
T T

e (2, 1) ————

12,3) #2,4) 13, 1)

- C(2,2) >
C(2,3)

QR4 —————>

-~ C3, ) —————>

FIGURE 6.29
The qth token-cycle time at node b, C(a, b).
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t(j—1,k) t(a—1, b) 1.k Ha. b)

Cla,b)

FIGURE 6.30
Case 3: when the token is early for part of the cycle.

(@a—1,b+1),- -, (a—1,b—1), (a, b).? In such a case, there is nothing to
prove. The cycle time has, by definition, been less than the TTRT throuvhout
that cycle.

Case 2. The token has been late throughout the entire cycle preceding visit
(a, b). In such a case, none of the nodes during this sequence of visits has
been allowed to transmit asynchronous traffic; each has transmitted only its
quota of synchronous traffic. Since we are ignoring overhead, this means that

a.b

> Sty

x,v=a—1,b+1

Il

C(a, b)

a.b

TIRT Y~ f;

xoy=a—1,b+1
< TTRT
indicating that there cannot be two consecutive cycles of duration greater than
the TTRT.
Case 3. The token has been early for part of the cycle preceding (a, b). Let
(j, k) be the visit preceding (a, b) for which the token was early. See Fig-
ure 6.30. Since the token was early at #(j, k), by definition,
C(j, k) <TIRT

The token is late over the entire interval L, and so only synchronous traffic
is broadcast during that time. From Figure 6.30, we have:

C(a,b) = C(j,k)y—E+L

ab
TIRT — E+ Y S(x,)
xo=j.k

IA

IA

a,b

TTRT+ Y S(x, )

x.ov=jk

IA

3 All additions are modulo the ring, 1.e., if b= N, (a — 1. b+ 1) is really (a, 1), where N= number
of nodes.
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TTRT + TTRT
= 2TTRT

IA

This completes the proof. Q.E.D.
Theorem 6.2, which we state without proof, generalizes Theorem 6.1.

Theorem 6.2. The total duration of ¢ consecutive cycles of the token is upper-
bounded by (£ + )TTRT, for £ = 1,2,....

Corollary 6.1. It follows from Theorem 6.2 that over any interval of duration t,
node n; will be able to transmit at least

T
~1| fit,B
LTTRT Jf r

bits.

What impact does the choice of TTRT have on the available bandwidth?
The overhead © is essentially a constant per cycle, regardless of the volume of
data transmitted.* So, if the cycle time is the TTRT, the useful time available per
cycle is TTRT — ©, which means that the utilization of the ring is upper-bounded
by
TTRT — ©
~ T TTRT

We therefore have a tradeoff between the upper bound of the delay, which we have
shown to be 2x TTRT, and the throughput, which is W x B(the channel bandwidth).

Supporting periodic message loads. The timed-token protocol is well suited to
supporting periodic message loads. Suppose that over every period P;, node n;
has to transmit ¢; bits of real-time traffic. Since the token-rotation time is upper-
bounded by 2TTRT, the following constraint must be satisfied

P;
TTRT < 5 6.4)

to guarantee that node n; will have a chance to transmit at least once every P;
seconds, for all i.
Having fixed the TTRT, our next step is to allocate the synchronous quota.

From Corollary 6.1, we immediately have: bits
Pi 1 f’f B > Cé‘iJ/ (65)
TTRT I

as the condition necessary to guarantee that node 7n; has a sufficient synchronous
quota. Equation (6.5) can be solved for f;. Equations (6.4) and (6.5) are necessary

4 . :
We assume that asynchronous overrun is prevented from occurring.
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and sufficient conditions for node n; to be able to transmit c; bits of real-time
traffic every P; seconds.

Who sets the value of f;? The simple approach is for some central authority
to set it to satisfy the necessary®and sufficient conditions. However, if ¢; changes
rapidly with time, this may impose an unacceptable overhead on the system, [y
such a case, we would like to give each node n; the freedom to pick its own fi.
The following theorem, stated without proof, provides the answer.

Theorem 6.3. If the system consists of nodes ny, ..., n,, let each node n; pick the
minimum f; so that the constraint in Equation (6.5) is satisfied fori = 1, .. .. Let
. Pl PZ Pm
TTRT = —_ = .., —
min { 53 5 } (6.6)
Then, so long as Secupdd
LS _ 1—©/TTRT -
L P = 3 6.7

every node n; will be able to transmit ¢; bits of synchronous traffic every P; seconds.

32 tond

Fault-tolerance. Since a token loss can bring the entire network to a halt, fault-
detection and recovery are important in token-based protocols. We have already
proved that, under normal operation, the token cannot be late at any station for two
consecutive cycles—this is an indication of failure. Ring recovery involves the
nodes again negotiating the value of the TTRT; each node i announces TTRT(i),
the value of the token-rotation time that it desires, and transmission is restarted
with the node that has requested the smallest value. In the event that more than
one node has requested the smallest value, the tie is broken by selecting from
among them the node with the smallest index. This policy is easy to implement.
When a node starts ring recovery, it continuously sends out claim-token packets,
which contain the value of TTRT requested by that node. When a node receives
a claim-token packet, it follows the procedure depicted in Figure 6.31. It is easy
to see that only one node will receive its own claim-token packet back; this is
the node that will reinitiate transmission. If there is a physical break in the ring
or some similar malfunction, no node will receive its claim-token packet back.

Note that every node i should receive either the claim-token packet back
or a normal packet within TTRT(7) after it transmitted the claim-token packet. If
this does not happen, that is an indication of either another loss of the token, or a
loss of the message, or a physical malfunction. To identify physical malfunctions,
beacon packets are used, as shown in Figure 6.32. If there is a break in the ring,
the only node that will keep transmitting is the station immediately downstream
from the break. The system software that controls the ring must then decide how
to reconfigure it, by switching in backup links if necessary and available, to restore
functioning.

If the deadlines are so short that the delays associated with such recovery
techniques are unacceptable, we can use forward error masking. Instead of one
physical fiber, we use N and give each processor one physically distinct interface
connecting it to each of the fibers. Then we transmit N copies of everything.
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Claim-token packet,
originating in node i,
is received at node j
requesting TTRT().

Yes

Discard claim-token
packet from node j;
Transmit node i’s
claim-token frame.

Pass on claim-token
packet originating
at node i.

FIGURE 6.31
Handling the claim-token packet.

Has node i
received a beacon frame
from another node?

Hasnode i’s
TRT expired?

Suppress node i’s
transmission; retransmit received
beacon frame.

Transmit beacon frame.

FIGURE .32

acon packet transmission.
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(a) (b)
FIGURE 6.33

A two-level structure of rings: (a) ring structure; (b) ring hierarchy.

Use of the timed-token protocol in hierarchical networks. The timed-token
protocol can also be used in hierarchical networks, where the nodes are connected
in rings and the rings are connected to other rings to form additional levels.

Example 6.15. Figure 6.33 shows a two-level ring structure. Figure 6.33b shows the
hierarchy of the four rings. The black nodes in Figure 6.33a are the interconnecting
elements, which are responsible for forwarding packets between rings. There is one
token circulating through all four rings. A message that originates in ring A and
is destined for a node in ring C is sent to the interconnecting element of A, then
travels on ring D to the interconnecting element of C, and finally travels on ring C
to its destination.

As mentioned earlier in Section 6.1.1, it is frequently necessary to use mul-
tiplexing techniques to divide the fiber channel into virtual subchannels in order
to better utilize the very large raw fiber bandwidth. It is possible to use the timed-
token protocol in such multichannel systems, with one token circulating along
each channel.

IEEE 802.5 TOKEN-RING PROTOCOL. In this section, we look at how the RM
algorithm (see Chapter 3) can be implemented on the standard IEEE 802.5 token-
ring protocol.

Some 802.5 basics. The token and data packet® formats are shown in Figure 6.34.
The starting and ending delimiters indicate the start and end of the token or data
frame. The frame control field indicates that it is a data frame, and the frame
status indicates whether or not the destination is present, powered up, and the
message has been received successfully. In particular, if FS =00, it means that

3The term frame is used synonymously with packet in this discussion.
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SD = Starting delimiter ~ FS = Frame status
sD| AC |ED AC = Access control SA = Source address

ED = Ending delimiter DA = Destination address

(a)

ED| DA SA message error-control code | ED |FS

(b)

FIGURE 6.34
(a) Token format; (b) data packet format.

the destination node was not available (e.g., it was not powered up or was faulty).
If ES = 10, the frame could not copied at the destination, although the destination
was available. If FS =11, the frame was successfully received by its destination.
The FS field is checked by the sender when the data frame comes back to it. The
sender removes the data frame from the ring when it returns after making one
round trip of the ring.

Of particular interest to us is the priority arbitration scheme in this protocol.
The access control field contains three bits for the current and reserved priorities.
Suppose the highest-priority message at node n; has priority p;. When a data
frame or token goes by, n; checks the reserved priority (or reservation) bits. If
these indicate a priority greater than or equal to p;, it does nothing; there is another
node wishing to use the network with a message of higher or equal priority. If the
reserved priority bits indicate a priority of less than p;, n; writes priority p; onto
the reservation field. When the current data transmission has been completed, the
sender issues a token with the priority level indicated by the reservation bits.

Example 6.16. Consider a five-node ring, with the highest priorities of the packets
awaiting service at the nodes being 2, 4, 1, 6, and 8, at ny, ny, n3, ng4 and ns,
respectively. (The lower the priority index, the greater the priority). The ring is
currently serving node n,. n, writes priority 2 in the reservation bits of its data
frame and sends it out. n, does not change it, since its highest-priority message has
lower priority than that. However, node n3 has a higher priority message, and so
writes its priority onto the reservation field. Nodes ny and ns have lower priority
packets, and so they do not update the reservation field.

When the packet returns to node 7, the node generates a token of priority 1
and sends it out. This token cannot be captured by either n; or n,, since they have
lower priority. It is seized by 13, which then starts transmitting its data packet.

A node that increases the priority of the reservation field is also responsible
for reducing it to its prior value. Otherwise, the token priority would never de-
Crease! A node may hold the token for at most a preset token-holding time (the
_default is 10 ms). Of course, the same node may seize the token multiple times
10 Succession if its message priority equals or exceeds the value written into the
Ieservation field.




