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An RFB is only sent out if the sending processor estimates that there will
be enough time for timely responses to it. In other words, it computes the sum
of the estimated time taken by the RFB to reach its destinations, the estimated
time taken by the destinations to respond with a bid, and the estimated time taken
to transmit the bid to the focused processor. Call this sum ipig. It also computes
the latest time at which the focused processor can offload the task onto a bidder
without the task deadline being missed; this time is given by the expression

Toffioed =
task deadline — (current time + time to move the task + task-execution time)
If fhig < lofficwd. then an RFB is sent out.

When processor p, receives an RFB. it checks to see if it can meet the task
requirements and still execute its already-scheduled tasks successfully. First, it
estimates when the new task will ammive and how long it will take to be either
guaranteed or rejected. This time 18 given by

tar = Current time + time for bid to be received by p.
+ time taken by p, to make a decision
+ time taken to transfer the task
+ time taken by p, to either guarantee or reject the task
Next, it figures out the surplus computational time fuymys that it currently has

between ryy and the task deadline D. This is done by first estimating the compu-
tational time already spoken for in the interval [fa, D]

feomp = time allotied to critical tasks in [fa. D]
+ time needed in [fuy, D] to run already-accepted noncritical tasks
+ fraction of recently accepted bids
x time needed in [t D] to honor pending bids
uples = D — carrent time — loomp

The degree to which the bid is aggressive or conservative can vary with the nature
of the time estimates. If the 1ask worst-case run times are used, the bids will be
very conservative indeed. If average-case values are used instead, the bids will be
less comservative.

If farpis < task execution time, then no bid is sent out. If foorptes = task
execution time, p, sends out a bid to p,. The bid contains far, fsuplus. and an
estimate of how long a task transferred to p, will have to wait before it is either
guaranteed or rejected.

All bids are sent o the focused processor p.. If p, is unable to process the
task successfully, it can review the bids it gets back to see which other proces-
sor is most likely to be able to do so, and transfer the task to that processor. ['s
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. waits for a certain minimum number of bids to arrive or until a specified time has
ired since receiving the task, whichever is sooner. It then evaluates each bid.
each bidding node p;, p, computes the estimated arrival time n{i) of the task
gt that node. Denote by faurpius (i) and tur (i) the fegrples and fan values contained in
the bid received from p;. Then, p; computes the following quantity for each bid:
y ) LoD = li)
leg(i) = Ig.u'plm[‘]D_—i:f{ii
Suppose few(f) is the maximum such value. Then, if p, cannot itself guarantes
ihe task, it ships the task out to p;.
The cardinal rule in bidding is that no new noncritical task can be allowed
o cause any critical task or previously guaranteed moncritical task to miss its
(guaranteed) deadline. Assessing the schedulability of a newly amved task or re-
 sponding to an RFB takes time, and can be indulged in only if doing so does not
cause any guaranteed deadlines to be missed. There are two ways of determin-
ing this. The first is to introduce into the schedule a periodic task to check for
' schedulability; every  seconds, this task will assess the schedulability of tasks
that have arrived over the last period. The second 1s to set a flag that indicates if
 the processor has the time to check the schedulability of a new task and stll meet
 all guaranteed deadlines. If the flag is set when a new task armives, the executing
task is preempted and the processor deals with this new task. If the flag is reset,
he processor is not interrupted and the new task must wait until the processor
has time to handle it. A similar flag can be used to decide if there is enough time
i respond 1o an RFB.
~ An issue worth discussing is how aggressive the bid should be. In many
instances, worst-case task execution times are much greater than average-case
fimes. Also, not all bids sent out by a processor are accepted. If the bidding is
done too conservatively, by assuming that already-scheduled tasks will take their
orst-case times and that all the bids will be successful, processors that could
therwise have successfully run the task in question may not bid. If the bidding
15 done: too aggressively, then the probability is high that it will not be possible
10 honor the bid (should it be accepted). If an accepted bid cannot be honored.
fen a task, which might have been able o execute successfully on some other
Ss0r may miss its deadline. The designer must decide how 1o resolve this
off between aggressive and conservative bidding by finding a happy medium
een them. One possible solution is for the system to adapt its bidding strategy
on experience. That is, if a processor has been unable to honor many recent
that processor is being too aggressive and can be made more consarvative
U5 subsequent bidding. If, on the other hand, a processor has a lot of idle
despite declining to bid on tasks (which in hindsight it could have processed
essfully), it is being too conservative and should become more aggressive.

(3.111)

The Buddy Strategy

& buddy strategy attacks the same type of problem as the FAB algorithm. Soft
Slime: tasks amrive at the various processors of a multiprocessor and, if an
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individual processor finds itself overloaded, it tries to offload some tasks onto less
lightly loaded processors. The buddy strategy differs from the FAB algorithm in
the manner in which the target processors are found.

Briefly, each processor has three thresholds of loading: under (Ty), full (T¢),
and over (Ty). The loading is determined by the number of jobs awaiting service
in the processor’s queue. If the queue length is O, the processor is said 1o be

in:

state IJ (underloaded) if Q< Ty

state F {fully loaded) fTe <@ <Ty
state V' (overloaded) if > Ty

A processor is judged to be in a position to execute tasks transferred from other
processors if it is in state U. If it is in state V. it looks for other processors on
which 1o offload some tasks. A processor in state F will neither accept tasks from
other processors nor offload tasks onto other processors.

When a processor makes a transition out of or into state U, it broadcasts
an announcement to this effect. This broadcast is not sent to all the processors;
rather, its distribution is limited to a subset of the processors. This is called the
processor’s buddy set. Each processor is aware of whether any members of its
buddy sets is in state U. If it is overloaded. it chooses an underloaded member
(if any) in its buddy set on which to offload a task.

There are three issues worth discussing at this point. First, consider how
the buddy set is to be chosen. If it is too large, the state-change broadcast will
heavily load the interconnection network. If it is too small, the Ccommunication
costs will be low, but the overloaded processors will be less successful in finding
an underloaded processor in their buddy sets. Clearly, this applies only to multihop
networks. If the interconnection network is a bus, for example, every broadcast
will be seen by every processor and there is no saving in restricting delivery to
a subset. If. on the other hand. a multihop network is used and the buddy sel
of a processor is testricted 1o the processors that are “close™ 1o it {in terms of
the number of hops between them), there will be a substantial saving of network
bandwidth. The size of the buddy set will therefore depend on the nature of the
interconnection network.

The second issue is a little more subtle. Suppose a node is in the buddy set of
many overloaded processors. and that it delivers a state-change message to them.
saying it is now underloaded. This can result in each of the overloaded processors
simultaneously and independently dumping load on it, thus overloading that pro-
cessor. To reduce the probability of this happening, we construct an ordered list
of preferred processors. First we list the processors that are one hop away from
the processor. then those which are two hops away. and so on. An overloaded
processor searches its list in sequence, looking for underloaded processors. and
sends a load to the first underloaded processor on its list. If the lists of the various
processors are ordered differently, the probability of a node being simultaneously
dumped on is reduced.
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000 001 A thres-dimessionz]l hypercube network.

Example 3.40. Suppose the network is a three-dimensional hypercube. See Fig-
ure 3.41. Each processor in this system is connected to three other processors.
Suppose the buddy set of each processor has been defined to be its immediate
neighbors. Under the standard hypercube labeling, each node label will differ from
its neighbors’ labels in exactly one bit. Order the buddy list of each processor accord-
ing to which bit is different. For example, if we give highest priofity to processors
differing in the LSB, then to the middle bit, and then to the MSB, the priority list
of each of the processors is as shown in Table 3.2. For example, node 000 is in the
buddy set of 001, 010, 100 It is the first priority node for node 001 (ie., if node
001 is overloaded, it will check if node 000 is underloaded first. It is the second
priority node for node 010 and the third priority node for node 100. Both nodes
001 and 010 will only simultanecusly dump load on node 000 if (a) they are both
overloaded, and (b) node 011 is not in state U, This isclea.r]yanewmﬂmismuch
less probable than if 000 were the first on the list of all three of its neighbors.

For large buddy sets, if the priority lists are staggered properly, it is ex-
emely unlikely that more than a small fraction of the processors in a buddy
Wwill simultanecusly dump a load on a given processor. Some simulation ex-
Periments indicate that buddy-set sizes of 10 to 15 are best, even for very large
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systems. Keeping the size of buddy sets constant and independent of the sys-
tem size results in the state-update traffic per processor being constant and not a
function of the system size.

The third issue of importance is the choice of the thresholds Ty, Tr, and
Ty. In general, the greater the value of Ty, the smaller the rate at which tasks
are transferred from one node to another. From simulation experiments, it appears
that setting Ty = 1.Tp = 2. and Ty = 3 produces good results for a wide
range of system parameters. Of course, which thresholds are best for a given
system depends on the particular characteristics of that system, including the size
of the buddy set, the prevailing load, and the bandwidth and wpology of the
interconnection network.

There is, at present, no general model of how well the buddy algorithm per-
forms. An approximate model has been derived under the simplifying assumption
that all tasks take one unit time to execute. The reader is referred to Section 3.7
for references in the technical literature.

3.4.7 Assignment with Precedence Conditions

In this section, we present a simple algorithm that assigns and schedules tasks
with precedence conditions and additional resource constraints. The basic idea
behind the algorithm is to reduce communication costs by assigning (if possible)
to the same processor tasks that heavily communicate with one another.

The underlying task model is as follows. Each task may be composed of one
or more subtasks. The release time of each task and the worst-case execution time
of each subtask are given. The subtask communication pattern is represented by a
task graph: that implicitly defines the precedence conditions (i.e., which subtask
feeds output to which other subtask). We are also given the volume of COmmni-
cation between subtasks. It is assumed that if subtask s, sends output to s, this is
done at the end of the 5, execution, and must arrive before 5, can begin executing.

Associated with each subtask is a latest finishing time (LFT). The LFT of a
subtask s; is computed as follows. Suppose that n; is the number of paths in the
task graph emanating from s;. Let {u v} ,..... vf . | be the nodes on the {th
such path. Let 5y be the sum of the execution times of the sublasks represented
by the nodes on that path, and D). be the deadline of the last node on this path.
We hawe: :

LFTin;) = D,.: it (3.112)

Example 3.41. Consider the task graph shown in Figure 3.42. The execulion Hmes
are as follows:

L]
ARGE
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The lzbels within the circles are the subtask subscripts and the arc Labels denote the
volume of communication between the tasks. Suppose the overall deadline for this
task (i.e., the deadline of subtask s5:) is 30. The LFT for 55 is clearly 30, and for
51, 52, 53 15 30—y = 26. The LFT for 5 is 30 — ey —maxfe;, ez, 23} = W—-4—-15=
11. Mote two things from this. First, we are not accounting for any communication
time here. Second, we are assuming that s, 53, 53 are non in parallel. If they were run
in tandem (say, on the same processor), the LFT of 5y would be 30—{¢) ez +e3+eq).
If a subtask does mot finish by its LFT, we are sure 10 miss a deadline, especially if
the subtasks consume their worst-case execution times. However, meeting the LFT
does not always guarantes that deadlines will all be met.

i -:-i‘.i'-!:"_H'f"-' il

: The algorithm is a trial-and-emror process. We start with the set of subtasks
'~ and assign them to the processors one by ome, in the order of their LFT values.
" If two subtasks have the same LFT value, the tie is broken by giving priority to

y * the subtask with the greatest number of successor subtasks.

5 3 We check for feasibility with each assignment—if one assignment is not

. feasible, we try another, and s0 on. If no assignment works for this particular
subtask, we backtrack and try changing the assignment of the previously assigned

~ subtask and continue from there.

: Subtasks that communicate with each other a lot are assigned to the same

~ processor if this allows for feasible scheduling. A threshold policy is followed for
this. If ¢; and ¢; are the execution times of subtasks 5; and s5;, respectively, and

g g 18 the volume of communication between them, we try assigning s; and 5; to
the same processor if

LD

€ +E'f'

< ke
E.'J:

where k. is a given parameter (o be discussed below). The idea behind this is
to balance the benefits of assigning subtasks to the same processor (the commu-
‘mication cost is zero) against the potential benefits of assigning them to different
processors (evening out the load and in some cases reducing the subtask finishing
fimes by letting them run in parallel). The assignment is done in part by checking
€ach pair of communicating subtasks to see if they must be assigned to the same

Processor,

Example 3.42. Consider again the task graph shown in Figure 3.42. Suppose k. = 3.
Then. {s,, 55}, [52. 53}, and {53, 54} must all be placed on the same processer. (The

:_. o
K05

° FIGURE 3.42
Task graph for calculating the latest findshing time.
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side effect of this is that 5. 52. 53 must be on the same prooessor, even though there
is no communication berween them.)

k. is a unable parameter. If k. is 0, then intersubtask communication will
simply not be taken into account when we do the assignment. If k. is very high,
then, most of the time, we will be forced to assign tasks to the same processor.
This may result in the schedule becoming infeasible. In that case. we will be
forced to reduce k. adaptively to relax this constraint.

The algorithm can be informally described as follows:

1. Start with the set of tasks that need to be assigned and scheduled. Choose a
value for k. and determine, based on this value, which tasks need to be on the
SAME Processor.

2. Start assigning and scheduling the subtasks in order of precedence. If a partic-
ular allocation is infeasible, reallocate if possible. If feasibility is impossible
to achieve because of the tasks that need to be assigned to the same processor,
reduce k. suitably and go to the previous step. Stop when either the tasks have
been sucoessfully assigned and scheduled, or when the algorithm has tried more
than a certain number of iterations. In the former case, output the completed
schedule; in the latter, declare failure.

Example 3.43. Let us now illustrate this algorithm with an example consisting of
one task with eight subtasks, as specified in the table below, with task graph shown
in Figaure 3.43.

Subtask Execution time  Deadline  LFT

50 4 - 1
51 10 - 24

» 15 n 22
51 4 - 26
5 18 - 47
a5 3 - 42
i & - 32
0 3 45 45
3 b3 40 40

The output to the “outside world” is provided by sz, 57, 55. and so these are the only
subtasks whose deadlines are specified. Table 3.3 shows, for each communicating
pair of tasks, the ratio between the tofal execution time and communication volumes.

If. for example, we set k. = 1.5, we would have w have the following
pairs assigned to the same processor: {so. 51}, {50, 2}, [s0. 53], fs5. 870 [s3. sl
and {ss. 53}. This implies that the following tasks must all be assigned 1o the same
Processor: sp. §)- 52, %3, 85, 5.

Suppose we have a system consisting of two processors, py and py. on which
we seek 1o assign these tasks. The following is a list of the steps of this algorithm-
We start with k. = 1.5 and assume that the interconnection nerwork is a single bus
used by a two-processor sysiem.
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FIGURE 3.43
Task graph

1. Assign 55 to processor py over the interval [0, 4] (assuming time [} is when this
task is released).

2. Assign 51 1o processor py and schedule it over [4, 14]. (No communication costs
are incurred because s; is on the same processor as s).

3. Assign s» 1o processor py. It is immediztely clear that we canmot schedule
both 5, and 53 so that they complete before their respective LET walues. There-
fore, we need to change k.. Let us reduce it 1o k. = 1.0. Now, the following
pairs must be assigned to the same processor: {so.s2}. {ss. 57}, [s3, 5}, and
{55 551

4. Now, assign 5; 10 py, and schedule it over [14, 24]. Also schedule the network
path between py and p; for [4, 14] (for the communication between 5o and 5.

5. Assign 52 10y and schedule it over [4, 19].

6. Assign 53 to py and schedule it over [19, 23]

7. Assign sy to py and schedule it over [23, 41].

B. Assign 55 to pg. This is infeasible, as we can check easily. Backtrack to the
previous step.

9. Reassign s: to p; and schedule it over [24. 42].

1L Reassign ss w0 po and schedule it over [27, 30).
11. Assign sg 0 py and scheduole it over [23, 29). Move 55 1w [29, 32].

. ﬂ
Execution time to communication volume ratio.

T5.5 e +& Oy (e; + &) ey

14 1m 1.40
9 22 D86
S -] 1.00
28 14 2.00
132 3 433
21 & 330
i ] 075
10 12 083
14 16 088
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Example of the task assignment and scheduling algorithm.

12. The assignment of 5; to py is infeasible, so assign sy to py and schedule it over
[42.45].
13. Assign sg to py and schedule it over [32, 40].

The schedule is shown in Figure 3.44. Note that we are scheduling each task
in the task set. If the task set is periodic, then we only need to comsider the tasks
released during the least common multiple of the task periods.

35 MODE CHANGES

The workload of a real-time computer can change over time, as the mission phase
changes or as processor failures dictate. Tasks may be added or deleted from the
schedule, or may have their period or execution time changed. In this section, we
look at how such mode changes can be accommodated under the rate-monotonic
scheduling algorithm. Our objective is to allow the system to incorporate some
new tasks (or delete some current ones) and still meet all the hard deadlines.

When critical sections are not involved, mode changes are quite simple o
implement. Deleting a task (assuming its output is not needed by any other task)
clearly does not adversely affect the schedulability of the other tasks. That is. if
a task set § = [Ti..... T,} is RM-schedulable, § — [T;} is also RM-schedulable.
This brings up the question of when the time allocated to the deleted task(s) can
be reclaimed for use by other tasks. In order for schedulability to continue 1o be
met, the time can only be reclaimed after the end of the period of the last itera-
tion of the deleted task. That is, suppose we are deleting task T in Figure 3.4J.
T completes execution for the last time at #. However, its current period runs
until #;. and its deletion does not take effect until that time. This ensures that the
schedulability rules we derived for the RM algorithm continue to hold throughout
the mode-change process.

Adding a task is just as simple. We need only to check that it meets the
RM-schedulability conditions outlined earlier in this chapter.

Example 3.44. Consider a system that is currently executing task set [T, T2. T3
with P, = 5.F, = 8 Ps = 13, and &y = l.ex = 3, &3 = 4 This nask set is
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| T |
Iy T
o lasipenodof sk T

[lﬂ}UBE.Hﬁ
Mode changing: lask T is not deleted vmil 1.

RM-schedulable since
Py

ey +e = P

ey

1A

Jeg+2ex ey < Py

Assume that all these tasks have zero phasings. Suppose that at time 30 we wish 1o
replace task T: by Ty, with parameters Py = 14, ey = 5. First, we check if the set
[T}. T, T4} is RM-schedulable. It is. becanse of the following inequalities:

A
=

g =

e +ex

14,
-

Yeg+2eat ey = Py

When can we add task T7 Under the RM algorithm, Tj has run part of its thind
iteration at time 30. As a result. we cannot replace T3 by T, until the end of the
current T period, that is, until 39, At that time, T; may be indocted into the task set.

If the prionty ceiling protocol is used to handle the accesses to exclusive
_resources, the priority ceilings of the semaphores are lowered or raised as appro-
priate when the underlying tasks that give rise to these priorities are deleted or
: d. Recall that the priority ceiling of a critical section is the maximum of the
ities of all tasks that can access it.

: The rule for deleting tasks is the same as when no critical sections are
Ivolved. A task may be added if the following two conditions are satisfied:

» the resultant task set is RM-schedulable, and
- ® when adding the task will result in the increase of the priority ceilings of
any of the semaphores, those ceilings are raised before the task is added.

If the priority ceiling of a semaphore needs to be changed, the rules are:

- ® If the semaphore is unlocked, the ceiling is changed immediately in an
~ indivisible action.

- ® If the ceiling is to be raised and the semaphore is locked, we wait until it is
unlocked before raising it.

- If, as a result of some tasks being deleted, the priority celings decrease, this
~ occurs at the time of deletion.
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Example 3.45. Suppose that we have three semaphores. 5, 52, 55, and four tasks
T, Tz, Ts. T in the overall task set. (As usual, we assume Ty = T2 > T3 > T:.) The
following chart indicates which task may lock the semaphores:

Semaphore  Tasks
5| I, T:'\-
5 Y
5 N1

Suppose now that we wish to delete task T> from the task set. At the moment that
T is deleted, the priesity ceiling of 5 will drop from the priority of T> to that of Ts.

Assume that 5; is currently locked and we wish to add task Ty to the task set
(with Ty > T). Then. the priority ceilings of §; and 5; will need o be raised 1o the
priority of Ty. This may not be done, however, until the kock on §; is released. Ax
that moment, the ceiling of §; is raised. Mote that until this happens, we cannot add
Ty o the task set.

The mode change protocol has the same properties as the priority ceiling protocol.
In particular, under the mode change protocol, there is no deadlock, nor can a
task be blocked for more than the duration of a single outermost critical section.
The proofs are similar to those derived earlier for the priority ceiling protocol,
and are omitted.

3.6 FAULT-TOLERANT SCHEDULING

The advantage of static scheduling is that more time can be spent in developing
a better schedule. However, static schedules must have the ability to respond to
hardware failures. They do this by having a sufficient reserve capacity and a suffi-
ciently fast failure-response mechanism to continue to meet critical-task deadlines
despite a certain number of failures.

The approach to fanli-tolerant scheduling that we consider here uses addi-
tional ghosr copies of tasks, which are embedded into the schedule and activated
whenever a processor carrying one of their corresponding primary or previously-
activated ghost copies fails. These ghost copies need not be identical to the primary
copies; they may be alternative versions that take less time to run and provide
results of poorer but still acceptable quality than the primaries.

We will assume a set of periodic critical tasks. Multiple copies of each
version of a task are assumed to be executed in parallel, with voting or some
other error-masking mechanisms (see Chapter 7 for a detailed discussion of such
mechanisms.) When a processor fails, there are two types of tasks affected bY
that failure. The first type is the task that is running at the time of failure, and the
second type comprises those that were to have been run by that processor in the
futare. The use of forward-error recovery is assumed to be sufficient to compen-
sate for the loss of the first type of task. The fault-tolerant scheduling algorithm
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~ we describe here is meant to compensate for the second type by finding substitute
| processors to run those copies.

We assume the existence of a nonfault-tolerant algorithm for allocation and

- gcheduling. This algorithm will be called as a subroutine by the fauli-tolerant

ccheduling procedure that we will describe. We assume that the allocation/sched-

. gling procedure consists of an assignment part I1; and an EDF scheduling part I1,.

We are now in a position to define our problem more precisely. Suppose the

 gystem is meant 1o run n (i) copies of each version (or iteration) of task T;, and
{5 supposed to tolerate up to ny, processor failures. The fault-tolerant schedule
- must ensure that, after some time for reacting to the failure(s), the system can still

execute (i) copies of each version of task i. despite the failure of up 0 n,.,,
These processor failures may occur in any order.

The output of our fauli-tolerant scheduling algorithm will be a ghost sched-

ule, plus one or more primary schedules for each processor. If one or more of

~ the ghosts is to be run, the processor runs the ghosts at the times specified by
~ the ghost schedule and shifts the primary copies 10 make room for the ghosts.
ExmpIeSAJf illustrates this.

Example 3.46. Figure 3.46 shows an example of a pair of ghost and primary sched-
ules, together with the schedule that the processor actually executes if the ghost is
activated. Of course, this pair of ghost and primary schedules is only feasible if.
despite the ghost being activated, all the deadlines are met.

A ght_]ﬁt schedule and a primary schedule are said to form a feasible pair
if all deadlines continue to be met even if the primary tasks are shifted right by

the time needed to execute the ghosts. Ghosts may overlap in the ghost schedule
of a processor. If two ghosts overlap, only one of them can be activated. For

'.;_;:.»: mple, in Figure 3.47, we cannot activate both g, and g» or both g2 and gi.
We l:an,_huwever, activate both g, and g;. There are two conditions that ghosts
st gansf!r_

E1]

&1 P |P‘:|

| FIGURE 3.46
1 1 1 | 1 1 | Schedules for Example 3.46:
5 10 (a) ghost schedule; (b) primary
schadule; (c) schedule if gl s
Time activated.
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FIGURE 3.47
Orverlapping ghosts.

C1. Each version must have ghost copies scheduled on my,,, distinet processors.
Two or more copies (primary or ghost) of the same version must not be
scheduled on the same processor.

C2. Ghosts are conditionally transparent. That is, they must satisfy the following
two properties:

a. Two shost copies may overlap in the schedule of a processor if no other
processor carries a copy (either primary or ghost) of both tasks.

b. Primary copies may overlap the ghosts in the schedule only if there is
sufficient slack time in the schedule to continue to meet the deadlines of
all the primary and activated ghost copies on that processor.

Theorem 3.18. Conditions C1 and C2 are necessary and sufficien conditions for
up to n,,,, processor failures to be tolerated.

Proof

Necessity of C1. Suppose some version had ghost copies allocated to m proces-
0TS Ty, .. .. Te. The failure of the processors @y, -... o, together with the failare
of any processor carrying a primary copy of this task, would make the system b0
longer capable of running the required number of copies. Thus. if n < My the
system cannot tolerate m,,,, Processor failures.

Necessity of C2a. Consider ghost copies g; and g: of the ith versions of tasks
I and T, which overlap in the ghost schedule of some processor p;. Suppose there
exists some other processor pr that is allocated primary copies of both of these
versioms. There is a total of n,,,. ghost copies of each version. If mg,,, processoss
(other than py), carrving either the ghost or primary version, fail. then sinte_?-‘f
cannot activate both g, and g, in the schedule of p;, we cannot maintain the required
pumber of active copies.

Mecessity of C2b. This is obvious.

Sufficiency of C1 and C2. This part is similar to the proof of the necessity of
C1 and C2, and is left as an exercise for the reader. Q.E.D-

Theorem 3.18 provides the conditions that the fault-tolerant scheduling algorithm
must follow in producing the ghost and primary schedules. _
Perhaps the simplest fault-tolerant scheduling algorithm is FAL shown
Figure 3.48. Under algorithm FA1, the primary copies will always execute in the
positions specified in schedule 5, regardless of whether any ghosts happen to be

e,
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"

1. Run I, to n1_:ntajn a candidate allocation of copies to processors. Denote by mr;
and #; the primary and ghost copies allocated to processor p;, i = 1, cees M.

e Run IT;(7; U &.i). If the resultant schedule is found to be infeasible the

ajluc-alm:m as produced by I, is infeasible; return control to I, in step 1.
Otherwise, record the position of the ghost copies (as put out by I17) in ghost
schedule G;, and the position of the primary copies in schedule §.

| FIGURE 3.48
~ Algorithm FAL

: 1. Run IT; to obtain a candidate allocation of copies 1o processors. Denote by m;

and #; the primary and ghost copies allocated to processor p;, i = 1,....n,.
For each processor, p;, do steps 2 and 3.

2. Run IT](m; U 6. i). If the resultant schedule is found to be infeasible, the

alhu:ali[_m as produced by I1, is infeasible; return control to I, in step 1.
Otherwise, record the position of the ghost copies (as put out by IT}) in ghost
schedule ;. Assign static priorities to the primary tasks in the order in which
they finish executing, i.e., if primary 7; completes before ; in the schedule
generated in this step, m; will have higher priority than ;.

- 3. Generate primary schedule §; by running I1,; on 7r;, with the priorities assigned

in step 2.

FIGURE 3.49
Alzorithm FAZ

activated, since the ghost and primary schedules do not overlap. The drawback
©f FA1 is that the primary tasks are needlessly delayed when the ghosts do not
have 10 be executed. While all the tasks will meet their deadlines, it is frequently
to complete execution of the tasks early to provide slack time to recover

i mm failures (see Chapter 7). Such a needless delay does not occur in
"gonthm FA2, shown in Figure 3.49. We use an additional scheduling algorithm
Ca, whjch 1s a static-priority preemptive scheduler. That is, given a set of tasks.
=4Ch with its own unique static priority, T,y will schedule them by assigning the
.;.._,,i;“ execute the highest-priority task that has been released but is not yet

Pau'lhaurem 3.19. The ghost schedule «5; and the primary schedule §: form a feasible

Proof. The primary tasks will complete no later than the time specified in I17(; U
8. i), even if all the space allocated to ghosts in G; is, in fact, occupied by them.
QED.
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Emmplc3j?.€un5iderdxcasewhemapmccﬁurpha.?ba?uaﬂocmedghpm
£1. £5. B, and primaries my, Tz, 3. The release times, execation UMES, and deadlines

are as follows:

Releaseime 2 5 3 ¢ 0 9
Executionfme 4% 2 24 2 1 3
Deadline 6 & 15 5 6 12

that there exists some g to which the primary copies of g: and g;
ﬁ:fg::lll been allocated. 'Ihen?fmrcaﬂml overlap gs and gs in thE chost schedule
nfprmnrp.ﬂsaresuh.meghwsdmme will be a.?shuvmmﬁgnm 3500 Tt
is eas:rmc]lxkﬂlailmderﬂmecﬂmtraims,meaﬂmﬁIr].:'r_l_.:rygq.gs.gs
to p is infeasible—s; will miss its deadline if all the ghosts are activated.

However, suppose that we have some other al!ocaﬂt!n that also allocabes
Ty, Tr. T3, 24, 5. 85 W0 p. Under this new allocation, there is no other processor
lnwhi:hpﬁnm’jmghuﬁtcogiesm‘hoﬂlmmﬂgj hal:ehealaﬂm:alaﬂ-ﬂsamnh_.
we can overlap g and g5 inﬂteghmlschthﬂe,pmducmgﬂxghnslsdmdnleshm
in Figure 3.51. Under these constraints, a feasible schedule can be constrocted for
. see Figure 3.52.

| ] ] ] ] ] PR TR T DN R N S| ] |
0 5 i1 5
FIGURE 3.50
Ghost schedale of p if g5 and g5 cannod overlap.

| By s l | Ex |

1 1 1 L ! L 1 1 ] ] ] ] ] ] ]
0 5 10 15
FIGURE 3.51

Ghost scheduale of p if gz and g5 can overlap.

]
r'ﬂl tl my | | 3 |

| 1 1 1 L | i ! 1 1 1 1 1 1 1 | |
0 5 10 15

FIGURE 3.52 :
Feasible primary schedule of p if g4 and gs can overlap.
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37 SUGGESTIONS FOR FURTHER
 READING

- A good, if slightly dated, introduction to the theory of scheduling is provided in

~ [5, 6). The RM and EDF scheduling algorithms are considered in detail in Liu
and Layland [16]. The necessary and sufficient conditions for RM-schedulability
are published in [13]. The case where deadlines do not equal the task periods for
the RM algorithm is found in [12]. The deferred server algorithm is presented in
[14]. Some practical issues relating to the RM algorithm are discussed in [23].
Sze [11] for additional discussions of the EDF algorithm.

Determining EDF-schedulability for sporadic 1asks is presented in [3]. The
- MINPATH algorithm is described in [4]. The algorithm for taking precedence and
- exclusion constraints into account appears in [27].

The source for the primary/alternative task scheduling algorithm is [14].
- IRIS tasks are studied in [8, 17, 18]. The algorithm for computing the value of

i from [19].

The nexi-fit algorithm for assigning RM-schedulable tasks is published in
~ [7]- The wtilization-balancing algorithm is taken from [2). The bin-packing assign-
- ment algorithm for EDF is based on [9] and is well described in [5]. The MOS

heunstic is presented in [20].
2 The priority ceiling protocol is introduced in [22]. A refinement of this
- protocol is presented in [1].
3 Focused addressing and bidding are discussed in [21]. The buddy strategy
for assigning tasks to processors is reported in [25].
The primaryfghost algorithm for fault-tolerant scheduling was described
in [8].

'EXERCISES

- 3L Construct a set of periodic tasks (with release times, execution times, and periods),
which can be scheduled feasibly by the EDF algorithm. but not by the RM algorithm.

-2 Describe situations in which a task should not be preempted.

In the proof of Theorem 3.1, we considerad only a two-task system. Generalize the

_ Proof to n tasks for n > 2.

=4, We have been assuming in this chapter that presmption incurs no overhead. Let us

now relax that assumption. Consider a two-task system where each preemption has

an overhead of x. Given ¢, ex. Py, P>, oblain the maximom valee of x for which

the task set is RM-schedulable.

This question relates to transient overloads. Consider a set of five tasks with the

Tollowing characteristics.

= 4] @ P;

_-__———_—_
L 0 5 100
2 10 5 130
3 w15 140
S 0 0 140
5. 10 0 200
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Tasks T;. Tz, Ts are critical, but T2, T3 are not. Carry out a period transformation for
this task se1 to ensure that the critical tasks always meet their deadlines.

3.6. Prove that ¢ (k, i) is the minimum ¢ for which Equation (3.33) holds.

3.7. Prove Lemma 3.9. (Hint: This is very similar to the proof of Theorem 3.11.)

3.8. Assuming that the priority inheritance algorithm is followed, construct an example
where there are N tasks, and the highest-priority task is blocked once by every one
of the other N — 1 tasks.

3.9. Prove Theorem 3.7.

3,10, Write the time-reclamation algorithm mentioned in Section 3.2.4.

3.11. Redefine L; so that Theorem 3.4 continues to hold when the priority ceiling algorithm
is nsed.

3.12. Suppose a task can suspend itself. Show that if a task T; suspends itself o times, it
can be blocked by at most 1 + 1 (not necessarily distinct) members of B;.

3.13. Prove Theorem 3.14. aibnming PCP

3.14, Prove Theorem 3.13.

3.15. Prove Theorem 3.16.

3.16. Find the computational complexity of IRTSS.

3.17. From Equation (3.96), it follows that if the solution of problem g; results in tasks in
some sel A receiving any service during an interval (d;—y. ;] their reward functions
must all have equal derivatives for problems g;_. ...q as well. We can therefor:
group all tasks in A together during the solution of gi—i. ... Modify IRISS to
take advantage of this fact. Find the compwational complexity of your modifisd
algorithm.
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