100 REAL-TIME SYSTEMS

In this case, we run the EDF algorithm on the _mmtdatnr_f portions of each task
to yield schedule S,,. If this results in an infeasible schedule, then we must stop
since we can’t execute even the mandatory portions of each lasl_:. Suppose Lh_ai[
5., is feasible. Then we adjust §; to ensure that each task receives at least its

mandatory portion of service.

Example 3.34. Consider the set of four tasks with parameters shown in the fol-
lowing table.

Task number my; 0§ i 0
l 1 4 0 10
2 | 2 1 12
3 3 3 1 15
4 & 2 2 19

1 of the TRIS1 algorithm, we run the EDF algorithm m't.h task execution
:nunilsc]; 1, 6, and 8, respectively (for tasks 1 to £, to produce 5 u; Figure 3.33. It
is i ible to meet the deadline of task 4. Hence, we go 10 slep =.

: U“P::;?;‘:.E the EDF algorithm on the task set M produces the feasible scbeﬁuia
5. shown il:leigurt 3.33, All the deadlines are met, so we can proceed 1o step 3.
"-'r'ehaveau='El,a;|=1.a3=2.a;=5.m=11..ﬁlsu.k=4._ . . .
Mow we move to step 3 of the algorithm. Let us stan_wjth ds. We have task
T: scheduled in 8, over the imerval [az, as] and gj'-.'en & units -:]f_umr:. In s-:hadul;
$10. Ty is given only 5 units of time. Hence, we modify .5',.]_ by adding 6—5 = l uﬁ“.
of time !_ubl'; in the interval [a;, a;) and taking away | umt_fmm the task originally
scheduled at a; in 5., namely Ta. This results in task Ty being scheduled t'm_ a 103
of 6 units bevond a3. The resulting schedule is 5. Let us now move to the mt«zr‘-T
[@z. as). T3 is scheduled beyond that time in §.. for a wotal of 3 units. Ip‘5.|_. 5
has been scheduled for a total of 6 units beyond ;. Therefore, no T['IDdJ[]I:‘aU.[;'l;T
are needed: T has enough time to meet its mandatory portion. !‘t-E:_i.L we F‘ﬂﬂSl :
[ay, az). T2 is scheduled for that interval in 5. Let us consider me_um: {g:nen tF ";l
beyvond a; in 5. It is 2 units, which 1s greater than the mandatory requirement, |

—_— T I T, T ; T, _]

S L -
|
. (o] wy | M,
| T, I | . | T T
Sy L ' = _
| 1 I 1 1 1 i l 1 1 L - - Lt
o 5 10 13 -
FIGURE 3.33

Schedules produced by algorithm IRIS for Example 3.34.

TASE ASSIGNMENT AND schEDULMG 101

no modifications are needed. Finallv, consider [ag, a;). T, is given 1 unit in schadule
8w In 5, Ty is scheduled for 5 units, which exceeds the time given in 5.. S0, no
meodifications are needed, and the optimal schedule is §,,.

Theorem 3.14. For IRIS tasks with reward functions of the type being considered
in this section, algorithm IRIS1 is optimal.

Proof. We leave the formal proof to the reader. Here, we will merely sketch the
ideas behind the proof. If a feasible schedule is generated in step 1, then each task
has been mun to completion and we are done. If not, then from Theorem 3.13. we
know that the EDF algorithm is optimal when none of the tasks has any mandatory
portion: in that case, the schedule we would obtain would be 5, in step 1. But, the
transformations that we do in step 3 do not change the total time for which the
processor mans; it only ensures that all the mandatory portions are completed. This
completes the proof sketch. Q.E.D.

3.3.2 Nonidentical Linear Reward Functions
The reward function for task T; is given by

0 if x < my
Ri(x) = I wilx — m;) ifm; <x <m;+o0; (3.84)
w;o; if x = m; + o

Each task has a weight w; associated with it. Assume that the tasks are numbered
0 nonincreasing order of weights, w; > wy > ... > w,. The procedure for
optimally scheduling such tasks is obvious: Always run the available task with
the greatest weight, subject to the need 1o execute the mandatory portions of all
the tasks by their respective deadlines. This is done by algorithm IRIS2, which is
shown in Figure 3.34.

The idea behind the IRIS2 algorithm is the following. As with IRIS1, we
theck to see if we can feasibly schedule all the mandatory portions. If not, we
stop right away. If we succeed, we proceed by running IRIS] with a mandatory
task set equal to the mandatory portions of the tasks, and the set of optional
Portions equal only to optional portion of task T; (the optional portions of the
Other tasks are considered not to exist). IRIS1 is executed. It provides as much
me as possible to Ty, consistent with the need to meet the mandatory portions
of all the tasks.

We now take this schedule and label as mandatory the part of the optional
POtion of T; that was scheduled by IRISI. Next. we run the IRIS] algorithm
With this revised mandatory portion and the optional portion of T», and continue
"0 this way for the remaining tasks.

Theorem 3.15. If the reward functions are as defined in this section, algorithm
IRIS2 is optimal.

P_J"-tl'q.l': Onee again, we will leave the formal proof as an exercise and merely pro-
Vide a brief sketch. We know from Theorem 3.14 that (] is the maximum amount of

e —

102 REAL-TIME SYSTEMS

1. Set M to be the set of mandatory portions of all the tasks, and 0" = @
Run the EDF algorithm, and let §,, be the resulting schedule.

2. If 5, is not feasible,
the task set T is not schedulable: sToP.
else
i=1
do while (1 <i < n)
Set O = 0 U {©;). and use IRIS1 to find an optimal schedule
Define O] to be the part of 0; scheduled by IRISI.
Set M = M' U [0}
i=i+1
end do
end if
end

FIGURE 3.34
Algorithm IRIS2. (After Shih. Liu, and Kung [24])

service that can be given to O, (which is the task with the greatest weight) if all
the mandatory tasks are to meet their deadlines. Similarly, we have that @ _, is the
maximum amount of service that can be given 1o O, —;, subject o the constraint that
all mandatory tasks must meet their deadlines and that as much of O, as possible
should be executed. In general, for i < n. we have that O/ is the maximum amoust
of service that can be given to Oy, subject to the constraint that all mandatory tasks
must meet their deadlines and that as much of 04y, ..., 0, as possible should be
executed. The result follows from this observation. QE.D.

333 0/1 Reward Functions

We assume here that for any task i the reward function is given by

0 il x < m; + 0 -
Ri(x) = | I ifxzmito (3:83)
That is, we get no reward for executing the optional portion partially. If we run
the optional pertion to completion, we obtain one unit of reward; otherwise Wwe
get nothing.

The optimal strategy would therefore be to complete as many optional por-
tions as possible, subject to the constraint that the deadlines of all the mandatory
portions must be met. Unfortunately, when the execution times are arbitrary, the
problem of obtaining an optimal schedule can be shown to be NP-complete.

Finding an efficient optimal scheduling algorithm under the V1 case is thers-
fore a hopeless task. We must therefore make do with heuristics. One rather ob-
vious heuristic is shown in Figure 3.35. The IRIS3 algorithm is based on the
following reasoning. Since we get the same reward for completing the optional

TASK ASSIGNMENT AND SCHEDULG 1.3

1. Run the EDF algorithm on the set M of mandatory tasks.
If M is not EDF-schedulable, then
Task set T cannot be feasibly scheduled: sTop.
else
Go to step 2.
end if

2. 0 is the set of optional portions.
- Assignowy = lje; fori=1...., n.
Renumber the tasks so that their weights are in a non-ascending sequence, i.e

wp 2w ... 2> wy.

3. Run algorithm IRIS2 on a task set composed of
the mandatory set M and optional set O to obtain schedule 5.

- 4. If all the optional tasks in O are executed to completion in 5,
Return §, and sToP.

else
Let i, be the smallest index i such that
o7 is mot mun to completion in S,,.
Redefine O =0 — [o,__].
Go to step 3.
end if
end
- FIGURE 3.35

Algoritkm IRIS3: a simple heuristic for the V1 cass.

Portion of any task, it is best to run the tasks with the shorter optional portions.
rm’_“'e assign weights according to the inverse of the duration of the op-
_onal portions and run IRIS2. If an optional part s not run to completion in the
fesaling schedule. we remove s optional portion from considertion and rerun
€ continue in this manner untl each optional portion has been either
Leduled o CUT“PIE‘IIEI]] or dfﬂPFBd 3.].[@ tt :

3
)

+3.4 Identical Concave Reward Functions

No Mandatory Portions)

In sk: : . -

|~- section, we consider tasks with identical release times and with mandatory
#UMons of zero. We assume that the reward function of T; is given by

104 BEALTIME 5YSTEMS

where the function f is one-to-one and concave. Recall that a function filx) is
concave iff for all xy, xa, and_ D<wo=<lI,

Floxy +[1 — alea) > af G + (1 — @) f(x2) (3.87)

Geometrically, this condition can be expressed by saying that, for any two points
on a concave curve, the straight line joining them must never be above the curve.
An example of a concave function is 1 —e™".

We will also assume that the functions f(x) are differentiable, and define
2(x) = df(x)/dx. We will assume that the inverse function g~" of g exists for
all i = 1,...,n. This will happen if the functions g are monotonically decreasing
and we assume that they are. The tasks are numbered in nondecreasing order of
their absolute deadlines (i.e., Dy < Dh < ... < D). For notational convenience,
define Dy = 0.

Since f is a concave function, we have nonincreasing marginal retums,
and so the optimum is obtained by balancing the execution times as much as
possible. If all the deadlines are equal (ie. if Dy = ... = D, = 4), then the
algorithm is trivial—just allocate to each task a total of &/n of execution time
before its deadline. If the deadlines are not all equal, the algorithm is a little more
complicated. We will leave to the reader the problem of writing out this algorithm.
IRIS4, formally. Here is an informal description.

The basic idea behind this algorithm is to equalize, as much as possible,
the execution times of the tasks. The algorithm starts at the latest deadline and
works backwards. In the interval [Dy_;. Dy]. only task T, can be executed and it
is allocated up to a, = max{D, — D,_;. e;} units of time in that interval. Next,
we move to the interval [D,_z. D,]; over this imterval, tasks T, and T, can
be executed. In this interval, we also allocate time to T,_; and T, so that, in the
interval [Dy—2. D], the execution time these tasks receive is equalized as much
as possible (subject to the obvious constrainis). We then go on to the interval
[Dy_3. Dy_a], over which tasks T,—2, To1. T are available, and so on until the
beginning.

Example 3.35. We have a five-task aperiodic system with deadlines Dy = 2, Dy=
6. D; =8, Dy =10, and Dy = 20 each task has an execution time of 8.

Let us begin with the interval (10, 20]. Only task Ts can be scheduled in that
interval, and we can give to it its entire execution time of 8. So, the allocation of
execution times so far is:

Ty T2 T3 T, Ts

0 1] 0 0 8

MNext, move to the interval (8, 10]. Tasks Ty, T can be scheduled in that
interval, but we have already given a full execution-time to Ts, so we don’t consider
that task here. We devote this entire interval to Ts. The execution time allocations
are DOW:

k _I- |_£.'-

L [-

TASE ASSIGNMENT AND SCHEDULDG 105

T T T: T, Ts

MNow, consider (6. 8]. T3, Ty, Ts are eligible 1o run in that interval. As before, we
don't have w consider Ts. We give the 2 units 1o Ts so that it is equalized with
T.. (This is the best possible balancing of the execution times.) The execution-time
allocations are mow:

Ty T2 T3 Ts T;

0 0 2 X g

Move on to (2, 6]. T2, T3, Te, T5 are eligible to run in this interval. Give 2 units
w Tr so that 75, T3, Ty are each allocated 2 wmits. This leaves 2 units which we
can allocate equally to each of these tasks over that interval. The execution-time
allocations. are mow:

Ty Ta T T Ts

] 266 266 266 B

Finally, consider (0, 2]. Here, we must clearly allocate 2 units to T, and the final
allocations. are:

n Tz Ty Ty Ts

2 266 266 0 166 8

.ll;iseasg,.'luc]wckmalﬂmmuﬁuniimes}nmbeenha]armdasmu:has
possible, under deadline and execution time constraints. The schedule is shown in
Figure 3.36.

mMi. Algorithm [RIS4 is optimal under the conditions listed in Sec-

o] & [n | T |

1 1 1 1 1 I 1 1 1 L 1 1 1 I 1 1 1 |

5 10 15 0

RE 336
of the TRIS4 algorithm.

106 EEsL-TIME SYSTEMS

Proof. This has been left as an exercise for the reader. QED,

3.3.5 Nonidentical Concave Reward Functions®

As in the previous section, we consider tasks with identical release times and with
mandatory portions of zero. There are n tasks in all. We assume that for any task
T: the reward function is given by

o | Sfilx) if0<x<uo
Rilx) =1 Filon) if x > 0; (3.88)
where the functions f; are one-to-one and concave.

Let x;;(5) denote the service that task T: receives in the interval [D;_q. ;]
under schedule $.% The total amount of service that task T; receives is given by

ss(i) = ¥i_, 4:;(8).7 The optimization problem therefore reduces to maximizing
P= E fils(in (3.89)
=1
subject to the constraints that
i.r,-; =D;-Dj., 1<j<n (3.90)
lzlx,-j >0 l<j<i<n (3.91)

This is a standard constrained-maximization problem, which can be solved using
Lagrange multipliers.® The solution to this optimization problem can be obtained

by solving the following set of equations, where jr; and v; are ge multi-
pliers.
—gilsiN+pi+v; =0 1=<j<i<n (3.92)
Y xy—(Dj=Dja) =0 j=l....n (3.93)
i=j
xip =0, wix; =0, v <0 l<j<i<n (3.94)

51n this discussion, we will frequently omit § where this is convendent and write simply xij. Wherd
% can be understood from the context

7 As wiith x;7., we will drop the 5 from sgiil, where this can be done without confision.
Ekmdusmawmnfdﬂsappma:hﬂmnﬂmmhmyhmtwmmemnn]ugdmﬁmﬂ“
as D. 5. Loenberger, Introducrion ro Linear and Nonlinear Programmeing, Reading., MA: Addisos
Wesley, 1973. If you haven’t heard of Lagrange multipliers befoee, simply comsider them to be
comstapts and assume (3.92) 1o (3.94) to be true.

TASE ASSIGNMENT anD scHEpvimvg 107

I x;; = 0. from (3.94), v; < 0, and so from Equation (3.92),

gils(i)) < p; Il<j=<i=n (3.95)
I xij > 0. we have v;; = 0, and so from Equation (3.92),
gilslid) =, Il<j=<i=<n (3.96)

et 5*(i) and x}, denote values for s(i) and x; (i j = L.---,n) that satisfy

Equations (3.92) to (3.94). Then an examination of these equations yields the

following conclusions.

Lemma 3.13. For any i, j, if there is some k (1 <k < i, j < r) such that x3, >0
and x7; > 0, then

gils™(i)) = g;(s"(j)) (3.97)
Proaf. This follows immediately from Egquation (3.96). Q.E.D.

Proof An altermative proof that argues from first principles is as follows. Suppose
that the lemma is false, and that we have some i, j such that gi(s*(i)) = gi{s* (i)}
for optimal schedule 3°. Consider the case g;(s” (i)} < g;(5*(j}}. Since Ir’t""ft >0
and the g; are continoous funciions, there exists some & > 0 such that

» § <minfxj, x5}, and

o 2:(s"(f) — &) < g (s" () +).
Constract another schedule §° that is identical 1o 5 except that task T; receives &
less service and task T; receives § more service. It is clearly possible to do this

without any deadlines being missed. Denote the rewards under 5° and 5" by R(5")
and R(5"), respectively. Then,

R(S')— R(5") = fils* (i) — &) — fils* (i)} + f;(s" () + 8y — fi(s"(in)

_J . . -

= (IE[:‘-EE.;:'*E:I]& [‘t}) +3é (:El,.;'lﬂuwlsl '[III)

= —gi(s"(i) — 805 + g;(s*(j) + 5)3

-0 (3.98)

A similar result holds for the case where g;(s*(i)) > g(s*(j)).
The total reward for §° will be thus greater than that for 57, contradicting the

optimality of 5*. Q.ED.
Lemma 3.14. For anv i, j € {1,....n}, if there is some k (1 <k < i, j <n)such
that x’, > 0 and x}, =0, then

gl = gi(s*(in 13.99)
Progf. This follows immediately from Equations (3.95) and (3.96). Q.ED.

108 mEAL-TIME SYSTEMS

Lermma 315, [fs*{j)=0forany j{l..... n]. then for all § € {1....j — 1L
g:(s™(i)) = g7 (0D (31009

-

Pn:qu. Eil:j:l — [} MEeAans ﬂ'!_a[Ii.l; = ﬂ f{ﬂ' a]! .‘.— -.nﬂs. [Dge'lllﬂ .""‘i[h lma 3--I-"":
proves the result QED.

Lemma 3.16. 1f there is some task Tp such that xg; :—Dandx;_i > [, then
Wi = forall l <i.j<k=n (3.101)

Proof. The proof is an immediate consequence of Equation (3.96). QE.D.
Lemma 317, p; = e for 1 2 <.

Proaf. We prove this by contradiction. Suppose that this lemma is false, and thers
exists scrr:epi such th&l-m < pjep- Then, from Lemma 3,16, we Lm:}-a. 1l_1=u there
is some task T such that x2 .., > O but x}, = 0. But, x; = 0 implies fmm
Equation (3.93) that gnls*(m)) < i, and 1 ;g > D_irr_tphes from Equation (3.96)
that g. (s*(m)} = pit1- That is, p; = Misi. @ contradiction. Q.ED.

Lemma 3.18. There exists an optimal schedule § under which for all i such that
sglid >0,

oi(sslil) > gi(ss(j)) forall 1<i<j<n (3-102)

f e this ' i is, how that any optimal
Proof. We prove this result by construction. 'l_‘hax is, we s any T
schedule can be transformed into another optimal schedule for which Egquation
(3.102) holds. _)
Suppose we are given an optimal schedule U and wish to transform it 10
another schedule ¥ for which Equation (3.102) holds. Take 1ask.s T; and T, mT
i < j such that sy(i). sydj) > 0. Define v = max{klx (L) > 0] and w L—-
max[kjxe(l) > 0]. In wonds this means that tasks T. and T; do pot, under U
receive an'-. service after time D,.; and D, ., respectively. There are three cases.
Case 1. v = w. From Lemma 3.13, we know that g:(sgli)y = ,gj.-[sL-[j'l':-.
Define x (1) = x (L) and Tik (¥} = Xk (L) forall k € i,nk "
Case 2. v < w. From Equation (3.96) and Lemma 3.17. we have gi{sp(i}) =
& (5 (0. Define x;:(¥) = .'r_:tl:{..’}anli:l;;itﬂ"] = J.’_ij_{i.l':l,fﬂl' all & E.[l.. - ..F-']a
Case 3. v > w. By shifting the execution of the tasks in time (while keepinZ
the total time allocated to each task the same in b-uch.s-:hcdu_les {/ and ¥'). 'ﬂ-.:
can reduce Case 3 to gither Case 1 or Casc 1. In particular, in Schedule Fw
henve:
Xl ¥) = xip{U) — min(x;, (N P ()
Xjpl¥) = x5 (U 4 min(e (U, (D7)
T (¥} = X (1) + min{xs (L), x5 AU 1)
-Ij:r':.}r} — .IJ'{H-:I e miﬂl;.'ﬁ.—._{i.ll]...'f‘itl:Lr]:l

P

TASK ASSIGNMENT axp scHEpuLeg 109

We are shifting some of the T; execution from (D,_,. D,] to (Du_,, D.], and
some of the T; execution from (D, _y, D] to (D, D).
If x;.(¥) > 0, then we have

max{k|x;: (1) > 0} = max{k|x(¥) = 0} = v

and Case 1 can now be applied. On the other hand, if x; (¥) = 0, then
max{k|x; (1) > 0} < maxfk|x;(¥) >0} = v

and Case 2 can be applied to tasks T; and T;.

Thus, by repeatedly applying this construction procedure to every pair of tasks
T;, T; for which sy (i) > 0, spr(f) > 0, we obtain the schedule ¥. Q.ED,

Assuming that the tasks are all released at time 0 and have deadlines Dy <
Dy < ... < Dy, we can define n scheduling problems. gy. 4a. g, where g; is
the following problem (for notational convenience. assume Dy = 0):

Assuming that tasks T;, ..., T, all arrive at time D;_;, schedule them in the
interval [Dy_, D] so that the reward is maximized.

The overall scheduling problem is therefore gy. Solving g, is trivial; as only task
n can be scheduled in the interval (D, _;. D,]. We will show now how to solve
g; as a function of the solution of g;_ ;.

Theorem 3.17. Let an optimal solution of g:.., involve allocating service time
splidtotask T; (i4+1 < j <m). Let K be the set of tasks that receives a nonzero
allocation of service time in the interval [D)_,, D] in the opiimal selution to g;.
Then, an opiimal solution 1o q; satisfies the eguation

Doty =" k) + D — Dy (3.103)

ek kek

where ' = p!i" forall k = K.

Proof. The server does not idle while there are tasks waiting for service. Conse-

quently,
E (s70k) — 52, 8)) = D - D,
bel
= ESF{H = Es{_l[ﬂ +D;— Dy, (3.104)
k=K ke

But from Lemmas 3.13 and 3.14 we know that all tasks served in the interval
(D;_y, D;] have the same marginal reward rate, and that other tasks in q; have lower
marginal reward rates. That is, there exists some u'™ such that g (s* (k) = u’ for
all k € K. Thus, we have from Equation (3.104), :

Y & (W) =3 s+ D - Dy (3.105)
oy QLE.D.

kK

| ‘ 110 REAL-TIME SYSTEMS |

| We now hold all the keys to an optimal scheduling algonthm. As men-

tioned eadlier. the solution of g, is tnvial and we will work backwards through
| Gn—1+ - - - g1. Suppose we have solved problem g;+;. In the solution of g;, we
' consider the set of tasks T. = {T;... .. Tn}. For notational convenience, define

o s, (j)=0foral j <1, and
o 7(j) = lx|gclsy,,(x)) is the jth largest of the set

{3:{5;‘_:_] {!]']'r =wuy gr [5:_'.| [.ﬂ:l:]}}-

From the foregoing results, we know that tasks Tr(p. ... Txiyy will be served in
{D}_y. D] if it is possible to find some fi > 0 such that

¥ ¥
Eg;&:‘[ﬁ] =D = Dici + Zﬁfﬂfﬂ (3.106)
=l j=1

This leaves us with the problem of obtaining y and ji. The brute-force way of
doing this is to try every value of i from 1 to y, where Equation (3.106) no longer
allows ji > 0. The clever(er) way of doing this is to observe that if task k s served
in (D;, D;x1]. then s7(k) > 57y, (k). In anmy event, for all tasks T; such that D >
D; we must have s*(j) > s7,,(j), since only such tasks can be served bevond
D;. The complete algorithm is shown in Figure 3.37. Concave reward functions
are probably the most realistic since they exhibit the property of nonincreasing
marginal returns. The greatest gains in the accuracy of most numerical iterative
algorithms, for example, come in the first few moments of execution.

s

L L=0x=0i=1....nDg=0m=n

2. while (m > 0) do
Insert task T, into L.
Define 7(i) = {e|galxs) is the ith largest among g¢lx¢). £ € L}.
Use binary search to find £ such that

i+ - , - |E &
E'=: [S_—.-.jlr||:§.[+]"l-"i'-[+1l - I:m']] > Dy — D1 2 E::t I:;g__n:ll-:l{g; (xeh) — '{"'".] i

dl

Solve for p in the equaﬁﬂn

E:‘[:I g;rlitnu-l = E::[Txii) + Dy — Dy
W have x5 = g__:l;lh[gr','l. i=1....L

m=m—l

end while

B

end

FIGURE 337
Algorithm IRISS.

TASK ASSIGNMENT axD scHEDULDNG 111

34 TASK ASSIGNMENT

The optimal assignment of tasks to processors is, in almost all i
: 3 practical cases,
an]-—IP.-cmnplete problem. We must therefore make do with heuristics. These
heuristics cannot guarantee that an allocation will be found that permits all tasks
to be feasibly scheduled. All that we can hope to do is to allocate the tasks, check

their feasibility, and, if the allocation is not feasible, modify the i
I . f allocati]
to render its schedules feasible.) e
] I—LIFuns!_lcs typically allocate according to some simple criterion and hope that
fgﬂ5|h.||.l‘l}' 1_.1.'1]] follow as a side effect of that criterion. For example, if we keep
the uuh;atmn below m(2'/" — 1) for all processors in a system running periodic

tasks whose deadlines equal the respective periods, we know that ﬂ'leb i

task allocation is RM-feasible, resling
. _Whe.n checking an allocation for feasibility, we must account for commu-
nication costs. For example, suppose that T} < Ty. Task T» cannot start before
receiving the la.si:. Ty output. That is, if f; denotes the completion time of task T,
and c;; is the time to communicate from T; to Tj, I

> fiten (3.107)

If tasks T; and T5 are allocated to the same processor, then cjz = 0. If thev are

allocated o separate processors, cqy is positiv i
D : 5, £12 15 positive and must be taken into
while checking for feasibility. e

Example 3.36. Consider the sitnation discussed above where < (2) = {1}. Then, if
Dy = fy + 053 + €2, the allocation is not feasible. '

oM HJU'EII.']I]H]] UsEs mmuomcaion cosls as E:'f s Ejlﬂ“
L=
pan'

34.1 Utilization-Balancing Algorithm

E;lst;igvnllun an;mpts to balance processor utilization, and proceeds by allocat-

; tasks one by one and selecting the least utilized i

is shuwm! in Figure 3.38. e prosessor. e dlserthm
This algorithm takes into account the possibility that we might wish to run

' ;‘i:i[-"'lﬂ copies of the same task simultaneously for fault-tolerance. In particular,
| B assigns r; copies of task T; to separate processors. Let u? and 1® denote the uti-

nsa;f Processor py u.n_d_e:r an optimal algorithm that minimizes the sum of the
]rs'lfﬂrﬂsr g tEE processor utilizations and under the best-fit algorithm, respectively.
1= ...=rp=r,and there are p processors in all, it is possible 1o show that

E{}

_ 9
=3 T (3.108)

g [“r}] p—_r

P 2> r, this ratio tends to 1.125, which is agreeably small.

112 REAL-TIME SYSTEMS

1. For each task T;, do
Allocate one copy of the task to each of the r; least utilized processors.
Update the processor allocation to account for the allocation of task T;.
end do
end

{where r; is the redundancy, i.e., the number of copies of task i that must be
scheduled.)

FIGURE 3.38
Thilization-balancing algorithm.

3.4.2 A Next-Fit Algorithm for RM Scheduling

There is a utilization-based allocation heuristic that is meant specifically to be used
in conjunction with the rate-monotonic scheduling algorithm. The task set has the
properties that we assumed in Section 3.1.1 on RM scheduling (i.e.. indepen-
dence, preemptibility, and periodicity). The multiprocessor is assumed to consist
of identical processors and tasks are assumed (o require no resources other than
processor time. Define M > 3 classes as follows, where M is picked by the user.
Task T; is in class j < M if
UG _ | <P <2W -1 (3.109)

and in class M otherwise. Comesponding to each task class is a set of processors
that is only allocated the tasks of that class.

We allocate tasks one by one 1o the appropriate processor class until all
the tasks have been scheduled, adding processors to classes if that is needed for
RM-schedulability. Example 3.37 clarifies this process.

Example 3.37. Suppose we have M =4 classes. Then the following table lists the
utilization bounds corresponding to each class.

Class Bound
) (0.41,1]

Cs 0.26,0.41]
Cs (019, 0. 28])
Cy (0U00,0.19]

Consider the foilowing periodic task set.

TASK ASSIGNMENT AND sCHEDULRNG 113

| ——
Ty T2 Tz T Ts Ty T Ts Ta T T
& 5 T 3 L 10 15 1 3 9 17 21
’ 0 » M N 4 0 55 T W 95
i) 0,50 0.33 014 g 033 0.40 002 005 013 o9 [1]
Clss C1 Ca Cy Ca Ca Ca Ca Cs Cy Cy 3

e

 Note: wli) = e P;

Since we have at least one task in each of the four classes, let us begin by earmarking
one processor for each class. In particular, let processor p; be reserved for tasks in
class C:, 1 < <4, T is assigned to py. T to po. and Ts to ps. Ty € Gy, and since
{T5. T3) is RM-schedulable on the same processor, we assign Ty also to py. Ts € G,
and since {Ta, T5} is RM-schedulable on the same processor, we assign Ts also to
pr- Ts € Ca. However, [T;, T5, Ts) is not RM-schedulable on the same processor,
so we assign an additional processor ps 1o C» tasks and assign Tg w0 ps. Ty € O
and [Ts. Ty, 7} is RM-schedulable on the same processor, so we assign it 0 py.
We proceed similarly for Ty, Ty, Tyg. Finally, assign Ty to ps. The assignments are
summarized below.

Processor Tasks

n T

P 12, Ts

" i

Pa BT, 17, Te. To. Tio
Ps T

With this assienment, we can run the RM scheduling algorithm on each processor.
- Itis possible to show that this approach uses no more than N times the
minimu possible number of processors, where

v |i.9|1 if there is no task with wiilization in (v2 — 1.0.5] (3,110
2340 otherwise '

3 A Bin-Packing Assignment Algorithm

EDF

Suppose we have a set of periodic independent preemptible tasks to be as-
SEned to a mfulﬁpm-:essm consisting of identical processors. The task dead-
TS equal their periods. Other than processor time, tasks require no other re-
We Immn that so long as the sum of the utilizations of the tasks assigned to
= Processor is no greater than 1, the task set is EDF-schedulable on that processor.
the problem reduces to making task assignments with the property that the
" of the wilizations of the tasks assigned to a processor does not exceed 1.

114 sEs-TvE sYSTEMS

Initialize i tol. Ser U(j) =0, forall j.

while i < ny do
Let j = minfk|U(k) wi(i) < 1}.
Assign the ith task in L to pj.
i—i+1.

end while

FIGURE 3.3
Farst-fit decreasing algorithm.

We would like to minimize the number of processors needed. This is the famous
bin-packing problem and many algorithms exist for solving it

The algorithm we present here is the first fit decreasing algorithm. Suppose
there are iy tasks to be assigned. Prepare a sorted list L of the tasks so that their
utilizations (i.e., wi(f) = &;/P;) are in nonincreasing order. Figure 3.39 shows the
algorithm.

Example 3.38. Consider the following task set:

TASE ASSIGNMENT AxD sCHEDLLDGG 115

It is possible 1o show that when the number of processors required is large,
the ratio
Number of processors used by the first-fit decreasing algorithm
Number of processors used by optimal algorithm

hes 11/9 = 1.22, when a large task set is used. In fact, this limit is
approached quickly. so that 1.22 is a good measure even for relatively small
sysSLEms.

34.4 A Myopic Offline Scheduling
(MOS) Algorithm

Thus far, we have assumed that tasks can be preempted. The myepic offline
scheduling (MOS) heuristic is an assignment/scheduling algorithm meant for non-
preemptive tasks. This algorithm takes account not only of processing neads but
also of any requirements that tasks may have for additional resources. For in-
stance, & task may need 1o have exclusive access to a block of memory or may
peed to have control over a printer. MOS is an offfine algorithm in that we are
given in advance the entire set of tasks, their arrival umes, execution times, and
deadlines.

MOS proceeds by building up a schedule tree. Each node in this tree rep-
resents an assignment and scheduling of a subset of the tasks. The root of the

schedule tree is an empty schedule. Each child of a node consists of the schedule

o - o T s s T'T e o T Tu of its parent node, extended by one task. A leaf of this tree consists of a schedule

e 5 7 3 1 10 16 I 3 9 17 i | (feasible or infeasible) of the entire task set. _)
P w2 2 24 3N 4 5 5 T % 5 The schedule tree for an nr-task system consists of nr + 1 levels {including
wii) 050 033 014 o004 033 040 002 008 013 0% 022

the root). Level i of the tree (counting the root as being of level 0) consists of

Note: uli) = e; fP; modes representing schedules including exactly i of the tasks. .
- o § Generating the complete tree is tantamount to an exhaustive enumeration
i of all possible allocations. For any but the smallest systems, it is therefore not
The ordered list is L = (T, Ts. T2 T, Tipe Thp. T3, To. Ty, T T7). The assignment : practical to generate the complete tree; instead, we try to get to a feasible schedule
process is summarized in the following table. The vector U = (L7, U, Us. .0 a8 quickly as we can.
contains the total utilizations of processor p; in L. The algorithm can be informally described as follows. We start at the root
node, which is an empty schedule; that is, it corresponds to no task having been
| scheduled. We then proceed to build the tree from that point by developing nodes.
1 Step Task T; wii) Assigned to Post-assignment U vector A node n is developed as follows. Given a node n, we try to extend the schedule
[. § i . Tepresented by that node by one more task. That is, we pick up one of the as-vet-
1 T 050 p (0.50) A unscheduled tasks and try to add it to the schedule represented by node n. The
S il - E augmented schedule is a child node of n. .
j r: 0.33 i i{liqaiﬂ}-a:. There are two guestions that must be answered. First, which task do we pu:.k
5 Tin 022 P nea0ss 9] ﬁl’ﬂtending an incomplete schedule? Second, when do we decide that a node is
& Tio 0.18 p3 (0.90,0.88,0.1E) - Dot worth developing further and turn to another node?
7 T: 014 (0.90,0.88,0.32) =
| 3]r—: 3}; I": ;Eﬁ;ﬁ'ﬁﬁﬁﬁ} ~ L. The task that we chose to extend an incomplete schedule is one that minimizes
i Ta 0 o, (1.00,0.88,0.45) & heuristic function H. H mav be any of the following functions:
I T 002 m (1.00,0.90,0.45)

* task execulion time,

116 BEAL-TIME SYSTEMS

o deadline,
» carliest start time (i.c., earliest time at which the resources for that task will
become available after it has been released),
o laxity,” or '
« weighted sum of any of the above.
For instance. if H{(i) = D;, then the next task to be chosen for scheduling will
be the as-yet-unscheduled task with the earliest deadline.

2. We only develop a node if it is strongly feasible. A node is srrongly feasible if
a feasible schedule can be generated by extending the current partial schedule
with any one of the as-yet-unscheduled tasks. If a node is not strongly feasible,
it means that none of its descendants that are leaves can represent a feasible
schedule. If we encounter a node that is not strongly feasible, we backirack.
That is, we mark that node as hopeless, and then go back to its parent, resuming
the schedule-building from that point.

Ome difficulty with the MIOS algorithm is that, if the number of tasks is very
large, it can take a long time to check if a node is strongly feasible. In particular,
at level i. we will need to check feasibility of extending the schedule by each
of the ny — i as-yet-unscheduled tasks. As a result, the number of comparisons
needed to generate one root-to-leaf path is

ny + gy — 13'+[i'r1--—2]|—.---flilszwi;—'Il

To reduce the number of comparisons, we can replace the strong feasibality check
at each node by means of a myopic procedure as follows. For each nonleaf level-1
node n, this procedure picks the first minf{k, ny — i} as-yet-unscheduled tasks and
checks to see if the schedule represented by n can be feasibly extended by each
of these tasks. (The parameter k is used by the algorithm to limit the scope nf_fru:
search.) If not, we mark the node as hopeless and backirack as before. Otherwise,
we develop children for that node.

Example 3.39. We have a five-task set 10 be scheduled on a two-processor sysied-
The tasks are nonpreemptive. The parameters of these tasks are as follows:

T]' T_f I} r.g TE
i] 10 L] 15 L]
& 15 3 L @ 10
n 15 | 18 5 30

%The laxity of task T; is given by Dy — e;. It is the latest time at which T; may be started and be
guaranieed 1o meet its deadline.

TASK ASSIGNMENT AND SCHEDULING 117

There are no other resource requirements. Suppose we use H(i) = r. We szt
k = 5 for the myopic procedure. The tree generated by the algorithm is shown in
Figure 3.40.

The root node is the empty schedule. There are three tasks with release times
of 0: we pick T; first. A level-1 node is generated, that contains a schedule for T,
This node is strongly feasible—any of the other tasks can be feasibly scheduled
given the position that T, occupies in the schedule.

Mext, we pick T: and schedule it to form a level-2 node. This, too. is strongly
fieasible, Then, we generate a level-3 node, which involves angmenting the previous
schedule with Ts. Unformunately. this is not strongly feasible; in particular, it would
be impossible to augment this schedule with T3, 5o, we backtrack to the level-2
(i.e.. the parent) node. We pick T; rather than T (the next task in order of release
time) and schedule it. This results in a strongly feasible schedule.

MNext, we form a level-5 node by adding Ts to the schedule. This is not strongly
feasible—T; cannot be added to it. S0, we abandon this node, retam to the parent
(level-4) node, and generate a schedule by adding T;. This is strongly feasible, and
its child, formed by adding the final task toit, is a leaf node that represents a feasible
scheduling of all the tasks.

The reader should ran the algorithm on this set of tasks with H (i) = D and
see if it runs any faster for that function.

The running time of the algorithm depends on k and H. No definitive state-
ments can be made about how to choose these guantities. Let us examine k. This
bounds the number of tasks that the algorithm considers in determining the strong
feasibility of a node. If k is too small, it is possible for us to declare a node to be
strongly feasible and develop it further, only to find that none of its descendants
15 strongly feasible. If k is too large, we will spend a great deal of time (especially
in the levels of the tree close to the root) checking the strong feasibility of nodes.
In general, the tighter the constraints, the greater must be the value of k. In other
words, if the task laxities are low or if many tasks use resources in addition 1o
the processor, k must be large. It has been suggested, from extensive simulations,
that k = 13 is the largest value ever required.

As far as H is concerned, a weighted sum of the deadline and earliest start
Hme is perhaps the most promising function. Recall that the earliest start time of
a task is the earliest time after the task has been released that all the nonprocessor
IEsources needed by that task become available.

345 Focused Addressing and Bidding

(FAB) Algorithm

Th'? focused addressing and bidding (FAB) algorithm is simple enough to be an
"33{13_1113 procedure and is used for task sets consisting of both critical and non-
Eritical real-time tasks. Critical tasks must have sufficient time reserved for them

S0 that they continue to execute successfully, even if they need their worst-case
- EXecution times. The noncritical tasks are either processed or not, depending on

the system’s ability to do so.
; _The underlying system model is as follows. The noncritical tasks arrive at
¥idual processors in the multiprocessor system. If a noncritical task arrives at

Example of the MIOS algodithm; boxmed nodes are not strongly Feasible.

M
I T T T TN TN TN TN (NN TN TN A |
1] [} 20
Po h I
P
Lt o1 v v | » & 5 8 0 0 4 4y |
0 1] m
pt.l T |
p.l T |
| T T T TN T [(N (N N
0 10 20 20
Plj| Ty I ,,ul T 1
P]| T | Pl[T |
I T N T Y N T O O I B I T | 1 3l 5 5 sl
] Ly 20 30 Q 0] 0 30
w1 = o | TS
Pnl i | | p.l s |
L& & s o 0 o 9 9 3 1 3 3y y | L s o o 0yvvy g1y el
] 10 | 30 0 10 20 k.
A A
|9|| T3 |TJ'J__—-'
|IIII|I_I:|]JJ_I_'—-L"]
0 10 20 E
FIGURE 3.40

TASE ASSIGNMENT AxD scHEDULING 119

ocessor p;. that processor checks to see if it expects to have the resources and
- 1o execute it by the specified deadline'” without missing any of the deadlines
¢ the critical tasks or of the previously guaranteed noncritical tasks. If it does, p;
arantees the successful execution of that task, adds that task to its list of tasks
. executed, and reserves time on its schedule to execute that task. Since this is
_ itical task, the guarantee can be based on the expected run time of the task
ther than on the worst-case run time. In other words, we can accept that some
soncritical tasks might tumn out to be not executable in a timely fashion because
heir actual run times turn out to be much greater than anticipated.

" The FAB algorithm is used when p; determines that it does not have the
resources or time to execute the task. In that case, it tries 1o ship that task out to
come other processor in the system.

The problem of load-sharing by moving tasks from one processor to another
has long been studied in general-purpose distributed systems. Many solutions have
been suggested. Perhaps the simplest is a random-threshold algorithm. In this algo-
athm, a processor that finds its load exceeding a threshold simply sends an incom-
ine task out to another processor, chosen at random. Another algorithm has lightly
loaded processors touting for business by announcing they are lightly loaded and
are willing to process excess tasks from other processors. We shall see a vanant
of this (adapted for real-time purposes) when we study the buddy algorithm.
The FAB algorithm is as follows. Each processor maintains a status table
hat indicates which tasks it has already committed to run. These include the set
of critical tasks (which were preassigned statically), and any additional noncritical
tasks that it may have accepted. In addition, it maintains a table of the surplus
computational capacity at every other processor in the system. The time axis is
divided into windows, which are intervals of fixed duration, and each processor
egularly sends to its colleagues the fraction of the next window that is currently
free (ie., is not already spoken for by tasks). Since the system is distributed, this
Information may never be completely up to date.

~ When shopping for a processor on which to offlcad a task, an overloaded
processor checks its surplus information and selects a processor (called the focused
proce .s'.m-r] ps that it believes to be the most likely to be able to successfully
Execute that task by its deadline. It ships the task out to that processor. However,
5 We pninte:d out, the surplus information may have been out of date and it is
passible that the selected processor will not have the free time to execute the task.
5 insurance against this, and in parallel with sending out the task to the focused
_ Processor p;. the originating processor decides whether to send out requests for
s (RFB) to other lightly loaded processors. The RFB contains the vital statistics
the task (its expected execution time, any other resource requirements, its
ieadline, etc.), and asks any processor that can successfully execute the task to
=nd a bid 1o the focused processor p. stating how quickly it can process the task.

(hecal] that in a real-time system, the resource amd executioe-tinee requirements of all the tasks ane
K in advance.

