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Static-priority scheduling on multiprocessors

Bjorn Andersson Sanjoy Baruah Jan Jonssdn

Abstract parameters — an execution requireméhtand a period’;

The preemptive scheduling of systems of periodic tasks— with the interpretation that the task generates a job at
on a platform comprised of several identical processors is each integer multiple df;, and each such job has an execu-
considered. A scheduling algorithm is proposed for static- tion requirement of’; execution units, and must complete
priority scheduling of such systems; this algorithm is a sim- by a deadline equal to the next integer multiple7of A
ple extension of the uniprocessor rate-monotonic schedul-periodic task system consists of several such periodic tasks
ing algorithm. It is proven that this algorithm successfully that are to execute on a specified processor architecture. We
schedules any periodic task system with a worst-case uti-assume that each job is independent in the sense that it does
lization no more than a third the capacity of the multipro- not interact in any manner (accessing shared data, exchang-
cessor platform. It is also shown that no static-priority mul- ing messages, etc.) with other jobs of the same or another
tiprocessor scheduling algorithm (partitioned or global) task. We also assume that the model allows forgaemp-
can guarantee schedulability for a periodic task set with a tion; i.e., a job executing on a processor may be preempted
utilization higher than one half the capacity of the multipro- prior to completing execution, and its execution may be re-

cessor platform. sumed later, at no cost or penalty.
In this paper, we will study the scheduling of systems
1 Introduction of periodic tasks. Let = {71, 7,...,7,} denote geri-

Over the years, the preemptive periodic task model [16, odic task systepin which each periodic task = (C;, T;)
15, 4] has proven remarkably useful for the modelling of is characterized by its execution requirement and its pe-
recurring tasks that occur in hard-real-time computer ap-riod. For each task;, define itsutilization U; to be the
plication systems. Accordingly, much effort has been de- ratio of 7;'s execution requirement to its period’; def
voted to the development of a comprehensive theory dealingC; /T;. We define the utilization/ () of periodic task sys-
with the scheduling of systems comprised of such indepen-tem  to be the sum of the utilizations of all tasks in
dent periodic real-time tasks. Particularly in the uniproces- U(7) def >_..c» Ui. Without loss of generality, we assume
sor context — in environments in which all hard-real-time that7; < T, forall i, 1 < i < n; i.e., the tasks are
jobs generated by all the periodic tasks that comprise theindexed according to period.
hard-real-time application system must execute on a sin-
gle shared processor — there now exists a wide body of
results (necessary and sufficient feasibility tests, optimal Dynamic and static priorities. Run-time schedulings
scheduling algorithms, efficient implementations of these the process of determining, during the execution of a real-
algorithms, etc.) for systems modelled as a collection of time application system, which job(s] should be executed
independent preemptive periodic real-time tasks. Some ofat each instant in time. Run-time scheduling algorithms are
these results have been extended to the multiprocessor corfyPically implemented as follows: at each time instant, as-
text — environments in which there are several identical SIgn apriority to each activejob, and allocate the available
processors available upon which the real-time jobs may beProcessors to the highest-priority jobs.
executed. With respect to certain run-time scheduling algorithms,
it is possible that some tasksand; both have active jobs
at timest; andt, such that at time,, 7;’s job has higher
priority than7;’s while at timet,, 7;'s job has higher pri-
ority thanz;’s. Run-time scheduling algorithms that permit
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erty that for every pair of tasks andr;, wheneverr; and then the corresponding processor is left idle. In the global
7; both have active jobs, it is always the case that the sameapproach, on the other hand, we must define a total order
task’s jobs have priority. An example of a static-priority among all the tasks imr, and at each instant during run-
scheduling algorithm is theate-monotonic scheduling al- time choose for execution the highest-priority active jobs
gorithm[15], which assigns each task a priority inversely (with some processors remaining idle if there are fewer than
proportional to its period — the smaller the period, the m active jobs).
higher the priority, with ties broken arbitrarily but in a con- It has been proven by Leung and Whitehead [14] that the
sistent manner: if; andr; have equal periods ang's job partitioned and global approaches to static-priority schedul-
is given priority overr;’s job once, then all of;’s jobs are ing on multiprocessors aiacomparable in the sense that
given priority overr;’s jobs. (i) there are task systems that are feasibleroprocessors

It is beyond the scope of this document to compare andunder the partitioned approach but for which no priority as-
contrast the relative advantages and disadvantages of staticignment exists which would cause all jobs of all tasks to
priority versus dynamic-priority scheduling. Observe that meet their deadlines under global schedulingioproces-
in the context ofstatic-priority scheduling, the run-time  sors; and (ii) there are task systems that are feasible on
scheduling problem — determining during run-time which processors under the global approach, but which cannot be
jobs should execute at each instant in time — is exactly partitioned intomn distinct subsets such that each individual
equivalent to the problem of assigning priorities to the tasks partition is uniprocessor static-priority feasible. This obser-
in the system, since once the priorities are assigned run-timevation provides a very strong motivation to study both the
scheduling consists of simply choosing the currently active partitioned and global approaches to static-priority multi-

jobs with the highest priorities. processor scheduling, since neither approach is strictly bet-
A hard-real-time task system is defined to &tatic- ter than the other.
priority feasibleif it can be scheduled by a static-priority There is however, one important difference between

run-time scheduler in such a manner that all jobs will always the partitioned and global approaches. While the parti-
complete by their deadlines under all permissible circum- tioned approach can rely on well-known optimal unipro-
stances. Given the specifications for a system of hard-real-cessor priority-assignment schemes, it is not clear as
time tasks static-priority feasibility analysiss the process  to what priority-assignment scheme should be used for
of determining whether the system is static-priority feasible. the global approach. The following example by Dhall
[10] demonstrates that traditional uniprocessor priority-

Partitioned versus global scheduling. In this paper, we  assignment schemes do not work well for global multipro-
will study the static-priority scheduling of systems of peri- cessor scheduling. Consider a periodic task set with task
odic tasks onn identical processorsy > 2. To that end, priorities assigned in inverse proportion to their periods
there are two distinct approaches available. (i.e., rate monotonic scheduling):

e In partmgned scheduling, all jobs generated by a task o def (1= (26,1),7 = (26,1),....
are required to execute on tkameprocessor.
_ _ o _ Tm = (26,1), Tine1 = (L, 1+ €)}
¢ In global schedulingtask migrationis permitted. That
is, we do not require that all jobs of a task execute on to be scheduled on a platformfidentical unit-speed pro-
the same processor, rather, we permit different jobs to cessors. In this case,,; will have the lowest priority.
execute on different processors. In additijoty, migra- When,, | arrives at the same time as all higher-priority
tionis also permitted — a job that has been preemptedtasks, it is scheduled at tin® after it has arrived and will
on a particular processor may resume execution on thetherefore miss its deadline. This example shows that, as
same or a different processor. We assume that there is — 0, the utilization of the task set becom&s= 1 no
no penalty associated with either task or job migration. matter how many processors are used. Thus, with rate-
However job-level parallelisnis expressly forbidden;  monotonic scheduling on a multiprocessor, it is possible to
i.e., itis not permitted that more than one processor befind a task set that is unschedulable although it consumes
executing a job at any given instant in time. only an arbitrarily small fraction of the capacity of the mul-
tiprocessor platform. In the following, we will refer to this

In the partitioned approach, static-priority scheduling re-
phenomenon abhall’s effect

quires that (i) the set of tasksbe partitioned among the,
available processors, and (ii) a total order be defined among

the tasks within each partition. Then at each instant dur- This research. The partitioned approach to static-priority
ing run-time, the active job generated by the highest-priority multiprocessor scheduling has been extensively studied
task within each partition is chosen for execution on the cor- (see, for example, [13, 18, 17]). In this paper, we present
responding processor; if there is no active job in a partition, a global static-priority scheduling algorithm for scheduling



systems of periodic tasks. We prove that this algorithm suc-  The focus of [19] was the scheduling of individual jobs,
cessfully schedules any periodic task systewith utiliza- and not periodic tasks. Accordingly, let us defingoh
tionU(r) < m?/(3m — 2) onm identical processors —as .J; = (r;,€;,d;) as being characterized by an arrival time
m — oo, this bound approaches/3 from above; hence, it  r;, an execution requirement, and a deadline/;, with
follows that our algorithm successfully schedules any peri- the interpretation that this job needs to executecfounits
odic task system with cumulative utilization m/3 onm over the intervalr;,d;). (Thus, the periodic task; =
identical processors (and consequently also avoids Dhall’s(C;, T;) generates an infinite sequence of jobs with parame-
effect). We consider our proof of this result to be interest- ters(k-T;,C;, (k+1)-T;), k = 0,1, 2, ...; in the remainder
ing in its own right, in that we exploit an interesting result of this paper, we will often use the symboltself to denote

of Phillips et al.[19] (Theorem 1 below) that bounds from the infinite set of jobs generated by the tasks in periodic task
below the amount of execution that must be performed by systemr.)

any multiprocessor work-conserving scheduling algorithm;  Let I denote any set of jobs. For any algorithdnand

we expect that this result will prove useful for determining time instantt > 0, let W (A4, m, s, I,t) denote the amount
other useful properties of multiprocessor systems. of work done by algorithmA on jobs of I over the inter-

val [0, t), while executing onn processors of speedeach.

A work-conserving scheduling algorithm is one that never
idles a processor while there is some active job awaiting ex-
ecution.

Organization of this paper. The remainder of this pa-
per is organized as follows. In Section 2, we briefly de-
scribe two major results that we will be using in the re-
mainder of this paper. In Section 3, we present Algo- o . ]
rithm RM-US[m/(3m-2)], our static-priority multiproces- 1 neorem 1 (Phillips et al.) For any set of jobg, any time-

sor algorithm for scheduling arbitrary periodic task systems, instantt > 0, any work-conserving algorithm, and any

and prove that AlgorithnRM-US[m/(3m-2)] successfully ~ lgorithm A’ itis the case that

schedules any periodic task system with utilizatigh 1

m?/(3m — 2) onm identical processors. In Section 4, we W(A,m,(2——) s, 1,t)>W(A m,s,I,t). (1)
assess the performance of AlgoritHRiM-US[m/(3m-2)] m

using theoretical and experimental analysis. We concludel

in Section 5 with a brief summary of the results contained  That is, anm-processor work-conserving algorithm

in this paper. completes at least as much execution as any other algorithm,

. if provided processors that af2 — 1/m) times as fast.
2 Results we will use P P @—1/m)

Some very interesting and important results in real-time
multiprocessor scheduling theory were obtained in the mid
1990's. We will make use of two of these results in this
paper; these two results are briefly described below.

Predictable scheduling algorithms. Ha and Liu [11]
have studied the issue of predictability in the multiprocessor
scheduling of real-time systems from the following perspec-
tive.

Resource ~augmentation. It has previously been  pefinition 1 (Predictability) Let A denote a scheduling
shown [7, 6, 5] that on-line real-time scheduling algo- aigorithm, andl = {J;, Js,...,J,} any set ofn jobs,
rithms tend to perform extremely poorly under overloaded ;. _ (rj,e;,d;). Let f; denote the time at which jot;

. A . . J
conditions. Phillips, Stein, Torng, and Wein [19] explored completes execution whehis scheduled by algorithrd.
the use ofesource-augmentaticechniques for the on-line Now, consider any set' = {.J/, J3, J'Y of n jobs

scheduling of real-time joBs the goal was to determine  gptained frony as follows. Job/’ has an arrival time;, an
whether an on-line algorithm, if provided with faster ayacution requirement; < e;, and a deadling; (i.e., job
processors than those available to a clairvoyant algorithm, ;/ has the same arrival time and deadline/asand an ex-
could perform better than is implied by the bounds de- ecytion requirement no larger thaln's). Let f4 denote the
rived in [7, 6, 5]. Although we are not studying on-liné  time at which jobJ; completes execution whehis sched-
scheduling in this paper — all the parameters of all the yjeq using algorithmd. Scheduling algorithm is said to
periodic tasks are assumed a priori known — it neverthelessye predictable if and only if for any set of jobg and for

turns out that a particular result from [19] will prove very gy suchr’ obtained from/, it is the case thaf! < f; for
useful to us in our study of static-priority multiprocessor all 5. 7=

scheduling. We present this result below.

2Resource augmentation as a technique for improving the performance L .
on on-line scheduling algorithms was formally proposed by Kalyanasun- |nf0rma”}’- Def'n't_|0n 1recognizes the fa_ct that the Spec-
daram and Pruhs [12]. ified execution-requirement parameters of jobs are typically



only upper boundson the actual execution-requirements a global static-priority algorithm that assigns tasks priori-
during run-time, rather than the exact values. For a pre-ties in inverse proportion to their periods, will successfully
dictable scheduling algorithm, one may determine an upperschedule any light system. Then in Section 3.2, we ex-
bound on the completion-times of jobs by analyzing the sit- tend the results concerning light systems to arbitrary sys-
uation under the assumption that each job executes for artems of periodic tasks. We extend AlgorithRiM to de-
amount equal to the upper bound on its execution require-fine a global static-priority scheduling algorithm which we
ment; it is guaranteed that the actual completion time of call Algorithm RM-US[m/(3m-2)], and prove that Algo-
jobs will be no later than this determined value. rithm RM-US[m/(3m-2)] successfully schedules any peri-
Since a periodic task system generates a set of jobs, Defodic task system with utilization at most? /(3m — 2) on
inition 1 may be extended in a straightforward manner to m identical processors.
algorithms for scheduling periodic task systems: an algo-3_1 “Light”
rithm for scheduling periodic task systems is predictable iff
for any periodic task systems= {r,72,...,7,} itis the
case that the completion time of each job when every job
of 7; has an execution requirement exactly equal'tds an

systems

Definition 2 A periodic task systen is said to be dight
system onm processorsf it satisfies the following two
properties

upper bound on the completion time of that job when every ) m
job of 7; has an execution requirement of at m@st for all Property P1: Foreachr; € 7, U; < 3m — 2
i, 1<i<n.

Ha and Liu define a scheduling algorithm to jeor- ) m?
: . . o e " P ty P2: U(r) <
ity driven if and only if it satisfies the condition thdor ropery () = 3m — 2

every pair of jobsJ; and J,, if J; has higher priority than

J; at some instant in time, the/ alwayshas higher pri-
ority than .J;. Notice that any global static-priority algo-
rithm for scheduling periodic tasks satisfies this condition,
and is hence priority-driven. However, the converse is not
true in that not all algorithms for scheduling periodic tasks
that meet the definition of priority-driven are global static- Theorem 3 Any periodic task system that is light onm
priority algorithms (e.g., notice that the earliest deadline processors will be scheduled to meet all deadlines.qmo-
first scheduling algorithm, which schedules at each instantcessors by AlgorithnRM .

the currently active job whose deadline is the smallest, is

a priority-driven algorithm, but is not a static-priority algo- Proof: Let us suppose that ties are broken by Algo-

We will consider the scheduling of task systems satis-
fying Property P1 and Property P2 above, using the rate-
monotonic scheduling algorithm (AlgorithRM).

rithm). rithm RM such thatr; has greater priority than, ., for all
The result from the work of Ha and Liu [11] that we will ¢, 1 < @ < n. Notice that whether jobs of, meet their
be using can be stated as follows. deadlines under Algorith/RM depends only upon the jobs
generated by the tasKs;, 7, ..., 74}, and are completely
Theorem 2 (Ha and Liu) Any priority-driven scheduling ~ Unaffected by the presence of the tasks,, ..., ,. For
algorithm is predictable. k=1,2,...,n, letus define the task-set*) as follows:
u T(k) déf{Tl,TQ,...,Tk}.

3 Algorithm RM-US[m/(3m-2)] Our proof strategy is as follows. We will prove that Al-

‘We now present AlgorithrRM-US[m/(3m-2)], a static- — 45rithm RM will scheduler®) in such a manner that all
priority global scheduling algorithm for scheduling peri- jobs of the lowest-priority task;, complete by their dead-

odic task systems, and derive a utilization-based sufficient"ne& Our claim that AlgorithnRM successfully schedules
feasibility condition for AlgorithmRM-US[m/(3m-2)]; in 7 would then follow by induction otk

particular, we will prove that any task systemsatisfy-
ing U(t) < m?/(3m — 2) will be scheduled to meet ) .
all deadlines onm unit-speed processors by Algorithm Lemma 3.1 Task system-'(k) is feasible onm processors
RM-US[m/(3m-2)]. This is how we will proceed. In €ach of computing capacity ).

Section 3.1, we will consider a restricted category of pe-

riodic task systems, which we call “light” systems; we Proof: Sincem > 2, notice thaBm — 2 > 2m — 1. Since

U, < 2 for each task; (by Property P1 above), it fol-

will prove that the multiprocessoate-monotonic schedul- : ﬁmﬂ
ing algorithm (we will henceforth refer to the multiproces- ows that m
sor rate-monotonic algorithm as AlgorithRM ), which is UVisg 3 2



Similarly fromU (1) < % (Property P2 above) and the k-l (ng ) o

fact thatr(*) C 7, it can be derived that < 21 T; 1
iz
2
m k—1 k—1
E U; < . 3)
rer® 2m =1 = (D) Ui+ ) G (6)
i=1 i=1

As a consequence of Inequalities 2 and 3 we may con-
clude thatr® can be scheduled to meet all deadlines on AS we have seen above (the discussion following Inequal-
m processors each of computing capadity™): the  ity5)atleast((—1)-Tj - 571 U; of this gets done prior
processor-sharing schedule (which we will henceforth de-to time-instan{¢ — 1)7},; hence, at most
noteopPT), which assigns a fractioti; of a processor to;

at each time-instant bears witness to the feasibility 6. = =
B End proof (of Lemma 3.1) T z_; Uj + Z_; G )
Since;- ™+ x (2 — 1) =1, it follows from Theorem 1, = a
the existence of the scheduterT described in the proof  remains to be executedter time-instant(¢ — 1) 7.
of Lemma 3.1, and the fact that AlgorithRM is work- The amount of processor capacity left unused by
conserving, that T1,...,Tk—1 during the interval (¢ — 1)T}, ¢T}) is there-
fore no smaller than
W(RM,m,1,7® ) > W(0PT,m, — 7" )
2m —1 @) k-1 k-1
forall ¢ > 0; i.e.,at any time-instant, the amount of work m- Ty = | Tk Z Uj+ Z Cj (8)
done onr*) by AlgorithmRM executing onn unit-speed =1 j=1
processors is at least as much as the amount of work donesince there aren processors available, the cumulative
on7®) by oPTonm 5 -speed processors. length of the intervals ove(¢ — 1)T}, ¢Ty) during which
] ) . ¥ T,...,Tk—1 leave at least one processor idle is mini-
Lemma 3.2 All jobs of 7, meet their deadlines wheri mized if the different processors tend to idle simultane-
is scheduled using AlgorithiRM. ously (in parallel); hence, a lower bound on this cumulative
Proof: Let us assume that the firgt — 1) jobs of 7, have ~ length of the intervals ovel(¢ — 1)T}, (T},) during which
met their deadlines under AlgorithRM; we will prove ~ 71---:Tk—1 lave at least one processor idle is given by

below that the/'th job of 7, also meets its deadline. The (m T} — (Tk Z?;ll U; + Z?;ll Oj))/m, which equals
correctness of Lemma 3.2 will then follow by induction on

£, starting with? = 1. 1 k-1 k—1

The ¢'th job of 7, arrives at time-instant/ — 1)T, has T, — — | T Z U; + Z C; (9)
a deadline at time-instadf},, and need€’;, units of exe- m j=1 j=1
cution. From Inequality 4 and the fact that the processor- ) ] _ ) ]
sharing schedulepT schedules each task for (¢ — 1)T - qu the/'th j(_)b qf 71, to meet its deadline, it suffices that
U, units over the intervad, (¢ — 1)T},), we have this cu_mulatlvg mterval.length be at least as large;&

execution requirement; i.e.,
k

W(RM,m, 1,7 (0—1)T}) > (—1)Ty u | 5 R, kol

( ( )k) ( )k‘ jz:; J () Tk—E(Tkz;Uj—Fz;Oj)ZCk

J= J=

Also, at least(¢ — 1) - Ty, - (3-5_{ U;) units of this exe- = -l
cution by AlgorithmRM was of tasksr, 7o, . .., Th_1 — = k4 —(Z U; + Z AN
this follows from the fact that exactlyy — 1)7}, U}, units T m J=1 j=1 Tk
of 7,.'s work has been generated prior to instéht- 1)7; <« (SinceT}, > T; for j < k)
the remainder of the work executed by Algoritfiiv must k1
therefore be generated by, 72, ..., Tx—1. Up + l(g Z U;) <1 (10)

The cumulative execution requirement of all the jobs moia
generated by the tasks, 72, ..., 7x_1 that arrive prior to
the deadline of;,’s £'th job is bounded from above by Let us now simplify the lhs of Inequality 10 above:

k—1 ng 1 k—1
—C; U+ —(2 Uj)
j_llr T] —‘ J m =1 J



IN

k
1
U+ —(2 U; —2U,
k+m(; J k)

IN

(By Property P2 of task system
2 2m
1—=
Uk m) + 3m —2
(By Property P1 of task system
m 2 2m

1- =
3m—2( m)+
= 1

IN

(11)
(12)

3m —2

From Inequalities 10 and 12, we may conclude that/itie
job of 7, does meet its deadline.
M End proof (of Lemma 3.2)

The correctness of Theorem 3 follows from Lemma 3.2
by induction onk, with & = m being the base case (that
Ty, Ta, ... Tm Meet all their deadlines directly follows from
the fact that there an@ processors available in the system).
B End proof (of Theorem 3)

3.2 Arbitrary systems

In Section 3.1, we saw that AlgorithiRM success-
fully schedules any periodic task systenwith utilization
U(r) <m?/(3m — 1) onm identical processorgrovided
eachr; € 7 has a utilizationU; < m/(3m — 2). We
now relax the restriction on the utilization of each individ-
ual task; rather, we permit ariy; < 1 for eachr; € 7. That
is, we will consider in this section the static-priority global
scheduling of any task systensatisfying the condition

m2

< .
Ul < 33

For such task systems, we define the static priority-
assignment scheme AlgorithRM-US[m/(3m-2)] as fol-
lows.

Algorithm RM-US[m/(3m-2)] assigns (static) priorities
to tasks inr according to the following rule:

if U; > 5. then 7; has the highest priority (ties broken
arbitrarily)

if U; < 5. then7; has rate-monotonic priority.

Example 1 As an example of the priorities assigned by Al-
gorithmRM-US[m/(3m-2)], consider a task system

def

T {r =(1,7),72 = (2,10), 753 = (9, 20),

T4 = (11,22), 75 = (2,25)}
to be scheduled on a platform ®fdentical unit-speed pro-

cessors. The utilizations of these five tasksai@143, 0.2,
0.45, 0.5, and0.08 respectively. Forn = 3, m/(3m — 2)

equals3/7 ~ 0.4286; hence, taskss and 74, will be as-
signed highest priorities, and the remaining three tasks will
be assigned rate-monotonic priorities. The possible priority
assignments are therefore as follows (highest-priority task
listed first):

T3,T4,T1,T2,T5

or

T4,T3,T1,72,T5

Theorem 4 Any periodic task systemr with utiliza-
tion U(r) < m?/(3m — 2) will be scheduled to
meet all deadlines om unit-speed processors by Algo-
rithm RM-US[m/(3m-2)].

Proof: Assume that the tasks im are indexed ac-
cording to the priorities assigned to them by Algo-
rithm RM-US[m/(3m-2)]. First, observe that sindé(r) <
m?/(3m—2), while each task; that is assigned highest pri-
ority hasU; strictly greater thamn/(3m — 2), there can be

at most(m — 1) such tasks that are assigned highest priority.
Let k, denote the number of tasks that are assigned the high-
est priority; i.e.;r1, 72, . . ., T, €ach have utilization greater

thanm/(3m — 2), andry,_ 41, ..., are assigned priorities

rate-monotonically. Letn, def - ko.

Let us first analyze the task systemconsisting of the
tasks inr each having utilizatior< m/(3m — 2):

~ def
T=T

\T(k") .
The utilization off can be bounded from above as follows:
U(7) U(r) = U(r*))
m2 _ k‘ m
3m —2 ° 3m—2
m(m — k)
3m —2
(m—ko) - (m—k,)
3(m—ko) —2

m2

° 1
3m, — 2 (13)

Furthermore, for each; € 7, we have

mo

U; < < .
27 3my,—2

Y= 3m—

(14)

From Inequalities 13 and 14, we conclude thas a peri-
odic task system that is light om, processors. Hence by
Theorem 3; can be scheduled by AlgorithRM to meet
all deadlines omn,, processors.

Now, consider the task systefrobtained fromr by re-
placing each task; € 7 that has a utilizatiorU/; greater



thanm/(3m — 2) by a task with the same period, but with tion that is slightly higher tham? /(3m — 2), it often per-

utilization equal to one: forms much better than that for general task sets. To that
end, we compare the performance of different techniques
Fdef o (U(Ci,Ti)ET(ko){(n7n)}) . for static-priority preemptive scheduling on multiproces-

sors, namely partitioning, global, and global pfair [20]. To

Notice that AlgorithmRM-US[m/(3m-2)] will assign facilitate the comparison, the load of the task set is ex-
identical priorities to corresponding tasksrimnd+ (where pressed in terms of theystem utilization U,(7), for a
the notion of “corresponding” is defined in the obvious task setr onm processors, which represents the fraction
manner). Also notice that when schedulifig Algo- used of the total capacity of the multiprocessor platform:
rithm RM-US[m/(3m-2)] will devote k,, processors exclu- Uy (7) def U(r)/m.
sively to thek, tasks inr (%) (these are the highest-priority 4.1 The scheduling algorithms
tasks, and each have a utilization equal to unity) and willbe e evaluate one partitioning scheme, R-BOUND-
executing AlgorithmRM on the remaining tasks (the tasks \prespan, one pfair global scheme, WMpfair [20],
in 7) upon the remainingu, = (m — k,) processors. As  and three global schemes, multiprocessor RM [16],
we have seen above, AlgoritiRM schedules the tasksin  ggaptiveTkC [1] andRM-US[m/(3m-2)]. R-BOUND-
to meet all deadlines; hence, AlgoritfRM-US[m/(3m-2)] MPrespan is a modification of the R-BOUND-MP scheme
schedules to meet all deadlines of all jobs. [13] where a necessary and sufficient schedulability test is

_ Finally, ~ notice that an execution of Algo- ysed during task-to-processor assignment instead of the suf-
rithm RM-US[m/(3m-2)] on task systemr can be ficient test used in the original version.

considered to be an instantiation of a run of Algo- 42 Theoretical comparison

rithm RM-US[m/(3m-2)] on task system7, in which Although Leung and Whitehead [14] have shown that the
some jobs — the ones generated_ by taSk,STQIﬁ)) B partitioned and global approaches are in general incompara-
do not execute to their full execution requirement. By po it is still interesting to get a better understanding of the
the result of Ha and Liu (Theorem 2), it follows that 56| te and relative performance of the two approaches.
Algorithm RM-US[m/(3m-2)] is a predictable schedul- We begin by deriving an upper limit on the best possible

ing algorithm, and hence each job of each task during gystem yilization bound for any static-priority multiproces-
the execution of AlgorithmRM-US[m/(3m-2)] on task g4 scheduling algorithm. Consider the task set
systemr completes no later than the corresponding job

during the execution of AlgorithmRM-US[m/(3m-2)] , def (= (L,2L —1),7 = (L,2L — 1)
on task systemr. And, we have already seen above ’ ’ ’ o
that no deadlines are missed during the execution of Tm = (L,2L = 1), 71 = (L, 2L — 1)}

Algorithm RM-US[m/(3m-2)] on task systens. to be scheduled om processors (L is a positive integer)
B End proof (of Theorem 4) when all tasks arrive at time 0. For this task set, the system
3.3 Harmonic task systems utilizationisL/(2L—1)+(L/(2L—1))/m. For all studied

In Section 3.2, we derived a performance bound for static-priority scheduling approaches (partitioning, global
static-priority global multiprocessor scheduling of systems and pfair global), deadlines will be missed for this task set.

of periodic tasks with arbitrary periods. harmonic peri- Partitioning will not succeed because it is necessary for two
odic task systems, the periofisand; of any two tasks; tasks to execute on one processor, and that processor will
andr; are related as follows: eithdF, is an integer mul-  then have a utilization greater thanhence, the task set is
tiple of T}, or T} is an integer multiple off;. With re- unschedulable. For global scheduling, allhighest prior-

spect to the static-priority global multiprocessor scheduling ity tasks will execute at the same time and occupy L time
of harmonic periodic task systems, we have also derived aunits during [0,2L-1). There will bé — 1 time units avail-
variant of AlgorithmRM-US[m/(3m-2)], referred to as Al-  able for a lower priority tasks, but the lowest priority task
gorithmRM-US[m/(2m-1)], for which there exists a better NneedsL time units and thus misses its deadline. By letting
sufficient utilization-based feasibility test — any harmonic L — oo andm — oo, the task set is unschedulable at a sys-
task set with utilization< m?/(2m — 1) is successfully ~ tem utilization of1/2. Consequentlythe utilization guar-
scheduled by AlgorithnRM-US[m/(2m-1)] onm identical antee bound for any static-priority multiprocessor schedul-
processors. Due to space limitation, we have deferred theing algorithm (partitioned or global) cannot be higher than

proof of the analog of Theorem 4 to [3]. 1/2 of the capacity of the multiprocessor platform
_ Among the partitioned approaches, Oh and Baker [18]
4 Performance Evaluation have shown that the First-Fit partitioning algorithm can

The purpose of this section is to show that, although schedule any task system with a system utilizatiog'2—1
RM-US[m/(3m-2)] can fail to meet deadlines at a utiliza- on m processors. More recently, Lopet al. [17] have



shown that some partitioning algorithms can schedule anywise, a new task set is generated.
task system with a system utilizatieh (v/2—1)(m+1) /m. The periods and the execution times of the tasks are se-
Among the global approaches, ofy-US[m/(3m-2)] has lected randomly. The period of a task is drawn from the
a tight system utilization bound, namely the derived bound set of discrete periodg; € {100, 200, 300, 400, ..., 1000},
of m/(3m — 2). For adaptiveTkC, the bound has been each period having the same probability of being selécted
shown to be no greater than,——-—2"———— [2]. For We only study synchronous task sets, which means that all
RM, the bound is known to be no greater tHalm: [10]. For generated tasks arrive for the first time at time O and are
WM, no known utilization bound has hitherto been proven; scheduled until timéem(Ty, T, ..., T,)®.
however, due to the reasoning above the system utilization The execution time of a task is computed from the uti-
bound of WM cannot be higher than 1/2. lization of that task and rounded down to the nearest integer.
Based on the expressions above for the system utilizationThe utilization of a task is given by either a uniform distri-
bounds, we see that AlgorithRM-US[m/(3m-2)] is infe- bution or a binomial distribution. To determine which distri-
rior to the best partitioning algorithms. For example, for a bution to use, we generate a random variable with uniform
system withm = 2, the Lopez bound give2% whereas  distribution in the rangg0, 1]. If the variable is less thaf'

Algorithm RM-US[m/(3m-2)] gives 50%. As m — oo, (a simulation parameter), we then choose the uniform dis-
the Lopez bound, at2%, still proves superior to Algo-  tribution; otherwise, the binomial distribution is chosen. In
rithm RM-US[m/(3m-2)]'s 33%. case of a uniform distribution, the utilization of a task is

. drawn from the rangé€0, 1]. In case of a binomial distribu-
4.3 Experimental setup tion, the utilization of a task is generated in the following
Each simulation experiment represents simulatia®®00f  way. Perform29 trials with the probability of success be-
task sets, organized B0 different buckets, each witB0 ing A (another simulation parameter). Count the number
task setd Bucketi contains task sets with a system utiliza- of syccesses and divide by 29. Then add a random num-
tion greater that/; o, = (i — 1)/30, but no greater than  per with a uniform distribution in the rande-1,/29,1/29].
Ui,nign = 1/30. For each bucket, we compute the success |f the utilization of a task is less than or equal to zero, or

ratio as the number of successfully scheduled task sets inyreater than 1, then generate a task again. Note that, with
that bucket divided by the number of scheduled task setsthis procedure, a high value ¢f makes it more likely that

in that bucket. Since the partitioning and global schemesa task has a high utilization.
use different strategies for assigning a task to a processor, .
the concept of 'successfully scheduled’ needs to be clearly4'4 Experimental results
defined. For R-BOUND-MP, we consider a task to be suc-  The results of the experiments on a system witk= 32
cessfully scheduled if and only if the schedulability test in Processors ané’ = 0.1 are showh in Figure 1. For each
the partitioning algorithm can guarantee that the task set onéxperiment, we have plotted the performance (success ra-
each uniprocessor is schedulable. For the other schemedi0) as a function of the system utilization (with a resolution
we consider a task to be successfully schedtifétimet all given by the bucket intervals) for different values of param-
its deadlines duringp, lem(Ty, T, . .., T),)). eter A. From the plots, we draw the following conclusions.
The task set of each buckids generated by starting with We first observe thaRM-US[m/(3m-2)] often succeeds
acurrent task set that is empty, and then adding a new task t@t much higher system utilizations than is suggested by its
the current task set as long as the system utilization is lowerutilization bound. For example, fan = 32 processors
thanU;,j,.,. When the system utilization of the current task andA < 0.3, RM-US[m/(3m-2)] breaks down at a system
set has become higher thah ;,,,, we decide whether or utilization of approximately 80%, while the corresponding
not the current task set should be inserted into the buckettheoretical bound i82/(3+32—2) ~ 34%. Note that, when
If the system utilization of the current task set is lower than A = 0.5, RM-US[m/(3m-2)] suffers from a significant per-
Us.nign and the number of tasks is greater than the numberformance drop. Here, the breakdown utilization is as low as

of processors, then the task set is put into the bucket; other>0%. This phenomenon is actually an effect of the chosen
experimental setup. With our choice of distributions, the

3The experimental setup used is similar to the experimental setup in expected value of the utilization of a task is approximately

[20]. Our experiment differs from that in [20] in that we only simulate 0 ; iatrib b ; ; el
30 buckets with30 tasks in each bucket (in contrast, [20] simulai€d 509% for both the uniform distribution and the binomial dis

buckets with1 00 tasks in each bucket.) tribution, thus resulting in a very large population of tasks
4Note that, in [20], WM was considered to be successfully scheduled With that utilization.

if and only if a certain pfairness property was satisfied. Since all evaluated

scheduling algorithms, except WM, was primarily designed for periodic 5In [20], the task periods used in the experiments were not stated at all.

scheduling rather than to satisfy the pfairness property, we chose to evalu-  8Attime t > lem(Ty, Tz, . . ., Tn), the tasks that execute is the same

ate all scheduling algorithms under the assumption of periodic scheduling. as the tasks that executetat lem/(Th, T2, ..., Th).

Since the pfairness property is a stronger condition than periodicity, WM "Results from complementary experiments assuming other valugs of

will show no worse performance in our study than in [20]. and F' can be found in [3].
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Figure 1: Success ratio as a function of system utilization for different scheduling algorithms on 32 processors and F=0.1.

We then observe tha&@M-US[m/(3m-2)] outperforms mance is typically no more than 20%, which shows that
RM when many processors are available ahds small RM-US[m/(3m-2)] does not suffer from the drawbacks
(tasks have a low average utilization). The reason for this isof RM. RM-US[m/(3m-2)] also performs worse than R-
that RM-US[m/(3m-2)] always succeeds to schedule task BOUND-MPrespan as long a$¢ < 0.5. For higher values
sets with a system utilization less thaty (3m — 2) while of A, the fundamental limitations of the assignment strategy
RM can potentially fail due to Dhall’s effect. A4 becomes  used in R-BOUND-MPrespan (a bin-packing algorithm) re-
larger RM andRM-US[m/(3m-2)] offer comparable perfor-  veal themselves and causes a significant performance drop.
mance since most tasks then have a utilization greater tharNote that WMpfair performs significantly better than both
the guarantee bound af/(3m — 2). For example, when = R-BOUND-MPrespan and adaptiveTkC. The reason is that
m = 32 andA > 0.7, most tasks have a utilization greater the chosen task periods are long relative to the time unit
than the corresponding bound of 34%, which means thatbase, which means that WMpfair approximates optimal pro-
RM andRM-US[m/(3m-2)] produce the same priority as- cessor sharing. However, when task periods are drawn from
signment and hence exhibit similar performance. a set of shorter periods, WMpfair offers a performance sim-

We can also see thRM-US[m/(3m-2)] performs worse llar to R-BOUND-MPrespan and adaptiveTkC [3]

than WMpfair and adaptiveTkC for systems with a large  Note that, for small values of, the success ratio of RM
number of processors. However, the difference in perfor- is heavily changing. The reason is that, with these parame-



ters, most tasks are likely to have a low utilization, but there [5] S. Baruah, J. Haritsa, and N. Sharma. On-line scheduling
is a 10% probability for each task that its utilization will be
drawn from a uniform distribution and hence have a higher
likelihood of becoming large. Now, if there is a task with
a large utilization in a population of low-utilization tasks,
then RM can fail to meet deadlines at low system utiliza-
tion due to Dhall's effect.

5

Conclusions

(6]

(7]

We have studied the preemptive scheduling of systems
of periodic tasks on a platform comprised of several iden-

tical processors.
major theoretical results.

First, we have proposed Al-

gorithm RM-US[m/(3m-2)], a new static-priority multi-

processor algorithm for scheduling periodic task systems.

We

proved that AlgorithmRM-US[m/(3m-2)] success-

fully schedules any periodic task system with utilization

< m?/(3m — 2) on m identical processors.

We have

also shown that, in general, no static-priority scheduling
algorithm (partitioned or global) on a multiprocessor can
achieve a utilization bound that is greater than 50% of the
platform capacity.

To

assess the performance of Algo-

rithm RM-US[m/(3m-2)] with respect to other static-
priority multiprocessor scheduling algorithm, we have
also provided a theoretical and experimental evalu-

ation.
Algorithm RM-US[m/(3m-2)] outperforms (in terms of
success ratio) the partitioned approach when there is

The results from this evaluation shows that

large population of tasks with high utilization. In general,
however, AlgorithmRM-US[m/(3m-2)] is inferior to the
best partitioned algorithm in terms of both utilization
bound and success ratio. We would like to point out that

the results in the current paper remain significant despite
this — since it has been shown [14] that the partitioned and g

To this end, we have presented two

(8]

(9]

to maximize task completions. IRroc. of the Real-Time
Systems Symposiupages 228-237, San Juan, Puerto Rico,
Dec. 1994.

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan,
L. Rosier, D. Shasha, and F. Wang. On the competitive-
ness of on-line real-time task schedulifgal-Time Systems
4(2):125-144, June 1992.

S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier,
and D. Shasha. On-line scheduling in the presence of over-
load. InProc. of the 32nd Annual IEEE Symposium on
Foundations of Computer Sciengages 100-110, San Juan,
Puerto Rico, Oct. 1991.

S. Davari and S. K. Dhall. On a real-time task allocation
problem. InProc. of the 19th Hawaii Int'l Conf. on System
Sciencepages 8-10, Honolulu, Hawaii, Jan. 1985.

S. Davari and S. K. Dhall. An on-line algorithm for real-time
tasks allocation. IfProc. of the Real-Time Systems Sympo-
sium pages 194-200, New Orleans, Louisiana, Dec. 1986.

] S. K. Dhall and C. L. Liu. On a real-time scheduling prob-

(11]

[12]

4131

(14]

global approaches are in general incomparable, it behooves
us to better understand both kinds of scheduling systems.
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