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Abstract
The preemptive scheduling of systems of periodic tasks

on a platform comprised of several identical processors is
considered. A scheduling algorithm is proposed for static-
priority scheduling of such systems; this algorithm is a sim-
ple extension of the uniprocessor rate-monotonic schedul-
ing algorithm. It is proven that this algorithm successfully
schedules any periodic task system with a worst-case uti-
lization no more than a third the capacity of the multipro-
cessor platform. It is also shown that no static-priority mul-
tiprocessor scheduling algorithm (partitioned or global)
can guarantee schedulability for a periodic task set with a
utilization higher than one half the capacity of the multipro-
cessor platform.

1 Introduction
Over the years, the preemptive periodic task model [16,

15, 4] has proven remarkably useful for the modelling of
recurring tasks that occur in hard-real-time computer ap-
plication systems. Accordingly, much effort has been de-
voted to the development of a comprehensive theory dealing
with the scheduling of systems comprised of such indepen-
dent periodic real-time tasks. Particularly in the uniproces-
sor context — in environments in which all hard-real-time
jobs generated by all the periodic tasks that comprise the
hard-real-time application system must execute on a sin-
gle shared processor — there now exists a wide body of
results (necessary and sufficient feasibility tests, optimal
scheduling algorithms, efficient implementations of these
algorithms, etc.) for systems modelled as a collection of
independent preemptive periodic real-time tasks. Some of
these results have been extended to the multiprocessor con-
text — environments in which there are several identical
processors available upon which the real-time jobs may be
executed.

The periodic task model. In the periodic model of hard
real-time tasks, a taskτi = (Ci, Ti) is characterized by two
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parameters — an execution requirementCi and a periodTi

— with the interpretation that the task generates a job at
each integer multiple ofTi, and each such job has an execu-
tion requirement ofCi execution units, and must complete
by a deadline equal to the next integer multiple ofTi. A
periodic task system consists of several such periodic tasks
that are to execute on a specified processor architecture. We
assume that each job is independent in the sense that it does
not interact in any manner (accessing shared data, exchang-
ing messages, etc.) with other jobs of the same or another
task. We also assume that the model allows for jobpreemp-
tion; i.e., a job executing on a processor may be preempted
prior to completing execution, and its execution may be re-
sumed later, at no cost or penalty.

In this paper, we will study the scheduling of systems
of periodic tasks. Letτ = {τ1, τ2, . . . , τn} denote aperi-
odic task system, in which each periodic taskτi = (Ci, Ti)
is characterized by its execution requirement and its pe-
riod. For each taskτi, define itsutilization Ui to be the

ratio of τi’s execution requirement to its period:Ui
def=

Ci/Ti. We define the utilizationU(τ) of periodic task sys-
tem τ to be the sum of the utilizations of all tasks inτ :
U(τ) def=

∑
τi∈τ Ui. Without loss of generality, we assume

that Ti ≤ Ti+1 for all i, 1 ≤ i < n; i.e., the tasks are
indexed according to period.

Dynamic and static priorities. Run-time schedulingis
the process of determining, during the execution of a real-
time application system, which job[s] should be executed
at each instant in time. Run-time scheduling algorithms are
typically implemented as follows: at each time instant, as-
sign apriority to each active1 job, and allocate the available
processors to the highest-priority jobs.

With respect to certain run-time scheduling algorithms,
it is possible that some tasksτi andτj both have active jobs
at timest1 andt2 such that at timet1, τi’s job has higher
priority thanτj ’s while at timet2, τj ’s job has higher pri-
ority thanτi’s. Run-time scheduling algorithms that permit
such “switching” of the order of priorities between tasks are
known asdynamic priority algorithms.

By contrast,static priority algorithms satisfy the prop-

1Informally, a job becomesactiveat its ready time, and remains so until
it has executed for an amount of time equal to its execution requirement,
or until its deadline has elapsed.



erty that for every pair of tasksτi andτj , wheneverτi and
τj both have active jobs, it is always the case that the same
task’s jobs have priority. An example of a static-priority
scheduling algorithm is therate-monotonic scheduling al-
gorithm [15], which assigns each task a priority inversely
proportional to its period — the smaller the period, the
higher the priority, with ties broken arbitrarily but in a con-
sistent manner: ifτi andτj have equal periods andτi’s job
is given priority overτj ’s job once, then all ofτi’s jobs are
given priority overτj ’s jobs.

It is beyond the scope of this document to compare and
contrast the relative advantages and disadvantages of static-
priority versus dynamic-priority scheduling. Observe that
in the context ofstatic-priority scheduling, the run-time
scheduling problem — determining during run-time which
jobs should execute at each instant in time — is exactly
equivalent to the problem of assigning priorities to the tasks
in the system, since once the priorities are assigned run-time
scheduling consists of simply choosing the currently active
jobs with the highest priorities.

A hard-real-time task system is defined to bestatic-
priority feasible if it can be scheduled by a static-priority
run-time scheduler in such a manner that all jobs will always
complete by their deadlines under all permissible circum-
stances. Given the specifications for a system of hard-real-
time tasks,static-priority feasibility analysisis the process
of determining whether the system is static-priority feasible.

Partitioned versus global scheduling. In this paper, we
will study the static-priority scheduling of systems of peri-
odic tasks onm identical processors,m ≥ 2. To that end,
there are two distinct approaches available.

• In partitioned scheduling, all jobs generated by a task
are required to execute on thesameprocessor.

• In global scheduling,task migrationis permitted. That
is, we do not require that all jobs of a task execute on
the same processor; rather, we permit different jobs to
execute on different processors. In addition,job migra-
tion is also permitted — a job that has been preempted
on a particular processor may resume execution on the
same or a different processor. We assume that there is
no penalty associated with either task or job migration.
However,job-level parallelismis expressly forbidden;
i.e., it is not permitted that more than one processor be
executing a job at any given instant in time.

In the partitioned approach, static-priority scheduling re-
quires that (i) the set of tasksτ be partitioned among them
available processors, and (ii) a total order be defined among
the tasks within each partition. Then at each instant dur-
ing run-time, the active job generated by the highest-priority
task within each partition is chosen for execution on the cor-
responding processor; if there is no active job in a partition,

then the corresponding processor is left idle. In the global
approach, on the other hand, we must define a total order
among all the tasks inτ , and at each instant during run-
time choose for execution them highest-priority active jobs
(with some processors remaining idle if there are fewer than
m active jobs).

It has been proven by Leung and Whitehead [14] that the
partitioned and global approaches to static-priority schedul-
ing on multiprocessors areincomparable, in the sense that
(i) there are task systems that are feasible onm processors
under the partitioned approach but for which no priority as-
signment exists which would cause all jobs of all tasks to
meet their deadlines under global scheduling onm proces-
sors; and (ii) there are task systems that are feasible onm
processors under the global approach, but which cannot be
partitioned intom distinct subsets such that each individual
partition is uniprocessor static-priority feasible. This obser-
vation provides a very strong motivation to study both the
partitioned and global approaches to static-priority multi-
processor scheduling, since neither approach is strictly bet-
ter than the other.

There is however, one important difference between
the partitioned and global approaches. While the parti-
tioned approach can rely on well-known optimal unipro-
cessor priority-assignment schemes, it is not clear as
to what priority-assignment scheme should be used for
the global approach. The following example by Dhall
[10] demonstrates that traditional uniprocessor priority-
assignment schemes do not work well for global multipro-
cessor scheduling. Consider a periodic task set with task
priorities assigned in inverse proportion to their periods
(i.e., rate monotonic scheduling):

τ
def= {τ1 = (2ε, 1), τ2 = (2ε, 1), . . . ,

τm = (2ε, 1), τm+1 = (1, 1 + ε)}

to be scheduled on a platform ofm identical unit-speed pro-
cessors. In this case,τm+1 will have the lowest priority.
Whenτm+1 arrives at the same time as all higher-priority
tasks, it is scheduled at time2ε after it has arrived and will
therefore miss its deadline. This example shows that, as
ε → 0, the utilization of the task set becomesU = 1 no
matter how many processors are used. Thus, with rate-
monotonic scheduling on a multiprocessor, it is possible to
find a task set that is unschedulable although it consumes
only an arbitrarily small fraction of the capacity of the mul-
tiprocessor platform. In the following, we will refer to this
phenomenon asDhall’s effect.

This research. The partitioned approach to static-priority
multiprocessor scheduling has been extensively studied
(see, for example, [13, 18, 17]). In this paper, we present
a global static-priority scheduling algorithm for scheduling
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systems of periodic tasks. We prove that this algorithm suc-
cessfully schedules any periodic task systemτ with utiliza-
tion U(τ) ≤ m2/(3m− 2) onm identical processors — as
m →∞, this bound approachesm/3 from above; hence, it
follows that our algorithm successfully schedules any peri-
odic task system with cumulative utilization≤ m/3 on m
identical processors (and consequently also avoids Dhall’s
effect). We consider our proof of this result to be interest-
ing in its own right, in that we exploit an interesting result
of Phillips et al. [19] (Theorem 1 below) that bounds from
below the amount of execution that must be performed by
any multiprocessor work-conserving scheduling algorithm;
we expect that this result will prove useful for determining
other useful properties of multiprocessor systems.

Organization of this paper. The remainder of this pa-
per is organized as follows. In Section 2, we briefly de-
scribe two major results that we will be using in the re-
mainder of this paper. In Section 3, we present Algo-
rithm RM-US[m/(3m-2)], our static-priority multiproces-
sor algorithm for scheduling arbitrary periodic task systems,
and prove that AlgorithmRM-US[m/(3m-2)] successfully
schedules any periodic task system with utilization≤
m2/(3m− 2) onm identical processors. In Section 4, we
assess the performance of AlgorithmRM-US[m/(3m-2)]
using theoretical and experimental analysis. We conclude
in Section 5 with a brief summary of the results contained
in this paper.

2 Results we will use
Some very interesting and important results in real-time

multiprocessor scheduling theory were obtained in the mid
1990’s. We will make use of two of these results in this
paper; these two results are briefly described below.

Resource augmentation. It has previously been
shown [7, 6, 5] that on-line real-time scheduling algo-
rithms tend to perform extremely poorly under overloaded
conditions. Phillips, Stein, Torng, and Wein [19] explored
the use ofresource-augmentationtechniques for the on-line
scheduling of real-time jobs2; the goal was to determine
whether an on-line algorithm, if provided with faster
processors than those available to a clairvoyant algorithm,
could perform better than is implied by the bounds de-
rived in [7, 6, 5]. Although we are not studying on-line
scheduling in this paper — all the parameters of all the
periodic tasks are assumed a priori known — it nevertheless
turns out that a particular result from [19] will prove very
useful to us in our study of static-priority multiprocessor
scheduling. We present this result below.

2Resource augmentation as a technique for improving the performance
on on-line scheduling algorithms was formally proposed by Kalyanasun-
daram and Pruhs [12].

The focus of [19] was the scheduling of individual jobs,
and not periodic tasks. Accordingly, let us define ajob
Jj = (rj , ej , dj) as being characterized by an arrival time
rj , an execution requirementej , and a deadlinedj , with
the interpretation that this job needs to execute forej units
over the interval[rj , dj). (Thus, the periodic taskτi =
(Ci, Ti) generates an infinite sequence of jobs with parame-
ters(k ·Ti, Ci, (k+1)·Ti), k = 0, 1, 2, . . .; in the remainder
of this paper, we will often use the symbolτ itself to denote
the infinite set of jobs generated by the tasks in periodic task
systemτ .)

Let I denote any set of jobs. For any algorithmA and
time instantt ≥ 0, let W (A,m, s, I, t) denote the amount
of work done by algorithmA on jobs ofI over the inter-
val [0, t), while executing onm processors of speeds each.
A work-conserving scheduling algorithm is one that never
idles a processor while there is some active job awaiting ex-
ecution.

Theorem 1 (Phillips et al.) For any set of jobsI, any time-
instantt ≥ 0, any work-conserving algorithmA, and any
algorithmA′, it is the case that

W (A,m, (2− 1
m

) · s, I, t) ≥ W (A′,m, s, I, t). (1)

�
That is, an m-processor work-conserving algorithm

completes at least as much execution as any other algorithm,
if provided processors that are(2− 1/m) times as fast.

Predictable scheduling algorithms. Ha and Liu [11]
have studied the issue of predictability in the multiprocessor
scheduling of real-time systems from the following perspec-
tive.

Definition 1 (Predictability) Let A denote a scheduling
algorithm, andI = {J1, J2, . . . , Jn} any set ofn jobs,
Jj = (rj , ej , dj). Let fj denote the time at which jobJj

completes execution whenI is scheduled by algorithmA.
Now, consider any setI ′ = {J ′1, J ′2, . . . , J ′n} of n jobs

obtained fromI as follows. JobJ ′j has an arrival timerj , an
execution requiremente′j ≤ ej , and a deadlinedj (i.e., job
J ′j has the same arrival time and deadline asJj , and an ex-
ecution requirement no larger thanJj ’s). Let f ′j denote the
time at which jobJj completes execution whenI is sched-
uled using algorithmA. Scheduling algorithmA is said to
be predictable if and only if for any set of jobsI and for
any suchI ′ obtained fromI, it is the case thatf ′j ≤ fj for
all j.

�
Informally, Definition 1 recognizes the fact that the spec-

ified execution-requirement parameters of jobs are typically
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only upper boundson the actual execution-requirements
during run-time, rather than the exact values. For a pre-
dictable scheduling algorithm, one may determine an upper
bound on the completion-times of jobs by analyzing the sit-
uation under the assumption that each job executes for an
amount equal to the upper bound on its execution require-
ment; it is guaranteed that the actual completion time of
jobs will be no later than this determined value.

Since a periodic task system generates a set of jobs, Def-
inition 1 may be extended in a straightforward manner to
algorithms for scheduling periodic task systems: an algo-
rithm for scheduling periodic task systems is predictable iff
for any periodic task systemsτ = {τ1, τ2, . . . , τn} it is the
case that the completion time of each job when every job
of τi has an execution requirement exactly equal toCi is an
upper bound on the completion time of that job when every
job of τi has an execution requirement of at mostCi, for all
i, 1 ≤ i ≤ n.

Ha and Liu define a scheduling algorithm to beprior-
ity driven if and only if it satisfies the condition thatfor
every pair of jobsJi andJj , if Ji has higher priority than
Jj at some instant in time, thenJi alwayshas higher pri-
ority than Jj . Notice that any global static-priority algo-
rithm for scheduling periodic tasks satisfies this condition,
and is hence priority-driven. However, the converse is not
true in that not all algorithms for scheduling periodic tasks
that meet the definition of priority-driven are global static-
priority algorithms (e.g., notice that the earliest deadline
first scheduling algorithm, which schedules at each instant
the currently active job whose deadline is the smallest, is
a priority-driven algorithm, but is not a static-priority algo-
rithm).

The result from the work of Ha and Liu [11] that we will
be using can be stated as follows.

Theorem 2 (Ha and Liu) Any priority-driven scheduling
algorithm is predictable.

�

3 Algorithm RM-US[m/(3m-2)]
We now present AlgorithmRM-US[m/(3m-2)], a static-

priority global scheduling algorithm for scheduling peri-
odic task systems, and derive a utilization-based sufficient
feasibility condition for AlgorithmRM-US[m/(3m-2)]; in
particular, we will prove that any task systemτ satisfy-
ing U(τ) ≤ m2/(3m − 2) will be scheduled to meet
all deadlines onm unit-speed processors by Algorithm
RM-US[m/(3m-2)]. This is how we will proceed. In
Section 3.1, we will consider a restricted category of pe-
riodic task systems, which we call “light” systems; we
will prove that the multiprocessorrate-monotonicschedul-
ing algorithm (we will henceforth refer to the multiproces-
sor rate-monotonic algorithm as AlgorithmRM ), which is

a global static-priority algorithm that assigns tasks priori-
ties in inverse proportion to their periods, will successfully
schedule any light system. Then in Section 3.2, we ex-
tend the results concerning light systems to arbitrary sys-
tems of periodic tasks. We extend AlgorithmRM to de-
fine a global static-priority scheduling algorithm which we
call Algorithm RM-US[m/(3m-2)], and prove that Algo-
rithm RM-US[m/(3m-2)] successfully schedules any peri-
odic task system with utilization at mostm2/(3m − 2) on
m identical processors.

3.1 “Light” systems
Definition 2 A periodic task systemτ is said to be alight
system onm processorsif it satisfies the following two
properties

Property P1: For eachτi ∈ τ, Ui ≤ m

3m− 2

Property P2: U(τ) ≤ m2

3m− 2

�
We will consider the scheduling of task systems satis-

fying Property P1 and Property P2 above, using the rate-
monotonic scheduling algorithm (AlgorithmRM ).

Theorem 3 Any periodic task systemτ that is light onm
processors will be scheduled to meet all deadlines onm pro-
cessors by AlgorithmRM .

Proof: Let us suppose that ties are broken by Algo-
rithm RM such thatτi has greater priority thanτi+1 for all
i, 1 ≤ i < n. Notice that whether jobs ofτk meet their
deadlines under AlgorithmRM depends only upon the jobs
generated by the tasks{τ1, τ2, . . . , τk}, and are completely
unaffected by the presence of the tasksτk+1, . . . , τn. For
k = 1, 2, . . . , n, let us define the task-setτ (k) as follows:

τ (k) def= {τ1, τ2, . . . , τk}.

Our proof strategy is as follows. We will prove that Al-
gorithm RM will scheduleτ (k) in such a manner that all
jobs of the lowest-priority taskτk complete by their dead-
lines. Our claim that AlgorithmRM successfully schedules
τ would then follow by induction onk.

Lemma 3.1 Task systemτ (k) is feasible onm processors
each of computing capacity( m

2m−1 ).

Proof: Sincem ≥ 2, notice that3m− 2 > 2m− 1. Since
Ui ≤ m

3m−2 for each taskτi (by Property P1 above), it fol-
lows that

Ui ≤ m

2m− 1
(2)
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Similarly from U(τ) ≤ m2

3m−2 (Property P2 above) and the

fact thatτ (k) ⊆ τ , it can be derived that
∑

τi∈τ(k)

Ui ≤ m2

2m− 1
. (3)

As a consequence of Inequalities 2 and 3 we may con-
clude thatτ (k) can be scheduled to meet all deadlines on
m processors each of computing capacity( m

2m−1 ): the
processor-sharing schedule (which we will henceforth de-
noteOPT), which assigns a fractionUi of a processor toτi

at each time-instant bears witness to the feasibility ofτ (k).
� End proof (of Lemma 3.1)

Since m
2m−1 × (2− 1

m ) = 1, it follows from Theorem 1,
the existence of the scheduleOPT described in the proof
of Lemma 3.1, and the fact that AlgorithmRM is work-
conserving, that

W (RM ,m, 1, τ (k), t) ≥ W (OPT,m,
m

2m− 1
, τ (k), t)

(4)
for all t ≥ 0; i.e.,at any time-instantt, the amount of work
done onτ (k) by AlgorithmRM executing onm unit-speed
processors is at least as much as the amount of work done
on τ (k) by OPT onm m

2m−1 -speed processors.

Lemma 3.2 All jobs of τk meet their deadlines whenτ (k)

is scheduled using AlgorithmRM .

Proof: Let us assume that the first(` − 1) jobs ofτk have
met their deadlines under AlgorithmRM ; we will prove
below that thè ’th job of τk also meets its deadline. The
correctness of Lemma 3.2 will then follow by induction on
`, starting with` = 1.

The`’th job of τk arrives at time-instant(` − 1)Tk, has
a deadline at time-instant`Tk, and needsCk units of exe-
cution. From Inequality 4 and the fact that the processor-
sharing scheduleOPT schedules each taskτj for (`− 1)Tk ·
Uj units over the interval[0, (`− 1)Tk), we have

W (RM ,m, 1, τ (k), (`−1)Tk) ≥ (`−1)Tk


 k∑

j=1

Uj


 (5)

Also, at least(` − 1) · Tk · (
∑k−1

j=1 Uj) units of this exe-
cution by AlgorithmRM was of tasksτ1, τ2, . . . , τk−1 —
this follows from the fact that exactly(` − 1)TkUk units
of τk ’s work has been generated prior to instant(` − 1)Tk;
the remainder of the work executed by AlgorithmRM must
therefore be generated byτ1, τ2, . . . , τk−1.

The cumulative execution requirement of all the jobs
generated by the tasksτ1, τ2, . . . , τk−1 that arrive prior to
the deadline ofτk ’s `’th job is bounded from above by

k−1∑
j=1

⌈`Tk

Tj

⌉
Cj

<

k−1∑
j=1

(
`Tk

Tj
+ 1

)
Cj

= `Tk

k−1∑
j=1

Uj +
k−1∑
j=1

Cj (6)

As we have seen above (the discussion following Inequal-
ity 5) at least(`− 1) · Tk ·

∑k−1
j=1 Uj of this gets done prior

to time-instant(`− 1)Tk; hence, at most

Tk

k−1∑
j=1

Uj +
k−1∑
j=1

Cj


 (7)

remains to be executedafter time-instant(`− 1)Tk.
The amount of processor capacity left unused by

τ1, . . . , τk−1 during the interval[(` − 1)Tk, `Tk) is there-
fore no smaller than

m · Tk −

Tk

k−1∑
j=1

Uj +
k−1∑
j=1

Cj


 (8)

Since there arem processors available, the cumulative
length of the intervals over[(` − 1)Tk, `Tk) during which
τ1, . . . , τk−1 leave at least one processor idle is mini-
mized if the different processors tend to idle simultane-
ously (in parallel); hence, a lower bound on this cumulative
length of the intervals over[(` − 1)Tk, `Tk) during which
τ1, . . . , τk−1 leave at least one processor idle is given by

(m · Tk −
(
Tk

∑k−1
j=1 Uj +

∑k−1
j=1 Cj

)
)/m, which equals

Tk − 1
m


Tk

k−1∑
j=1

Uj +
k−1∑
j=1

Cj


 (9)

For the`’th job of τk to meet its deadline, it suffices that
this cumulative interval length be at least as large atτk ’s
execution requirement; i.e.,

Tk − 1
m

(Tk

k−1∑
j=1

Uj +
k−1∑
j=1

Cj) ≥ Ck

≡ Ck

Tk
+

1
m

(
k−1∑
j=1

Uj +
k−1∑
j=1

Cj

Tk
) ≤ 1

⇐ (SinceTk ≥ Tj for j < k)

Uk +
1
m

(2
k−1∑
j=1

Uj) ≤ 1 (10)

Let us now simplify the lhs of Inequality 10 above:

Uk +
1
m

(2
k−1∑
j=1

Uj)

5



≤ Uk +
1
m

(2
k∑

j=1

Uj − 2Uk)

≤ (By Property P2 of task systemτ )

Uk(1− 2
m

) +
2m

3m− 2
≤ (By Property P1 of task systemτ )

m

3m− 2
(1− 2

m
) +

2m

3m− 2
(11)

= 1 (12)

From Inequalities 10 and 12, we may conclude that the`’th
job of τk does meet its deadline.
� End proof (of Lemma 3.2)

The correctness of Theorem 3 follows from Lemma 3.2
by induction onk, with k = m being the base case (that
τ1, τ2, . . . τm meet all their deadlines directly follows from
the fact that there arem processors available in the system).
� End proof (of Theorem 3)

3.2 Arbitrary systems
In Section 3.1, we saw that AlgorithmRM success-

fully schedules any periodic task systemτ with utilization
U(τ) ≤ m2/(3m− 1) onm identical processors,provided
eachτi ∈ τ has a utilizationUi ≤ m/(3m − 2). We
now relax the restriction on the utilization of each individ-
ual task; rather, we permit anyUi ≤ 1 for eachτi ∈ τ . That
is, we will consider in this section the static-priority global
scheduling of any task systemτ satisfying the condition

U(τ) ≤ m2

3m− 2
.

For such task systems, we define the static priority-
assignment scheme AlgorithmRM-US[m/(3m-2)] as fol-
lows.

Algorithm RM-US[m/(3m-2)] assigns (static) priorities
to tasks inτ according to the following rule:

if Ui > m
3m−2 then τi has the highest priority (ties broken

arbitrarily)

if Ui ≤ m
3m−2 then τi has rate-monotonic priority.

Example 1 As an example of the priorities assigned by Al-
gorithmRM-US[m/(3m-2)], consider a task system

τ
def= {τ1 = (1, 7), τ2 = (2, 10), τ3 = (9, 20),

τ4 = (11, 22), τ5 = (2, 25)}

to be scheduled on a platform of3 identical unit-speed pro-
cessors. The utilizations of these five tasks are≈ 0.143, 0.2,
0.45, 0.5, and0.08 respectively. Form = 3, m/(3m − 2)

equals3/7 ≈ 0.4286; hence, tasksτ3 and τ4 will be as-
signed highest priorities, and the remaining three tasks will
be assigned rate-monotonic priorities. The possible priority
assignments are therefore as follows (highest-priority task
listed first):

τ3, τ4, τ1, τ2, τ5

or
τ4, τ3, τ1, τ2, τ5

Theorem 4 Any periodic task systemτ with utiliza-
tion U(τ) ≤ m2/(3m − 2) will be scheduled to
meet all deadlines onm unit-speed processors by Algo-
rithm RM-US[m/(3m-2)].

Proof: Assume that the tasks inτ are indexed ac-
cording to the priorities assigned to them by Algo-
rithm RM-US[m/(3m-2)]. First, observe that sinceU(τ) ≤
m2/(3m−2), while each taskτi that is assigned highest pri-
ority hasUi strictly greater thanm/(3m− 2), there can be
at most(m−1) such tasks that are assigned highest priority.
Letko denote the number of tasks that are assigned the high-
est priority; i.e.,τ1, τ2, . . . , τko

each have utilization greater
thanm/(3m − 2), andτko+1, . . . τn are assigned priorities

rate-monotonically. Letmo
def= m− ko.

Let us first analyze the task system̂τ , consisting of the
tasks inτ each having utilization≤ m/(3m− 2):

τ̂
def= τ \ τ (ko) .

The utilization ofτ̂ can be bounded from above as follows:

U(τ̂) = U(τ)− U(τ (ko))

<
m2

3m− 2
− ko · m

3m− 2

=
m(m− ko)

3m− 2

≤ (m− ko) · (m− ko)
3(m− ko)− 2

=
m2

o

3mo − 2
(13)

Furthermore, for eachτi ∈ τ̂ , we have

Ui ≤ m

3m− 2
≤ mo

3mo − 2
. (14)

From Inequalities 13 and 14, we conclude thatτ̂ is a peri-
odic task system that is light onmo processors. Hence by
Theorem 3,̂τ can be scheduled by AlgorithmRM to meet
all deadlines onmo processors.

Now, consider the task system̃τ obtained fromτ by re-
placing each taskτi ∈ τ that has a utilizationUi greater
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thanm/(3m − 2) by a task with the same period, but with
utilization equal to one:

τ̃
def= τ̂

⋃(∪(Ci,Ti)∈τ(ko){(Ti, Ti)}
)

.

Notice that AlgorithmRM-US[m/(3m-2)] will assign
identical priorities to corresponding tasks inτ andτ̂ (where
the notion of “corresponding” is defined in the obvious
manner). Also notice that when scheduling̃τ , Algo-
rithm RM-US[m/(3m-2)] will devoteko processors exclu-
sively to theko tasks inτ (ko) (these are the highest-priority
tasks, and each have a utilization equal to unity) and will be
executing AlgorithmRM on the remaining tasks (the tasks
in τ̂ ) upon the remainingmo = (m − ko) processors. As
we have seen above, AlgorithmRM schedules the tasks in̂τ
to meet all deadlines; hence, AlgorithmRM-US[m/(3m-2)]
schedules̃τ to meet all deadlines of all jobs.

Finally, notice that an execution of Algo-
rithm RM-US[m/(3m-2)] on task systemτ can be
considered to be an instantiation of a run of Algo-
rithm RM-US[m/(3m-2)] on task systemτ̃ , in which
some jobs — the ones generated by tasks inτ (ko) —
do not execute to their full execution requirement. By
the result of Ha and Liu (Theorem 2), it follows that
Algorithm RM-US[m/(3m-2)] is a predictable schedul-
ing algorithm, and hence each job of each task during
the execution of AlgorithmRM-US[m/(3m-2)] on task
systemτ completes no later than the corresponding job
during the execution of AlgorithmRM-US[m/(3m-2)]
on task system̃τ . And, we have already seen above
that no deadlines are missed during the execution of
Algorithm RM-US[m/(3m-2)] on task system̃τ .
� End proof (of Theorem 4)

3.3 Harmonic task systems
In Section 3.2, we derived a performance bound for

static-priority global multiprocessor scheduling of systems
of periodic tasks with arbitrary periods. Inharmonic peri-
odic task systems, the periodsTi andTj of any two tasksτi

andτj are related as follows: eitherTi is an integer mul-
tiple of Tj , or Tj is an integer multiple ofTi. With re-
spect to the static-priority global multiprocessor scheduling
of harmonic periodic task systems, we have also derived a
variant of AlgorithmRM-US[m/(3m-2)], referred to as Al-
gorithmRM-US[m/(2m-1)], for which there exists a better
sufficient utilization-based feasibility test — any harmonic
task set with utilization≤ m2/(2m − 1) is successfully
scheduled by AlgorithmRM-US[m/(2m-1)] onm identical
processors. Due to space limitation, we have deferred the
proof of the analog of Theorem 4 to [3].

4 Performance Evaluation
The purpose of this section is to show that, although

RM-US[m/(3m-2)] can fail to meet deadlines at a utiliza-

tion that is slightly higher thanm2/(3m − 2), it often per-
forms much better than that for general task sets. To that
end, we compare the performance of different techniques
for static-priority preemptive scheduling on multiproces-
sors, namely partitioning, global, and global pfair [20]. To
facilitate the comparison, the load of the task set is ex-
pressed in terms of thesystem utilization, Us(τ), for a
task setτ on m processors, which represents the fraction
used of the total capacity of the multiprocessor platform:

Us(τ) def= U(τ)/m.
4.1 The scheduling algorithms

We evaluate one partitioning scheme, R-BOUND-
MPrespan, one pfair global scheme, WMpfair [20],
and three global schemes, multiprocessor RM [16],
adaptiveTkC [1] andRM-US[m/(3m-2)]. R-BOUND-
MPrespan is a modification of the R-BOUND-MP scheme
[13] where a necessary and sufficient schedulability test is
used during task-to-processor assignment instead of the suf-
ficient test used in the original version.
4.2 Theoretical comparison

Although Leung and Whitehead [14] have shown that the
partitioned and global approaches are in general incompara-
ble, it is still interesting to get a better understanding of the
absolute and relative performance of the two approaches.

We begin by deriving an upper limit on the best possible
system utilization bound for any static-priority multiproces-
sor scheduling algorithm. Consider the task set

τ
def= {τ1 = (L, 2L− 1), τ2 = (L, 2L− 1), . . . ,

τm = (L, 2L− 1), τm+1 = (L, 2L− 1)}

to be scheduled onm processors (L is a positive integer)
when all tasks arrive at time 0. For this task set, the system
utilization isL/(2L−1)+(L/(2L−1))/m. For all studied
static-priority scheduling approaches (partitioning, global
and pfair global), deadlines will be missed for this task set.
Partitioning will not succeed because it is necessary for two
tasks to execute on one processor, and that processor will
then have a utilization greater than1; hence, the task set is
unschedulable. For global scheduling, allm highest prior-
ity tasks will execute at the same time and occupy L time
units during [0,2L-1). There will beL− 1 time units avail-
able for a lower priority tasks, but the lowest priority task
needsL time units and thus misses its deadline. By letting
L →∞ andm →∞, the task set is unschedulable at a sys-
tem utilization of1/2. Consequently,the utilization guar-
antee bound for any static-priority multiprocessor schedul-
ing algorithm (partitioned or global) cannot be higher than
1/2 of the capacity of the multiprocessor platform.

Among the partitioned approaches, Oh and Baker [18]
have shown that the First-Fit partitioning algorithm can
schedule any task system with a system utilization≤ √2−1
on m processors. More recently, Lopezet al. [17] have
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shown that some partitioning algorithms can schedule any
task system with a system utilization≤ (

√
2−1)(m+1)/m.

Among the global approaches, onlyRM-US[m/(3m-2)] has
a tight system utilization bound, namely the derived bound
of m/(3m − 2). For adaptiveTkC, the bound has been
shown to be no greater than2 m

3 m−1+
√

5 m2−6 m+1
[2]. For

RM, the bound is known to be no greater than1/m [10]. For
WM, no known utilization bound has hitherto been proven;
however, due to the reasoning above the system utilization
bound of WM cannot be higher than 1/2.

Based on the expressions above for the system utilization
bounds, we see that AlgorithmRM-US[m/(3m-2)] is infe-
rior to the best partitioning algorithms. For example, for a
system withm = 2, the Lopez bound gives62% whereas
Algorithm RM-US[m/(3m-2)] gives 50%. As m → ∞,
the Lopez bound, at42%, still proves superior to Algo-
rithm RM-US[m/(3m-2)]’s 33%.

4.3 Experimental setup
Each simulation experiment represents simulation of900

task sets, organized in30 different buckets, each with30
task sets3. Bucketi contains task sets with a system utiliza-
tion greater thanUi,low = (i − 1)/30, but no greater than
Ui,high = i/30. For each bucket, we compute the success
ratio as the number of successfully scheduled task sets in
that bucket divided by the number of scheduled task sets
in that bucket. Since the partitioning and global schemes
use different strategies for assigning a task to a processor,
the concept of ’successfully scheduled’ needs to be clearly
defined. For R-BOUND-MP, we consider a task to be suc-
cessfully scheduled if and only if the schedulability test in
the partitioning algorithm can guarantee that the task set on
each uniprocessor is schedulable. For the other schemes,
we consider a task to be successfully scheduled4 if it met all
its deadlines during[0, lcm(T1, T2, . . . , Tn)).

The task set of each bucketi is generated by starting with
a current task set that is empty, and then adding a new task to
the current task set as long as the system utilization is lower
thanUi,low . When the system utilization of the current task
set has become higher thanUi,low , we decide whether or
not the current task set should be inserted into the bucket.
If the system utilization of the current task set is lower than
Ui,high and the number of tasks is greater than the number
of processors, then the task set is put into the bucket; other-

3The experimental setup used is similar to the experimental setup in
[20]. Our experiment differs from that in [20] in that we only simulate
30 buckets with30 tasks in each bucket (in contrast, [20] simulated100
buckets with100 tasks in each bucket.)

4Note that, in [20], WM was considered to be successfully scheduled
if and only if a certain pfairness property was satisfied. Since all evaluated
scheduling algorithms, except WM, was primarily designed for periodic
scheduling rather than to satisfy the pfairness property, we chose to evalu-
ate all scheduling algorithms under the assumption of periodic scheduling.
Since the pfairness property is a stronger condition than periodicity, WM
will show no worse performance in our study than in [20].

wise, a new task set is generated.
The periods and the execution times of the tasks are se-

lected randomly. The period of a task is drawn from the
set of discrete periods,Ti ∈ {100, 200, 300, 400, ..., 1000},
each period having the same probability of being selected5.
We only study synchronous task sets, which means that all
generated tasks arrive for the first time at time 0 and are
scheduled until timelcm(T1, T2, . . . , Tn)6.

The execution time of a task is computed from the uti-
lization of that task and rounded down to the nearest integer.
The utilization of a task is given by either a uniform distri-
bution or a binomial distribution. To determine which distri-
bution to use, we generate a random variable with uniform
distribution in the range[0, 1]. If the variable is less thanF
(a simulation parameter), we then choose the uniform dis-
tribution; otherwise, the binomial distribution is chosen. In
case of a uniform distribution, the utilization of a task is
drawn from the range(0, 1]. In case of a binomial distribu-
tion, the utilization of a task is generated in the following
way. Perform29 trials with the probability of success be-
ing A (another simulation parameter). Count the number
of successes and divide by 29. Then add a random num-
ber with a uniform distribution in the range[−1/29, 1/29].
If the utilization of a task is less than or equal to zero, or
greater than 1, then generate a task again. Note that, with
this procedure, a high value ofA makes it more likely that
a task has a high utilization.

4.4 Experimental results
The results of the experiments on a system withm = 32

processors andF = 0.1 are shown7 in Figure 1. For each
experiment, we have plotted the performance (success ra-
tio) as a function of the system utilization (with a resolution
given by the bucket intervals) for different values of param-
eterA. From the plots, we draw the following conclusions.

We first observe thatRM-US[m/(3m-2)] often succeeds
at much higher system utilizations than is suggested by its
utilization bound. For example, form = 32 processors
andA ≤ 0.3, RM-US[m/(3m-2)] breaks down at a system
utilization of approximately 80%, while the corresponding
theoretical bound is32/(3∗32−2) ≈ 34%. Note that, when
A = 0.5, RM-US[m/(3m-2)] suffers from a significant per-
formance drop. Here, the breakdown utilization is as low as
50%. This phenomenon is actually an effect of the chosen
experimental setup. With our choice of distributions, the
expected value of the utilization of a task is approximately
50% for both the uniform distribution and the binomial dis-
tribution, thus resulting in a very large population of tasks
with that utilization.

5In [20], the task periods used in the experiments were not stated at all.
6At time t ≥ lcm(T1, T2, . . . , Tn), the tasks that execute is the same

as the tasks that execute att − lcm(T1, T2, . . . , Tn).
7Results from complementary experiments assuming other values ofm

andF can be found in [3].
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Figure 1: Success ratio as a function of system utilization for different scheduling algorithms on 32 processors and F=0.1.

We then observe thatRM-US[m/(3m-2)] outperforms
RM when many processors are available andA is small
(tasks have a low average utilization). The reason for this is
that RM-US[m/(3m-2)] always succeeds to schedule task
sets with a system utilization less thanm/(3m − 2) while
RM can potentially fail due to Dhall’s effect. AsA becomes
larger RM andRM-US[m/(3m-2)] offer comparable perfor-
mance since most tasks then have a utilization greater than
the guarantee bound ofm/(3m − 2). For example, when
m = 32 andA ≥ 0.7, most tasks have a utilization greater
than the corresponding bound of 34%, which means that
RM andRM-US[m/(3m-2)] produce the same priority as-
signment and hence exhibit similar performance.

We can also see thatRM-US[m/(3m-2)] performs worse
than WMpfair and adaptiveTkC for systems with a large
number of processors. However, the difference in perfor-

mance is typically no more than 20%, which shows that
RM-US[m/(3m-2)] does not suffer from the drawbacks
of RM. RM-US[m/(3m-2)] also performs worse than R-
BOUND-MPrespan as long asA ≤ 0.5. For higher values
of A, the fundamental limitations of the assignment strategy
used in R-BOUND-MPrespan (a bin-packing algorithm) re-
veal themselves and causes a significant performance drop.
Note that WMpfair performs significantly better than both
R-BOUND-MPrespan and adaptiveTkC. The reason is that
the chosen task periods are long relative to the time unit
base, which means that WMpfair approximates optimal pro-
cessor sharing. However, when task periods are drawn from
a set of shorter periods, WMpfair offers a performance sim-
ilar to R-BOUND-MPrespan and adaptiveTkC [3].

Note that, for small values ofA, the success ratio of RM
is heavily changing. The reason is that, with these parame-
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ters, most tasks are likely to have a low utilization, but there
is a 10% probability for each task that its utilization will be
drawn from a uniform distribution and hence have a higher
likelihood of becoming large. Now, if there is a task with
a large utilization in a population of low-utilization tasks,
then RM can fail to meet deadlines at low system utiliza-
tion due to Dhall’s effect.

5 Conclusions
We have studied the preemptive scheduling of systems

of periodic tasks on a platform comprised of several iden-
tical processors. To this end, we have presented two
major theoretical results. First, we have proposed Al-
gorithm RM-US[m/(3m-2)], a new static-priority multi-
processor algorithm for scheduling periodic task systems.
We proved that AlgorithmRM-US[m/(3m-2)] success-
fully schedules any periodic task system with utilization
≤ m2/(3m − 2) on m identical processors. We have
also shown that, in general, no static-priority scheduling
algorithm (partitioned or global) on a multiprocessor can
achieve a utilization bound that is greater than 50% of the
platform capacity.

To assess the performance of Algo-
rithm RM-US[m/(3m-2)] with respect to other static-
priority multiprocessor scheduling algorithm, we have
also provided a theoretical and experimental evalu-
ation. The results from this evaluation shows that
Algorithm RM-US[m/(3m-2)] outperforms (in terms of
success ratio) the partitioned approach when there is a
large population of tasks with high utilization. In general,
however, AlgorithmRM-US[m/(3m-2)] is inferior to the
best partitioned algorithm in terms of both utilization
bound and success ratio. We would like to point out that
the results in the current paper remain significant despite
this — since it has been shown [14] that the partitioned and
global approaches are in general incomparable, it behooves
us to better understand both kinds of scheduling systems.
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