
Dynamic Security Analysis
in embedded firmware



A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares

Avatar

Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti 



Static vs Dynamic Analysis

Static analysis inspects source or object code
● lint
Dynamic analysis is performed on running code
● Symbolic Execution
● Dynamic Taint Propagation
● Whitebox Fuzzing



Symbolic Execution

Determines interesting input
Input provided not actual values



Symbolic Execution - Example



Symbolic Execution

Reasons path-by-path
Path explosion



Dynamic analysis needs an emulator

Difficult to emulate an embedded system
AVATAR is a hybrid model



Architecture



Full-Separation Mode and Context Switching



Memory Optimization



Replaying I/O Operations

Record and replay later



Selective Code Migration

Mark a function as local to physical device
A light-weight form of the context switch
Makes use of static analysis
Significantly improves performance



Tested hardware

● Hard disk bootloader
● Wireless sensor node (Econotag)
● GSM feature phone



Hard disk - backdoor detection

Two bootloader stages before OS load
Issues encountered
No backdoor found



Econotag - Vulnerability Discovery

Source code changed to add a vulnerability
Symbolic execution found it
No vulnerability found in original firmware



GSM feature phone - SMS

Only one CPU and OS.
Simpler bootloader than HDD
No selective code migration was needed
GSM stack proved too complex



Conclusion

Found no serious vulnerabilities
Proved that Avatar is versatile



Questions?


