Dynamic Security Analysis

In embedded firmware

Avatar

A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares

Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti

Static vs Dynamic Analysis

Static analysis inspects source or object code
o |int
Dynamic analysis is performed on running code

e Symbolic Execution
e Dynamic Taint Propagation
e \Whitebox Fuzzing

Symbolic Execution

Determines interesting input
Input provided not actual values

Symbolic Execution - Example

string = raw_input()=—a
value = int(raw_input()) * 3

iflvalue == 12: B
%3 eval(string)

Symbolic Execution

Reasons path-by-path
Path explosion

Dynamic analysis needs an emulator

Difficult to emulate an embedded system
AVATAR is a hybrid model

Architecture

Au..‘
Analysis script |
E Emulator | | Avatar Target device
: T [!
D : ;
! i S R S— - —. UART |
| — T | Qemu | Config | | GDBMI i
i v } Qemu | __config iter | adapter In-memory :
| T Qems | E— i | orend I Gemu GDB | Cnpro o | stub |
i | executer | LLVM GDB interface | Emulator Target | adapter !
T TTKEE | == . |OMPILu: backend backend einet | | .
VM state °_hooks I, QMP/Lua i adapter @ Open| . Target state
+« Registers | i Symbolic 1 f——= ; * Registers
+ CPUstate i Qtes ‘ Re’;fu';n”e A = ia‘?;?er ocD | _> « CPU state
Memory L_._':.-.:::j_'_'__i ’7 ———— 4 Ca Analy.SIs 2 LR — ITAG | « Memory
J: [=1 Pluglns . | | _‘/‘—

Fig. 1: Overview of Avatar.

Full-Separation Mode and Context Switching

Analysis script |
‘ﬁ Emulator | | Avatar
i | Tco le—— | e T o — i
o J [Qemu | Config | | GDBMI
i v l Qemu | config | riter | adapter
| o—e—t—. - — frontend 1" “Goe | M EinProt o
| i Qemu i i Qemu : BinProto
|| executer | Lm | _cDB interface | Emulator Target | adapter
LT e e = ooV backend | |backend 5"
VM state _hooks - ‘. —i‘ QMP/Lua
+ Registers ' ' ic| || —
: Cfe’% state Sgnt;:):shc | Rem,memme A | : A | adapter
Memory | ’7 L TEEED 4 | Analysis || 4> LECED
T i | Plugins

Fig. 1: Overview of Avatar.

UART

| Target device
|
|
In-memory !
stub :
i —
i Target state
‘- * Registers
! « CPU state
| + Memory

Memory Optimization

Access type Read Write Cumulative
Code 61,632 - 61,632

Stack & data 646 1,795 64,073
I/O0 3,614 2,097 69,784

TABLE I: Number of memory accesses grouped by memory
regions for the HDD bootloader.

Replaying I/O Operations

Record and replay later

Selective Code Migration

Mark a function as local to physical device
A light-weight form of the context switch
Makes use of static analysis

Significantly improves performance

Tested hardware

e Hard disk bootloader

e \Wireless sensor node (Econotag)

e GSM feature phone

Target device Manufacturer and model System-on-Chip CPU Debug access Analyzed code Scope of analysis
Experiment VI-A Hard disk undisclosed unknown ARM966 Serial port Bootloader Backdoor detection
Experiment VI-B ZigBee sensor Redwire Econotag MC13224 ARM7TDMI JTAG ZigBee stack Vulnerability discovery
Experiment VI-C GSM phone Motorola C118 TI Calypso ARM7TDMI JTAG SMS decoding Reverse engineering

TABLE II: Comparison of experiments described in Section VL.

Hard disk - backdoor detection

Two bootloader stages before OS load

Issues encountered
No backdoor found

DS

AP <addr>

WT <data>

GO

TE

BR <divisor>

BT
ww

Use a minimal version of the Motorola S-Record
binary data format to transmit data to the device

Set the value of the address pointer from the parameter
passed as hexadecimal number. The address pointer
provides the address for the read, write and execute
commands.

Write a byte value at the address pointer. The address
pointer is incremented by this operation. The reply of
this command depends on the current terminal echo
state.

Read a byte from the memory pointed to by the address
pointer. The address pointer is incremented by this
operation. The reply of this command depends on the
current terminal echo state.

Execute the code pointed to by the address pointer.
The code is called as a function with no parameters,
to execute Thumb code one needs to specify the code’s
address + 1.

Switch the terminal echo state. The terminal echo state
controls the verbosity of the read and write commands.

Set the serial port baud rate. The parameter is the
value that will be written in the baud rate register,
for example "A2" will set a baudrate of 38400.

Resume execution with the firmware loaded from flash.

Erase a word (4 bytes) at the address pointer and
increment address pointer.

Print the help menu showing these commands.

Econotag - Vulnerability Discovery

Source code changed to add a vulnerability
Symbolic execution found it
No vulnerability found in original firmware

GSM feature phone - SMS

Only one CPU and OS.

Simpler bootloader than HDD

No selective code migration was needed
GSM stack proved too complex

Conclusion

Found no serious vulnerabilities
Proved that Avatar is versatile

Questions?

