

W
hat is a Q

ueue?

Leave from
the front

Join at the back

E
xam

ples

• Files to print

• Processes to run

• Tasks to perform

W
hat is a Q

ueue?

A
 queue contains a sequence of values. W

e can add elem
ents at the

back, and rem
ove elem

ents from
 the front.

W
e’ll im

plem
ent the follow

ing operations:

 em
pty :: Q

 a
 add :: a -> Q

 a -> Q
 a

 rem
ove :: Q

 a -> Q
 a

 front :: Q
 a -> a

 isEm
pty :: Q

 a -> B
ool

-- an em
pty queue

-- add an elem
ent at the back

-- rem
ove an elem

ent from
 the front

-- inspect the front elem
ent

-- check if the queue is em
pty

First Try

data Q
 a = Q

 [a] deriving (Eq, Show
)

em
pty = Q

 []
add x (Q

 xs) = Q
 (xs++[x])

rem
ove (Q

 (x:xs)) = Q
 xs

front (Q
 (x:xs)) = x

isEm
pty (Q

 xs) = null xs

W
orks, but slow

add x (Q
 xs) = Q

 (xs++[x])

[] ++ ys = ys
(x:xs) ++ ys = x : (xs++ys)

A
dd 1, add 2, add 3, add 4, add 5…

Tim
e is the square of the num

ber of additions

A
s m

any recursive
calls as there are
elem

ents in xs

 A

 M
odule

•
Im

plem
ent the result in a m

odule
•

U
se as specification

•
A

llow
s the re-use

–
B

y other program
m

ers
–

O
f the sam

e nam
es

SpecQ
ueue M

odule
m
odule SpecQ

ueue w
here

data Q
 a = Q

 [a] deriving (Eq, Show
)

em
pty = Q

 []
add x (Q

 xs) = Q
 (xs++[x])

rem
ove (Q

 (x:xs)) = Q
 xs

front (Q
 (x:xs)) = x

isEm
pty (Q

 xs) = null xs

N
ew

 Idea: Store the Front and
B

ack Separately

b
c

d
e

f
g

h
i

a
j

O
ld

Fast to
rem

ove
Slow

 to add

b
c

d
e

i
h

g
f

aj
N

ew

Fast to add

Fast to
rem

ove
Periodically

m
ove the

back to the
front.

 Fast D

atatype

data Q
 a = Q

 [a] [a]
 deriving (Eq, Show

)

The front and the back
part of the queue.

Fast O
perations

em
pty = Q

 [] []
add x (Q

 front back) = Q
 front (x:back)

rem
ove (Q

 (x:front) back) = fixQ
 front back

front (Q
 (x:front) back) = x

isEm
pty (Q

 front back) = null front &
&

 null back

Flip the queue w
hen

w
e serve the last

person in the front

Sm
art C

onstructor

fixQ
 [] back = Q

 (reverse back) []
fixQ

 front back = Q
 front back

This takes one function call per elem
ent in the

back—
each elem

ent is inserted into the
back (one call), flipped (one call), and
rem

oved from
 the front (one call)

H
ow

 can w
e test the fast functions?

•
B

y using the original im
plem

entation as a
reference

•
The behaviour should be ”the sam

e”
–

C
heck results

•
First version is an abstract m

odel that is
”obviously correct”

C
om

paring the Im
plem

entations

•
They operate on different types of queues

•
To com

pare, m
ust convert betw

een them
–

C
an w

e convert a slow
 Q

 to a Q
?

•
W

here should w
e split the front from

 the back???
–

C
an w

e convert a Q
 to a slow

 Q
?

•
R

etrieve the sim
ple ”m

odel” contents from
the im

plem
entation

contents (Q
 front back) = Q

 (front++reverse back)

A
ccessing m

odules

im
port qualified SpecQ

ueue as Spec

contents :: Q
 Int -> Slow

.Q
 Int

contents (Q
 front back) =

 Spec.Q
 (front ++ reverse back)

The Properties
prop_Em

pty =
 contents em

pty == Slow
.em

pty
prop_A

dd x q =
 contents (add x q) == Slow

.add x (contents q)
prop_R

em
ove q =

 contents (rem
ove q) == Slow

.rem
ove (contents q)

prop_Front q =
 front q == Slow

.front (contents q)
prop_IsEm

pty q =
 isEm

pty q == Slow
.isEm

pty (contents q)

The behaviour is
the sam

e, except
for type

conversion

G
enerating Q

s

instance A
rbitrary a => A

rbitrary (Q
 a) w

here
 arbitrary = do front <- arbitrary
 back <- arbitrary
 return (Q

 front back)

A
 B

ug!
Q

ueues> quickC
heck prop_R

em
ove

*** Failed! Exception: 'Q
ueue.hs:22:0-42: N

on-exhaustive patterns in
function rem

ove' (after 1 test):
Q

 [] []

 Preconditions

•
A

 condition that m
ust hold before a function

is called
prop_rem

ove q =
 not (isEm

pty q) ==>
 retrieve (rem

ove q) == rem
ove (retrieve q)

prop_front q =
 not (isEm

pty q) ==>
 front q == front (retrieve q)

•
U

seful to be precise about these

Q
ueues> quickC

heck prop_R
em

ove
*** Failed! Exception: 'Q

ueue.hs:22:0-42:
N

on-exhaustive patterns in function rem
ove'

(after 2 tests):
Q

 [] [-1,0]

A
nother B

ug!

B
ut this ought not to happen!

 A

n Invariant

•
Q

 values ought never to have an em
pty

front, and a non-em
pty back!

•
Form

ulate an invariant
invariant (Q

 front back) =
 ???

 A

n Invariant

•
Q

 values ought never to have an em
pty

front, and a non-em
pty back!

•
Form

ulate an invariant
invariant (Q

 front back) =
 not (null front &

&
 not (null back))

Testing the Invariant

prop_Invariant :: Q
 Int -> B

ool
prop_Invariant q = invariant q

•
O

f course, it fails…
Q

ueues> quickC
heck prop_invariant

Falsifiable, after 4 tests:
Q

 [] [-1]

Fixing the G
enerator

instance A
rbitrary a => A

rbitrary (Q
 a) w

here
 arbitrary = do front <- arbitrary
 back <- arbitrary
 return (Q

 front
 (if null front then [] else back))

•
N

ow
 prop_Invariant passes the tests

Testing the Invariant

•
W

e’ve w
ritten dow

n the invariant
•

W
e’ve seen to it that w

e only generate valid
Q

s as test data
•

W
e m

ust ensure that the queue functions
only build valid Q

 values!
–

It is at this stage that the invariant is m
ost

useful

Invariant Properties

prop_Em
pty_Inv =

 invariant em
pty

prop_A
dd_Inv x q =

 invariant (add x q)
prop_R

em
ove_Inv q =

 not (isEm
pty q) ==>

invariant (rem

ove q)

A
 B

ug in the Q
 operations!

Q
ueues> quickC

heck prop_A
dd_Inv

Falsifiable, after 2 tests:
0Q

 [] []

Q
ueues> add 0 (Q

 [] [])
Q

 [] [0]
The invariant is False!

 Fixing add

add x (Q
 front back) = fixQ

 front (x:back)

•
W

e m
ust flip the queue w

hen the first elem
ent

is inserted into an em
pty queue

•
Previous bugs w

ere in our understanding (our
properties)—

this one is in our im
plem

entation
code

 Sum

m
ary

•
D

ata structures store data
•

O
beying an invariant

•
... that functions and operations
–

can m
ake use of (to search faster)

–
have to respect (to not break the invariant)

•
W

riting dow
n and testing invariants and

properties is a good w
ay of finding errors

