What 1s a Queue?

9/ \O/\&

thelback

‘\ Examples

* Files to print

* Processes to run

* Tasks to perform



What 1s a Queue?

A queue contains a sequence of values. We can add elements at the
back, and remove elements from the front.

We’ll implement the following operations:

empty :Qa -- an empty queue

add a->Qa->Q a-- add an element at the back
remove ::Qa->Qa - remove an element from the front
front ::Qa->a -- inspect the front element

isEmpty :: Q a->Bool -- check if the queue is empty



First Try

data Q a=Q [a] deriving (Eq, Show)

empty =Q1]

add x (Q xs) = Q (xs+t+[x])
remove (Q (x:xs)) =Q xs

front (Q (x:xs)) =X

iIsEmpty (Q xs) =null xs



Works, but slow

add x (Q xs) = Q (xs++[x])

[I +tys=ys
(x:x8) ++ ys =X : (xst++ys)

Add 1, add 2, add 3, add 4, add 5...
Time 1s the square of the number of additions



A Module

* Implement the result in a module
* Use as specification

* Allows the re-use
— By other programmers

— Of the same names



SpecQueue Module

module SpecQueue where
data Q a=Q [a] deriving (Eq, Show)

empty =Ql]

add x (Q xs) = Q (xst++[x])
remove (Q (x:xs)) = Q xs

front (Q (x:x8)) =X

1IsEmpty (Q xs) =null xs



New Idea: Store the Front and
Back Separately

o s blefalelrlelnlir ]

z@%l““ .




Fast Datatype

deriving (Eq, Show)




Fast Operations

empty =Q[] ]
add x (Q front back) = (Q front (x:back)
remove (Q (x:front) back) = fix(Q front back
front (Q (x:front) back) =x

iIsEmpty (Q front back) = null fro

& null back



Smart Constructor

fixQ [] back =Q (reverse back) []
fixQ front back = Q front back

This takes one function call per element 1n the
back—each element 1s inserted into the
back (one call), flipped (one call), and
removed from the front (one call)



How can we test the fast functions?

* By using the original implementation as a
reference

* The behaviour should be ’the same”
— Check results

* First version 1s an abstract model that 1s
’obviously correct”



Comparing the Implementations

* They operate on different fypes of queues

* To compare, must convert between them

— Can we convert a slow Q to a Q?
* Where should we split the front from the back???

* Retrieve the simple “model” contents from
the implementation




Accessing modules

import qualified SpecQueue as Spec

contents :: Q Int -> Slow.Q Int
contents (Q front back) =
Spec.Q (front ++ reverse back)



The Properties

prop Empty =
contents empty == Slow.empty
prop Addx q=

prop Remove q =

\

The behaviour 1
the same, except

for type

/

S

%ﬁ&@oz %

contents (add x q) == Slow.add x (contents q)

contents (remove q) == Slow.remove (contents q)

prop Front q =
front g == Slow.front (contents q)
prop IsEmpty q =
1IsEmpty q == Slow.1sEmpty (contents q)




Generating Qs

instance Arbitrary a => Arbitrary (Q a) where
arbitrary = do front <- arbitrary
back <- arbitrary
return (Q front back)



A Bug!

Queues> quickCheck prop Remove

*#% Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in
function remove' (after 1 test):

QI



Preconditions

* A condition that must hold before a function
1s called
prop _remove q =
not (1IsEmpty q) ==
retrieve (remove q) == remove (retrieve q)
prop front q =
not (iIsEmpty q) ==
front g == front (retrieve q)

* Useful to be precise about these



Another Bug!

Queues> quickCheck prop Remove

*¥* Failed! Exception: 'Queue.hs:22:0-42:
Non-exhaustive patterns in function remove'
(after 2 tests):

Q[][-1,0]




An Invariant

* Q values ought never to have an empty
front, and a non-empty back!
* Formulate an invariant

invariant (Q front back) =
777



An Invariant

* Q values ought never to have an empty
front, and a non-empty back!
* Formulate an invariant

invariant (Q front back) =
not (null front && not (null back))



Testing the Invariant

prop Invariant :: Q Int -> Bool

prop Invariant q = invariant q

* Of course, 1t fails...

Queues> quickCheck prop invariant
Falsifiable, after 4 tests:

QI[][-1]



Fixing the Generator

instance Arbitrary a => Arbitrary (Q a) where
arbitrary = do front <- arbitrary
back <- arbitrary
return (Q front
(if null front then [] else back))

* Now prop Invariant passes the tests



Testing the Invariant

e We’ve written down the mvariant

* We’ve seen to 1t that we only generate valid
Qs as test data

* We must ensure that the queue functions
only build valid Q values!

— It 1s at this stage that the invariant 1s most
useful



Invariant Properties

prop Empty Inv =
Invariant empty

prop Add Invxq=
invariant (add x q)

prop Remove Inv q=
not (1IsEmpty q) ==

invariant (remove q)



A Bug 1n the Q operations!

Queues> quickCheck prop Add Inv

Falsifiable, after 2 tests:
0

QI[] ]

Queues>add 0 (Q [] [])

Ul ——



Fixing add

add x (Q front back) = fix(Q front (x:back)

* We must flip the queue when the first element
is inserted 1nto an empty queue

* Previous bugs were 1n our understanding (our
properties)—this one 1s in our implementation
code



Summary

Data structures store data
Obeying an invariant

... that functions and operations
— can make use of (to search faster)

— have to respect (to not break the invariant)

Writing down and testing invariants and
properties 1s a good way of finding errors



