Model-Based Testing

(DIT848 / DAT260)
Spring 2014

Lecture 5
Property-Based Testing: QuickCheck

Gerardo Schneider
Department of Computer Science and Engineering
Chalmers | University of Gothenburg

Note on this lecture

QuickCheck has been introduced by Koen Claessen as an
intferactive lecture

These slides are not from Koen's lecture, but will serve
for you tfo remember the essential of Property-Based
Testing and QuickCheck

See slides of “Lecture 6" on QuickCheck for additional
hotes on Koen's lecture

Outline

Property-based testing

QuickCheck
* Haskell

Note: All the examples in this lecture has been taken from

Chapter 11: Testing and quality assurance of Real World
Haskell by B. O'Sullivan, D. Stewart, and J. Goerzen
(Available at

http://book.realworldhaskell.org/read/testing-and-quality-assurance.html)

Property-Based Testing

Property-based testing is a kind of MBT, where test
cases are automatically generated from a property

One of the difference with MBT in its classical
definition is that test cases are extracted from a
property, not a model of the system!

Such properties are written in a formal language
® First-order logic

Property-Based Testing

Automatic testing needs:
The system under test (SUT - as usual)
A generator to automatically generate inputs

An oracle to automatically check that the outputs are
correct

The oracle should have the following properties
1. Executable (“efficient enough")

2. Simpler than the system

3. Complete

QuickCheck in short

QuickCheck is a random testing tool

® Embedded domain-specific language for defining
properties (Haskell)

Generates and executes random test cases

Evaluates outcome of test cases against properties
Shrinks counter examples

Originally for Haskell

Commercial version
® QuviQ (http://www.quvig.com)
® Can test Erlang and C programs

A sorting algorithm: Quicksort

Quicksort is a divide and conquer sorting algorithm

It first divides a large list into fwo sub-lists: the low
elements and the high elements

® It then recursively sorts the sub-lists
Algorithm

Pick an element, called a pivot, from the list

Reorder the list so
All elements less than the pivot come before the pivot

® All elements greater than the pivot come after it (equal values can
go either way%

® After the pivot is in its final position (partition operation)

Recursively sort the sub-list of lesser elements and the sub-list of
greater elements

Base case: lists of size zero or one, which never need to be sorted

Group exercise

Write a recursive version of the quicksort algorithm

You can write it as a mathematical function, or in any
functional programming language

Groups 2-5 persons: 15 min

Quicksort in Haskell

-- file: ch11/QC-basics.hs
import Test.QuickCheck
import Data.List

gsort :: Ord a => [a] -> [a]
gsort [] = []
gsort (x:xs) = qsort lhs ++ [x] ++ gsort rhs
where lhs = filter (< xX) xs
rhs = filter (>= x) xs

filter applies the
predicate to the list
and filters the list

with those satisfying
bhe predicate)

Not an efficient
implementation,
but simple and
elegant!

A simple property about gsort

-- file: ch11/QC-basics.hs

prop_idempotent xs = gsort (gsort xs) == qsort xs

éhcb prop_idempotent []
True

ghci> prop_idempotent [1,1,1,1]
True

ghci> prop_idempotent [1..100]
True

ghci> prop_idempotent [1,5,2,1,3,0,9]
True

Does this
property
hold?

Interesting but
tedious: Better
to automatically
generate random
datal

Generating test data with
QuickCheck

-

ghci> generate 10 (System.Random.mkStdGen) arbitrary :: [Bool]
[False,False,False,False,False, True]

N

\. y

Generates a random arbitrary is a

list of boolean values function from the
Arbitrary type
: : . class, to generate
Sh‘?WkSCLhe l:fYF’e of idempotent is polymorphic: data of each type
Quic ec heeds to be given a type to (Don't worry about it
a generate data for now...)
\. A

r

ghci> :type quickCheck
quickCheck :: (Testable a) =>a ->10 ()

ghci> quickCheck (prop_idempotent :: [Integer] -> Bool)
00, passed 100 tests.

Using QuickCheck to test a
property about gsort

-- file: ch11/QC-basics.hs

prop_minimum xs = head (gsort xs) == minimum xs

Should the program pass the
test? (Does the program
satisfy the property?)

a)

ghci> quickCheck (prop_minimum :: [Integer] -> Bool)

O** Exception: Prelude.head: empty list
A\ .

-

an empty list!

. It fails when sorting J
\

Using QuickCheck to test a
property about gsort

head and minimum not defined
-- file: ch1l/minimum.hs for empty lists!

head :: [a] ->a foldll takes the first 2 items of
head (x:) =x the list and applies the function
head [] = error "Prelude.head: empty list" to them, then feeds the
function with this result and
minimum :: (Ord a) => [a] ->a the 3rd argument and so on
minimum [] = error "Prelude.minimum: empty list"

minimum xs = foldll min xs Property needs to

be redefined,
filtering invalid data

-- file: ch11/QC-basics.hs
prop_minimum' xs = Property type, not

— = rind Bool! (Filters non-
not (null xs) ==> head (gsort xs) == minimum xs empty lists before

testing them)

ghci> quickCheck (prop_minimum’ :: [Integer] -> Property)
00, passed 100 tests.

Group exercise

Write 4 more properties about the sorting function

You might think about “inherent” properties (i.e., what
does it mean to be sorted), and/or additional properties
(e.g., what happened when you operate on sorted lists)

Groups 2-5 persons: 15 min

Group exercise: Some properties

Prop 1: The list should be ordered ©

prop_ordered xs = ordered (gsort xs)
where ordered [] = True

ordered [x] = True
ordered (x:y:xs) =x <=y && ordered (y:xs)

Prop 2: The ordered list is a permutation of the original list

prop_permutation xs = permutation xs (gsort xs)

where permutation xs ys = null (xs \\ ys) &é& null (ys \\ xs)

Group exercise: Some properties

Prop 3: The maximum of the sorted list is the last element

pProp_maximum xs =

not (null xs) ==>last (gsort xs) == maximum xs

Prop 4: The minimum of two concatenated sorted lists is
the minimum of the minimum of both lists

This is not exactly what is written
prop_append Xs ys = in the informal spec. Why? Is it a

not (null xs) ==> good property anyway?

not (null ys) ==>
head (gsort (xs ++ys)) == min (minimum xs) (minimum ys)

Testing against a model

It is possible to compare an implementation with a
reference implementation (prototype)

prop_sort_model xs = sort xs == qsort xs

The reference The implementation
implementation (SUT)

QuickCheck can do more...

© Testing against FSMs

® Testing concurrent systems

® Erlang, C programs (more recently for Java, Python,
Scala, Ocaml,...)

Assignment 2

You will have to:

® Write properties and generators in QuickCheck to
test Haskell programs

Futher Reading

Read the following:

® Bryan O'Sullivan, Don Stewart, and John Goerzen. Real
World Haskell

® Chapter 11: Testing and quality assurance

® Available online at
http://book.realworldhaskell.org/read/testing-and-
quality-assurance.html

® For assignment 7 you should read the chapter above, in
particular the section "Testing case study: specifying
a pretty printer”

® Also, for the two remaining lectures on QuickCheck
d the other listed papers at the course home

