Lecture 9
Data Structures (DAT037)

Ramona Enache

(with slides from Nick Smallbone and
Nils Anders Danielsson)

Trees (as graphs)

Again
A tree is
+ acyclic connected graph

Minimum Spanning Tree (MST)

A spanning tree of a graph is a subgraph (obtained by deleting some
of the edges) which:

* isacyclic
* js connected

A minimum spanning tree is one where the total weight of the
edges is as low as possible

Minimum Spanning Tree (MST)

Question

What is the total weight of the MSTs corresponding to the following
graphs ?

4
1.19
2.22 2 3
3.24 5/ \b
4. other 1

Code 380424

Prim’s Algorithm

We will build a minimum spanning tree by starting with no edges
and adding edges until the graph is connected

Keep a set S of all the nodes that are in the tree so far, initially
containing one arbitrary node

While there is a node not in S:

 pick the lowest-weight edge between a node in S and a node
notinS$S

 add that edge to the spanning tree, and add the node to S

Prim’s Algorithm

Done = new set containing arbitrary node s

ToDo =V \ {s}
T = new empty set // MST for nodes from Done.

while ToDo is non-empty

do
if no edge connects Done and ToDo

then raise error: graph not connected
(u,v) = cheapest edge connecting Done and ToDo (u€ Done, vEToDo)
Done = Done U {v}
ToDo = ToDo" {v}
T=TU {(u,v)}
return T

Prim’s Algorithm

Done = new set containing arbitrary node s

ToDo =V \ {s}
T = new empty set // MST for nodes from Done.

while ToDo is non-empty

do
if no edge connects Done and ToDo

then raise error: graph not connected
(u,v) = cheapest edge connecting Done and ToDo (u€ Done, vEToDo)
Done = Done U {v}
ToDo = ToDo" {v}
T=TU {(u,v)}
return T

Prim’s Algorithm

The operation of picking the lowest-weight edge between a node in
Done and ToDo takes O(|V]) time if we're not careful! Then Prim's
algorithm will be O(|V|"2)

To implement Prim's algorithm, use a priority queue containing all
edges between Done and ToDo

Whenever you add a node to Done, add all of its edges to nodes in
ToDo to a priority queue

To find the lowest-weight edge, just find the minimum element of
the priority queue

Just like in Dijkstra's algorithm, the priority queue might return an
edge between two elements that are now in Done: ignore it

New time: O(|V]| log |E|), assuming |E| = O(|V])

Prim’s Algorithm - Example

6
g

4
eerin
1

Prim’s Algorithm - Example

Fast forward to the end

(demonstration on the board)

Prim’s Algorithm - Example

Question

* Consider the following statements:

- A connected graph always has an MST

- By adding an edge to an MST we always get exactly one cycle
- There is exactly one MST for each graph

- In Prim’s algorithm, the total cost of the result doesn’t depend on
the choice of the starting node

How many statements are true ?
1.

> W N

2.
3.
4

Code 486103

Prim’s Algorithm

* Chooses the edge with lowest cost at each
step greedy algorithm

- usually most efficient

- need correctness proof

Prim’s Algorithm - Correctness

* lemmal

The result of Prim’s algorithm is a spanning tree.

Proof:

Invariant: At every step, T is a spanning tree for Done
In the beginning: T contains {s} and no edge — trivially true

After adding each new node: Assuming that T was a spanning
tree for Done, by adding one new node (not connected by any
edge before) and one edge connecting it to Done we get a tree.

In the end: T is a spanning tree for Done =V

Prim’s Algorithm - Correctness

* T, built by Prim’s algorithm is an MST
Proof:

Invariant: T built at each step is a part of an MST

In the beginning: T contains {s} and no edge — trivially true

Prim’s Algorithm - Correctness

* T, built by Prim’s algorithm is an MST

Proof:

After adding each new node:
We assume that T is a subtree of an MST, M
We add edge k = (u,v), where v not in Done.

If k not in M, then there is another edge k' in M, such as TU{k’}
has a cycle C.

Then (T \{k}) U {k’}is a subtree of M.

So we can build M’ =M\ {k’'} U {k} - also a tree, but with lower
cost, because k <=k’ and M’ is a spanning tree also.

In the end: T is an MST

Kruskal’s Algorithm

e Start with the set of all nodes and no edges

* At each point choose an edge with the lowest
cost which doesn’t create a cycle

Kruskal’s Algorithm

e More intuitive ©

* Harder to implement ®
- how should we represent the set of edges efficiently ?
- how do we know which edges create a cycle ?

Extra material: Disjoint Set ADT

* Chapter 8 (8.1-8.3) — course book
* Operations:

- find(i) — the set where i belongs

- union(x,y) — union of two disjoint sets
Amortised O(1) complexity for both

Kruskal’s Algorithm

if |V| <=1 then return empty set

Partition = new disjoint-set(|V])

Edges = new priority queue containing E, prioritised by edge weight
T = new empty set

while Edges is non-empty
do
(u,v) = Edges.delete-min()
if Partition.find(u) != Partition.find(v) then
Partition.union(u,v)
T=TU {(u,v)}
if |T| ==|V|-1thenreturnT
raise error: graph not connected

Question

What is the time complexity of Kruskal’s algorithm ?

1. O(|E| log |V])
2.0(|V|*2)

3.0(|E]| log |E])
4.0 (|V| log |E])

govote.at

Code 81697

Kruskal’s Algorithm

if |V| <=1 then return empty set

Partition = new disjoint-set(|V])

Edges = new priority queue containing E, prioritised by edge weight
T = new empty set

while Edges is non-empty
do
(u,v) = Edges.delete-min()
if Partition.find(u) != Partition.find(v) then
Partition.union(u,v)
T=TU {(u,v)}
if |T| ==|V|-1thenreturnT
raise error: graph not connected

Kruskal’s Algorithm - Correctness

Implement on

your own

e Similar to Prim’s algorithm
e Same lemma
e Same invariant

To Do

Read from the book:
+9.5

Implement:
+ Prim’s and Kruskal’s algorithm in your
favourite programming language

Dugga review:
+ here (HB3), after the class

Coming up:
+ advanced data structures
- balanced trees
- more on sorting

