Lecture 7 Data Structures (DAT037)

Ramona Enache

(with slides from Nick Smallbone and Nils Anders Danielsson)

Directed Acyclic Graphs

A DAG is a directed graph without cycles.

That means:

once you follow an edge there is no way back to the source node

(we can say that one node Is after another in the graph)

Topologic Sort

An example:

- nodes are tasks, and an edge (u, v) means "task u must be done before task v"
- the graph is a DAG,

It means that there are no impossible dependencies between tasks A topological sort gives a valid order to do the tasks in

```
r = new empty list
while V ≠ Ø
do
  if any v ∈ V with indegree(v) = 0
    then r.add-last(v)
       remove v from G
  else
    raise error: cycle found
return r // Nodes, topologically sorted.
```

```
r = new empty list
while V ≠ Ø
do
  if any v ∈ V with indegree(v) = 0
    then r.add-last(v)
       remove v from G
  else
    raise error: cycle found
return r // Nodes, topologically sorted.
```

How can we avoid removing v from G?

```
r = new empty list
d = map from vertices to their indegrees // null for nodes in r.
repeat |V| times
  if d[v] == 0 for some v
     then r.add-last(v)
           d[v] = null
           for each direct successor v' of v
             do
               decrease d[v'] by 1
    else
       raise error: cycle found
return r // Nodes, topologically sorted.
```

Complexity Analysis (Need more info because of pseudocode representation).

- Nodes: 0, 1,...|V|-1
- adjacent: array with V positions
 adjacent[i] contains list of neighbours for node I
- r: dynamic array,
- *d*: array.

```
// d (indegree) is a map from nodes to the indegrees that it would have
// easier for deleting a node from the graph – indegree would be null
d = new array of size |V|
for i in [0,..., |V|-1]
  do
   d[i] = 0
for i in [0,..., |V|-1]
                                          O(|E|)
  do
   for each direct successor j of i
     do
      d[j]++
```

```
O(1)
r = new empty list
d = map from vertices to their indegrees // null for nodes in r.
repeat |V| times o(|V|)
  if d[v] == 0 for some v
     then r.add-last(v) 0(1)
            d[v] = null = 0(1)
                                                 O(|E|)
            for each direct successor v' of v
             do
                decrease d[v'] by 1 = 0(1)
    else
       raise error: cycle found
                                              Total : O(|V|^2 + |E|)
return r // Nodes, topologically sorted.
```

```
r = new empty list
d = map from vertices to their indegrees
q = queue with all nodes of indegree 0
while q is non-empty
 do
  v = q.dequeue()
  r.add-last(v)
  for each direct successor v' of v
    do
      decrease d[v'] by 1
      if d[v'] = 0 then q.enqueue(v')
if r.length() < |V| then raise error: cycle found
return r // Nodes, topologically sorted.
```

Question

What is the time complexity of this solution if adjacency lists are used to represent edges?

- 1. O(|V|)
- 2. O(|E|)
- 3. O(|V|+|E|)
- 4. O(|V|^2)

govote.at Code 771118

```
r = new empty list
d = map from vertices to their indegrees
q = queue with all nodes of indegree 0
while q is non-empty \angle O(|V|)
 do
  v = q.dequeue()
   r.add-last(v)
  for each direct successor v' of v
                                       O(E) in total
    do
      decrease d[v'] by 1 (1)
      if d[v'] = 0 then q.enqueue(v')
if r.length() < |V| then raise error: cycle found
                                                     0(1)
return r // Nodes, topologically sorted.
```

Example of Topologic Sort

Depth-first Search – Again!

- Depth-first search is an alternative search order that's easier to implement
- To do a DFS starting from a node:
 - visit the node
- recursively DFS all adjacent nodes (skipping any already-visited nodes)
- Much simpler [©]

Applications of DFS

- Checking if a graph has a cycle
- Checking if the graph is connected
- Alternative algorithm for topological sort

- ...

Topologic Sort with DFS

```
L ← Empty list that will contain the sorted nodes
while there are unmarked nodes
  do
   select an unmarked node n
   visit(n)
function visit(node n)
if n has a temporary mark then stop (not a DAG)
if n is not marked (i.e. has not been visited yet)
  then mark n temporarily for each node m with an edge from n to
m do visit(m) mark n permanently unmark n temporarily add n to
head of L
```

Strong Connection in Graphs

A directed graph where there is a path between any two nodes in both directions is called **strongly connected**.

A graph can be split into **strongly connected components** (subgraphs that are strongly connected) with the help of DFS

Strongly Connected Components

Question

How many strongly connected components are here?

Strongly Connected Components

```
S \leftarrow \text{empty stack}
                                                     Kosaraju's
while S does not contain all vertices
                                                      algorithm
 do
   choose an arbitrary vertex v not in S
   dfs(v)
    - for each vertex u found, push u onto S.
reverse the directions of all arcs to obtain the transpose graph.
while S is nonempty
 pop the top vertex v from S.
 dfs(v) in the transposed graph
The set of visited vertices will give the strongly connected
component containing v; record this and remove all these vertices
from the graph G and the stack S.
```

Shortest paths

Typical problems

- Find the shortest path between
- u and v
- Find the shortest path between u and all other nodes from the graph
- Find the shortest path between any two nodes from the graph

Shortest Path – Based on BFS

```
d = new array of size |V|, initialised to \infty
p = new array of size |V|, initialised to null
q = new empty queue
q.enqueue(s)
d[s] = 0
while q is non-empty
 do
   v = q.dequeue()
   for each direct successor v' of v
    do
      if d[v'] = \infty then
          d[v'] = d[v] + 1
          p[v'] = v
          q.enqueue(v')
return (d, p)
```

Shortest Path based on BFS

```
O(|V|)
d = new array of size |V|, initialised to ∞
p = new array of size |V|, initialised to null O(|V|)
q = new empty queue
q.enqueue(s)
d[s] = 0
while q is non-empty-
 do
  v = q.dequeue()
  for each direct successor v' of v
    do
     if d[v'] = \infty then
         d[v'] = d[v] + 1
         p[v'] = v
         q.enqueue(v')
return (d, p)
```

Question – Part 1

Test out the algorithm on the following graphs.

Question – Part 2

What kind of graphs is the previous algorithm good for finding the shortest path:

- A. No graphs
- B. Undirected graphs
- C. Unweighted graphs
- D. Any graphs

govote.at Code 637013

Dijkstra's Algorithm

```
d = new array of size |V|, initialised to \infty
p = new array of size |V|, initialised to null
k = new array of size |V|, initialised to false
d[s] = 0
repeat
  if no v' satisfies |k[v]| \& \& d[v'] < \infty then break
 v = v' with smallest d[v'] that satisfies ! k[v']
  k[v] = true
 for each direct successor v' of v
     do
      if (! k[v']) and d[v'] > d[v] + c(v,v') then
               d[v'] = d[v] + c(v,v')
                p[v'] = v
return (d, p)
```

Edges are represented with adjacency lists

Dijkstra's Algorithm

Complexity $O(|V|^2 + |E|) = O(|V|^2)$

Motivation in the book

Dijkstra's Algorithm - Example

Demonstration on the board!

Dijkstra's Algorithm - Example

S = {Dunwich \rightarrow 0, Blaxhall \rightarrow 15, Harwich \rightarrow 53, Feering \rightarrow 61, Tiptree \rightarrow 64, Clacton \rightarrow 70, Maldon \rightarrow 72}

Finished ©

Dijkstra's algorithm enumerates nodes in order of how far away they are from the start node

Dijkstra's Algorithm

Where can we optimize the algorithm?

- 1. Can't
- 2. Choose a better starting point
- 3. Use an adjacency matrix instead
- 4. Use a better structure to compute the next node

govote.at Code 308091

Dijkstra's Algorithm – Take 2

```
d,p,k – as before
q = new empty priority queue
d[s] = 0
q.insert(s, 0)
while q is non-empty
  do
    v = q.delete-min()
    if ! k[v] then
         k[v] = true
         for each direct successor v' of v do
            if (not k[v']) and d[v'] > d[v] + c(v,v') then
                d[v'] = d[v] + c(v,v')
                v = [v]q
                q.insert(v', d[v'])
return (d, p)
```

Dijkstra's Algorithm – Take 2

Complexity
O(|E| log |V| + |V| log |V|)
= O(|E|log|V|)

Motivation in the book

Because of **decreaseKey** and **findMin** operations of the priority queus

Dijkstra's Algorithm

Let's look at the following example.
What happens here if we apply Dijkstra's algorithm?

Dijkstra's Algorithm

Dijkstra's algorithm only works for positive weights!!

There is a more general algorithm for weighted graphs

- more complex ⊗
- described in the book ©

To Do

Read from the book:

- + 9.3, 9.6
- + **better** reference for graphs:

Wikipedia

Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein

Fun with graphs:

+ famous graph problem: **The Seven Bridges of Königsberg**http://www.mathsisfun.com/activity/seven-bridges-konigsberg.html

Implement:

+ graphs + the algorithms from today in your favourite programming language

Labs:

- + 26th Nov deadline Lab 2
- + 27th Nov final deadline Lab 1

