Lecture 7/
Data Structures (DAT037)

Ramona Enache

(with slides from Nick Smallbone and
Nils Anders Danielsson)

Directed Acyclic Graphs

A DAG is a directed graph without cycles.

That means:
once you follow an edge there is no way back to the source node

(we can say that one node
|s after another in the graph)

Topologic Sort

An example:

* nodes are tasks, and an edge (u, v) means “task u must be done
before task v”

* the graph is a DAG,

It means that there are no impossible dependencies between tasks
A topological sort gives a valid order to do the tasks in

Implementing Topologic Sort

r = new empty list
while V 2 @
do
if any v € V with indegree(v) =0
then r.add-last(v)
remove v from G
else
raise error: cycle found

return r // Nodes, topologically sorted.

Implementing Topologic Sort

r = new empty list
while V # 2
do
if any v € V with indegree(v) =0
then r.add-last(v)
remove v from G
else
raise error: cycle found

return r // Nodes, topologically sorted.

Implementing Topologic Sort

r = new empty list
d = map from vertices to their indegrees // null for nodes in .
repeat |V| times
if d[v] == 0 for some v
then r.add-last(v)
d[v] = null
for each direct successor v' of v
do
decrease d[v'] by 1
else
raise error: cycle found
return r // Nodes, topologically sorted.

Implementing Topologic Sort

Complexity Analysis
(Need more info because of pseudocode representation).

- Nodes: 0, 1,...|V]|-1

- adjacent: array with V positions

adjacent[i] — contains list of neighbours for node |
- r: dynamic array,

- d: array.

Implementing Topologic Sort

// d (indegree) is a map from nodes to the indegrees that it would have
// easier for deleting a node from the graph — indegree would be null

d = new array of size | V|
foriin|[O,...,|V]|-1]
do
dli]=0
foriin|[O,...,|V]|-1]
do
for each direct successor j of i
do
djl++

Implementing Topologic Sort

r = new empty list
d = map from vertices to their indegrees // null for nodes in .
repeat |V| times
if d[v] == 0 for some v
then r.add-last(v)
d[v] = null
for each direct successor v' of v
do
decrease d[v'] by 1
else
raise error: cycle found
return r // Nodes, topologically sorted:

Implementing Topologic Sort

r = new empty list
d = map from vertices to their indegrees
g = queue with all nodes of indegree 0
while g is non-empty
do
v = g.dequeue()
r.add-last(v)
for each direct successor v' of v
do
decrease d[v'] by 1
if d[v'] =0 then g.enqueue(v')
if r.length() < |V| then raise error: cycle found
return r // Nodes, topologically sorted.

Question

What is the time complexity of this solution if adjacency lists are
used to represent edges ?

Of
Of
Of
Of

)
)

+[E|) govote.at
A2)

< < mg

B wnN e

Code 771118

Implementing Topologic Sort

r = new empty list
d = map from vertices to their indegrees
g = queue with all nodes of indegree 0
while g is non-empty
do
v = g.dequeue()
r.add-last(v)
for each direct successor v' of v
do
decrease d[v'] by 1
if d[v'] =0 then g.enqueue(Vv')
if r.length() < |V| then raise error: cycle found
return r // Nodes, topologically sorted.

Example of Topologic Sort

Example
discussed on the
board

Depth-first Search — Again!

* Depth-first search is an alternative search
order that's easier to implement

 To do a DFS starting from a node:
- visit the node

- recursively DFS all adjacent nodes (skipping
any already-visited nodes)

* Much simpler ©

Applications of DFS

Checking if a graph has a cycle
Checking if the graph is connected
Alternative algorithm for topological sort

Topologic Sort with DFS

L & Empty list that will contain the sorted nodes
while there are unmarked nodes
do
select an unmarked node n
visit(n)
function visit(node n)
if n has a temporary mark then stop (not a DAG)
if n is not marked (i.e. has not been visited yet)
then mark n temporarily for each node m with an edge from n to
m do visit(m) mark n permanently unmark n temporarily add n to
head of L

Strong Connection in Graphs

A directed graph where there is a path between any two nodes in
both directions is called strongly connected.

A graph can be split into strongly connected components
(subgraphs that are strongly connected) with the help of DFS

Strongly Connected Components

Question

How many strongly connected components are here ?

= U VULC

Code 510490

Strongly Connected Components

S & empty stack
while S does not contain all vertices
do
choose an arbitrary vertex vnotin S
dfs(v)
- for each vertex u found, push u onto S.
reverse the directions of all arcs to obtain the transpose graph.
while S is nonempty
pop the top vertex v from S.
dfs(v) in the transposed graph
The set of visited vertices will give the strongly connected
component containing v; record this and remove all these vertices
from the graph G and the stack S.

Shortest paths

Typical problems

- Find the shortest path between

- uandv
- Find the shortest path between u and all other nodes
from the graph

- Find the shortest path between any two nodes from
the graph

Shortest Path — Based on BFS

d = new array of size | V|, initialised to o=
p = new array of size | V|, initialised to null
g = new empty queue

g.enqueue(s)

d[s] =0
while g is non-empty
do

v = g.dequeue()
for each direct successor v' of v
do
if d[v'] = oo then
dlv'] =d[v] +1
p[v']=v
g.enqueue(v')
return (d, p)

Shortest Path based on BFS

d = new array of size | V|, initialised to o=
p = new array of size | V|, initialised to null
g = new empty queue

g.enqueue(s)

d[s] =0
while g is non-empty
do

v = g.dequeue()
for each direct successor v' of v
do
if d[v'] = oo then
dlv'] =d[v] +1
p[v']=v
g.enqueue(v')
return (d, p)

Question — Part 1

Test out the algorithm on the following graphs.

O SR O=

Question — Part 2

What kind of graphs is the previous algorithm good for finding the
shortest path:

No graphs
Undirected graphs

Unweighted graphs govote.at
Any graphs

oo wp

Code 637013

Dijkstra’s Algorithm

d = new array of size | V|, initialised to o<
p = new array of size |V|, initialised to null
k = new array of size |V|, initialised to false
d[s] =0
repeat
if no v' satisfies lk[v] && d[v'] < == then break
v = Vv' with smallest d[v'] that satisfies | k[V']
k[v] = true
for each direct successor v' of v
do
if (! k[v']) and d[v'] > d[v] + c(v,V') then
d[v'] = d[v] + c(v,Vv')
p[vi]=v

return (d, p)

Dijkstra’s Algorithm

Complexity Motivation in the book
O([V[*2 + [E]) =0(]V]*2)

Dijkstra’s Algorithm - Example

Demonstration on the board !

17

46
@
9
11

Dijkstra’s Algorithm - Example

S = {Dunwich = 0,
Blaxhall - 15,
Harwich - 53,
Feering - 61,
Tiptree - 64,
Clacton - 70,

46
Maldon - 72} @ 17
9
Finished © .
Dijkstra's algorithm enumerates nodes @
40

1
in order of how far away they are from
the start node

Dijkstra’s Algorithm

Where can we optimize the algorithm ?

govote.at

Can’t
Choose a better starting point Code 308091
Use an adjacency matrix instead
Use a better structure to compute the next node

W

Dijkstra’s Algorithm — Take 2

d,p,k — as before
g = new empty priority queue
d[s]=0
g.insert(s, 0)
while g is non-empty
do
v = g.delete-min()
if | k[v] then
k[v] = true
for each direct successor v' of vdo
if (not k[v']) and d[v'] > d[v] + c(v,V') then
d[v'] = d[v] + c(v,v')
p[v']=v
g.insert(v', d[v'])
return (d, p)

Dijkstra’s Algorithm — Take 2

viotivation In the oo

Complexity
O(|E| log |V] + |V] log |V])
=O(|E]log|V])

Because of decreaseKey and findMin operations of the priority
queus

Dijkstra’s Algorithm

Let’s look at the following example.
What happens here if we apply Dijkstra’s algorithm ?

P 1

A: (é 2 B: <s

Dijkstra’s Algorithm

Dijkstra’s algorithm only works for positive weights !!

There is a more general algorithm for weighted graphs

- more complex ®
- described in the book ©

To Do

Read from the book:
+9.3,9.6
+ better reference for graphs:
Wikipedia
Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein

Fun with graphs:
+ famous graph problem: The Seven Bridges of Konigsberg
http://www.mathsisfun.com/activity/seven-bridges-konigsberg.html

Implement:
+ graphs + the algorithms from today in |
your favourite programming language |

Labs:
+ 26 Nov — deadline Lab 2
+ 27t Nov - final deadline Lab 1

