Lecture 6
Data Structures (DAT037)

Ramona Enache
(with slides from Nick Smallbone)



Graphs

A graph is a data structure consisting of nodes (or vertices)
and edges

An edge is a connection between two nodes
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Nodes: A,B,C,D, E
Edges: (A, B), (A, D), (D, E), (E, C)
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Nodes are stations
Edges are “bits of line”
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Graphs

Nodes are components

Edges are connections
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More Graphs

* Graphs are used all over the place:
+ communications networks
+ social networks — Facebook, Linkedln, Google+
+ maps, transport networks, route finding

+ finding good ways to lay out components in an
integrated circuit

+ etc.

 Anywhere where you have entities, and
relations between them!



Graphs

Graphs can be either directed or undirected

* |n an undirected graph, an edge simply connects
two nodes

* |In a directed graph, one node of each edge is the
source and the other is the target (we draw an
arrow from the source to the target)



Graphs

Undirected graphs
+ transportation maps

+ friendship graph in social networks

Directed graph
+ follower’s graph in social networks
+ course prerequisite graph



Drawing Graphs

 We represent nodes as points, and edges as
lines — in a directed graph, edges are arrows:

A (& iALJ/B:)
OO @/ E—0©

V=1{A,B,C,D,E} V=1{A,B,C,D, E}
E={(A,B),(A,D), E ={(A,B), (B,A), (B, E), (D, A),
(C,E), (D, E)} (E, A), (&, C), (E, D)}




Drawing Graphs

* The layout of the graph is completely
irrelevant: only the nodes and edges matter
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V={0,1,R%,3,4,5,6}
E =1{(0, 1),(0,%), (0, ), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}



Weighted graphs

* In aweighted graph, each edge has a weight
associated with it

Ann Arbor
50 Igetroit
40 60 120 Cleveland 43¢ Pittsburgh
260 L 2 3 ;.
Toledo 320
Chicago® 148 \ss 150 .
‘;‘"" 180 Philadelphia
go'. Wayne
180 120
S 180 P
Indianapolis Columbus

A graph can be directed, weighted, neither or
both



Paths and Cycles

 Two vertices are adjacent if there is an
edge between them:

Ann A;bor
50 Detroit J:L

40 g0 ¥ :
60 Cleveland Pittsburgh
260 ¢ 120 s 130 s g
Toledo 320
Chicago® 148 - {s0 .
‘ort / 180 . .
Wayne | Philadelphia

$ 180 0

Indianapolis Columbus



Paths and Cycles

* |n a directed graph, the target of an edge is
adjacent to the source, not the other way
around:

Ais adjacent to D,
but Dismot
~ adjacenttoA




Paths and Cycles

* A multigraph has multiple edges between 2 nodes
(directed/undirected/weighted)

 Here adjacent nodes have at least 1 edge between
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Paths and Cycles

A path is a sequence of vertices where each vertex is
adjacent to its predecessor:

Ann Arbor
) ’,‘“50_» Detroit
,. 40 |60_.*O 120 Cleveland 130 Pittsburgh
260 Q C
’ ‘Toledo
Chicago
148 155 150
. gFort ' . .
‘Vlayne Philadelphia

180 \, 120

180

Indianapolis Columbus



Paths and Cycles

* In a simple path, no node or edge appears twice,
except that the first and last node can be the same

Ann Arbor
'. 30 Detroit
40 P .
| 60 _ 120 Cleveland 130 Pittsburgh
260 ® ®
‘\Toledo

Chicago
155 150

Philadelphia

This path is

180 |
Indianapolis Columbus a Simple path




Paths and Cycles

* A cycleis a (non-trivial) simple path where the first
and last

nodes are the same

I Two cycles are the same, if they contain the same edges !

* A graph that contains a cycle is called cyclic,
otherwise it is called acyclic

Ann Arbor

s 50 Detroit

40 ®

| 60 120 Cleveland 130 Pittsburgh

260

oledo
320

Chicago & 248

gort
Wayne
180 120

®
80 Philadelphia

This path is a cycle,‘
and a simple path;
the graph is cyclic

180

®

Indianapolis Columbus



Question

* How many nodes are there in the smallest cycle that
you can find in the following snapshot of the
Vasttrafik map ?

1.1 L wx

Frihamnen  ggy _ San
2.2

3.3 L | &/ % govote.at
4.4 ‘:;\ﬂ\ spuien ] angspors | Code 442748




Paths and Cycles

* A graphis called connected if there is a path from
every node to every other node

) 8)

This graph is
connected §) .Z)
8) 9)




Paths and Cycles

* A graphis called connected if there is a path from
every node to every other node

~ (a) 5)

This graph is
not connected P
. ) @) (7)

8) 9)




Paths and Cycles

* If a graphis unconnected, it still consists of
connected components

(4) (5)

" {4,5}isa " (6,7.8,9}isa |

connected connected
§) 'Z) ~ component

component




Paths and Cycles
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More Graphs

A graph where there is an edge between any two
nodes is called a complete graph




Question

* How many cycles are there in the following complete
graph ?

1.4
2.5
3.6
4.7

govote.at

Code 683175




More Graphs

Let’s consider the following notation for graphs:

The graph G = (V,E) where
V —represents the set of vertices
E — represents the edges of the graph

When |E| is O(|V|”2) the graph is dense, otherwise it is
sparse
* Complete graphs are dense, because

|E| = |V]| (|]V] - 1) = maximum number of edges



Question

Is the following kind of graph dense ?

1. Yes
2. No
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Implementing a Graph — Take 1

Adjacency lists
-keep a list of all nodes in the graph

- with each node, associate a list of all the nodes
adjacent to that nodes



Implementing a Graph — Take 1

Adjacency lists — directed graph

0 (1) 2 ,
L (0]{ -
(1]] |
[2]] ‘
y A > {:}
( 3 {4 (5]l



Implementing a Graph — Take 1

Adjacency lists — undirected graph

Each edge (a, b)
appears twice -
once in a's list
and once in b's list




Implementing a Graph — Take 2

Adjacency matrix

- we use a 2-dimensional array
- for an unweighted graph, we use an array of booleans

ali][j] = true if there is an edge between node i and
node j

- for an undirected graph, ali][j] = a[j][i]

- for a weighted graph, the array contains weights instead
of booleans

- We can e.g. use an infinite value if there is no edge
between a pair of nodes



Implementing a Graph — Take 2

Adjacency matrix — weighted graph
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Implementing a Graph — Best Way

Many graph algorithms have the form:

for each node u in the graph

for each node v adjacent to u
do something with edge (u, v)

With an adjacency list, we can just iterate through all nodes and edges in
the graph

- this gives a time complexity of O(|V| + |E|)
With an adjacency matrix, we must try each pair (u, v) of nodes to check if
there is an edge

- this gives a time complexity of O(|V|"2)

Winner:
+ adjacency lists for sparse graphs
+ unclear for dense graphs



Implementing a Graph — Best Way

* So:
- if the graph is sparse adjacency lists are better (common)
- if the graph is dense an adjacency matrix are better (rare)

What about memory consumption?

- An adjacency matrix needs space for |V|”2 values, so takes O(|V|"2)
memory

(but with a low constant factor because each value is just a bool)
- An adjacency list needs O(|V| + |E|) space
(but with a higher constant factor because of the node objects)

* Again depends on how sparse the graph is !



Graph Traversals

 Many graph algorithms involve visiting each node in
the graph in some systematic order

e The two commonest methods are:
+ breadth-first search
+ depth-first search



Breadth-First Search

* A breadth-first search (BFS) visits the nodes in the following
order:

- First the start node
- Then all nodes that are adjacent to the start node

- Then all nodes that are adjacent to those
-And soon ...

 We end up visiting all nodes that are k edges away from the
start node, before visiting any nodes that are k+1 edges away



Breadth-First Search

* Implementing BFS:
- we maintain a queue of nodes that we are going to visit next
- initially, the queue contains the start node
- we repeat the following process:
- remove a node from the queue
- visit it
- find all nodes adjacent to the visited node and add

them to the queue, unless they have been visited or added to
the queue already



Breadth-First Search

(olueue: 5)

Visit order:

Initially, "
queue contains 9) | 8)

start node
D Q)unvisited '0) queued 0 visited




Breadth-First Search

Queue: 53)

0 3) SO 1)
Step 1: 4
remove node :'_ 9) 8)

from queue |
and visit it - .
Q)unvisited (\__0) queued Q visited




Breadth-First Search

;1u1eue: 5)

Visit order:

0 5 W w

add adjacent nodes = | g) 8)
to queue | |
(only unvisited ones)

;\ 0) unvisited 'Q) queued 6 visited




Breadth-First Search

?ueue: 5)

Visit order:
9 3

Step 1: N
remove node ( 9) §)

from queue |
and visit it -
| 0) unvisited 10) queued O visited




Breadth-First Search

Fast forward to the end

(demonstration on the board)



Breadth-First Search

Queue:

L

VlSlt order '
03124 .
67985

We reach step 1, but .
the queue is empty,
and we're finished!

/ Q) unvisited (Q) queued o visited




Depth-First Search

* Depth-first search is an alternative search
order that's easier to implement

* To do a DFS starting from a node:
- visit the node

- recursively DFS all adjacent nodes (skipping
any already-visited nodes)

* Much simpler ©



Question

* |s it possible to obtain DFS by replacing the
qgueue from BFS with another data structure ?

1. Yes
2. No

govote.at

Code 916362




Depth-First Search

Stack: 5)

Visit order:

stack contains 9) ‘ §)

start node
| 0) unvisited '0) queued Q visited




Depth-First Search

Stack: (5)

Visitorder: .~
0 3) U e
Step 1:
remove node g) 8)

from stack |
and visit it .
Q) unvisited (;_0) queued 0 visited




Depth-First Search

Stack: 5)

Visit order:

0 ) W ®

Step 2: -/ .
add adjacent nodes = | 9) 8)

to stack
Q) unvisited '\Q) queued Q visited

(only unvisited ones)




Breadth-First Search

Fast forward to the end

(demonstration on the board)



Depth-First Search

Stack: '

Visit order: ’ ‘

16 45 F ‘

72 8 9 3
'

0) unvisited '@ queued o visited



Complexity of BFS and DFS

* We only look at each edge once (twice for
undirected graphs)

* So we look at maximum |E| edges (2 x |E| for
undirected graphs)

 Complexity is therefore O(|E|) - for both
breadth-first and depth-first search



To Do

Read from the book:
+9.1-9.3
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Implement:
+ graphs in your favourite programming language

Fun with graphs:
+ famous graph problem: The Seven Bridges of Konigsberg
http://www.mathsisfun.com/activity/seven-bridges-konigsberg.html




