Lecture 6
Data Structures (DAT037)

Ramona Enache
(with slides from Nick Smallbone)

Graphs

A graph is a data structure consisting of nodes (or vertices)
and edges

An edge is a connection between two nodes

A (&)

; ®—0O

Nodes: A,B,C,D, E
Edges: (A, B), (A, D), (D, E), (E, C)

RICKMANSWORTH

RUBLW
MANOR

UXBRIDGE ACKENMAM
- a

WATFIORD JUNCTION
WATFORD (g sTat1
CAOXLLY QaRIN

BUSKEY AND OXMEY

MOOR PARK

& SANDY LOOGE CARPENDIRS PARK

NOATHWOOO MATCM IND ron PINNER

HEADATONE LANT

MARROWA WIALDSTON |

TH
now

STANMORL

CANONS PARS TOGwALL
BURNT OAK (wATLING)
COUNDALE

HENDON CINTRAL

KINGSBURY
NEASDEN
2

NORTH
wWIMBLEY

MARROW
MA; n
NORTHWICK
RAYNERS wi PARK
LANT HARZOW

e .2
MILLINGDON RUISLIP

NOATHEILDS

BOSTON =ANCR
OSTERLEY
HOUNSLOW £AST
HOUNSLOW CENTRAL
MOUNSLOW WY

TASTCOTE W

b L SOUTH HARROW
pSVOBURY miLL
pSUDSURY TOWN
p ALPIRTON
b PARK ROYAL
LATIMEA
RCAD
pwcaTa tALNG

wEST
AL TON
A

SOUTI ACTON
o, HAMMERSMITH
ATAMEIDAD
800

r
WEMBLEY
WEMBLLY ron SUODDURY
STONEBRIDGE PARX
HALLISDEN

DOLLIS Wil sALNy

GoLotns
GREEN

MAMPS

PARK WILLESDEN GREEN

ONDESBURY
WEST KAMPSTEAD grigizt
"] WILLESDIN JUNCTION [
RENSAL GRIIN
. QUEENS PARX
KILBUAN Pais
MAIDA YALE

WISTROURNL O WARWIOK AVENUE
PARK QAKX A\

NeGr 3TRELY
ENSINGION wYDE PARK CORNER

ENIOHTSSRIOSL
BACHIION

Nodes are stations
Edges are “bits of line”

HIGHBURY & 1SLINGTON

CANONBURY & IS5EX ROAD

X)) ouD sTREET

r—()
V “ ANGEL 1
DOM ALDERSGATI ARpioonsart
RE ’ugauin A

ﬂ‘!'n-\'
ST MARTS ALIN
)

]
|

SMADWILL
WAPPING o

v
TURNHAM RAVINSCORT
A g

\\\ GALIN /

Xtw SAROING

¢ REFERENCE
DISTRICT RAILWAY s M TROPOLITAN ALY
PAKIRLOO LINE e METROPOU TAN ALY

FERLAT MO Tl B O W
:’:&“x:, " LAST LONDON NAJLWAY s==

& MORDEN LINE | INTERCHANGE STATIONS O
CONTRAL LONDON ALY o UNDER CONSTAUCTION S 108

b LAy AU NLY
b SOUTHIELDS

h WIMBLEDON PARK

O wrairo0m

MORDIN

(Ll ROTHERMITHE
ACASTLE
SURALY DOCKs

|

L KENNINGTON

OvAL
STOCKWELL
CLAPHAM NOKTH
CLAPHAM COMMON
CLAPHAM SOUTH

NEw

L4
GATE CROSS

BALMAM
TRINITY ROAS (TOOTING 84C)
TOOTING BRCADWAY

COLLIENS WOOD
SOUTH WIMBLLDON (MEATON)

ROSS NIW

Graphs

Nodes are components

Edges are connections
v, ¢ |
- 0
1.590V §R1 Vour = 10 mV/©F
(Verar)
— L 2 ‘

CURVATURE

COMPENSATOR
CIRCUIT

More Graphs

* Graphs are used all over the place:
+ communications networks
+ social networks — Facebook, Linkedln, Google+
+ maps, transport networks, route finding

+ finding good ways to lay out components in an
integrated circuit

+ etc.

 Anywhere where you have entities, and
relations between them!

Graphs

Graphs can be either directed or undirected

* |n an undirected graph, an edge simply connects
two nodes

* |In a directed graph, one node of each edge is the
source and the other is the target (we draw an
arrow from the source to the target)

Graphs

Undirected graphs
+ transportation maps

+ friendship graph in social networks

Directed graph
+ follower’s graph in social networks
+ course prerequisite graph

Drawing Graphs

 We represent nodes as points, and edges as
lines — in a directed graph, edges are arrows:

A (& iALJ/B:)
OO @/ E—0©

V=1{A,B,C,D,E} V=1{A,B,C,D, E}
E={(A,B),(A,D), E ={(A,B), (B,A), (B, E), (D, A),
(C,E), (D, E)} (E, A), (&, C), (E, D)}

Drawing Graphs

* The layout of the graph is completely
irrelevant: only the nodes and edges matter

() (6) (4) (6)
(f' 1) (2) (3) (5)
—~ \
4
G\
3) \\
o ~
/// i (4 / (\2 Y \\0 >
(a)"
S

V={0,1,R%,3,4,5,6}
E =1{(0, 1),(0,%), (0,), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}

Weighted graphs

* In aweighted graph, each edge has a weight
associated with it

Ann Arbor
50 Igetroit
40 60 120 Cleveland 43¢ Pittsburgh
260 L 2 3 ;.
Toledo 320
Chicago® 148 \ss 150 .
‘;‘"" 180 Philadelphia
go'. Wayne
180 120
S 180 P
Indianapolis Columbus

A graph can be directed, weighted, neither or
both

Paths and Cycles

 Two vertices are adjacent if there is an
edge between them:

Ann A;bor
50 Detroit J:L

40 g0 ¥ :
60 Cleveland Pittsburgh
260 ¢ 120 s 130 s g
Toledo 320
Chicago® 148 - {s0 .
‘ort / 180 . .
Wayne | Philadelphia

$ 180 0

Indianapolis Columbus

Paths and Cycles

* |n a directed graph, the target of an edge is
adjacent to the source, not the other way
around:

Ais adjacent to D,
but Dismot
~ adjacenttoA

Paths and Cycles

* A multigraph has multiple edges between 2 nodes
(directed/undirected/weighted)

 Here adjacent nodes have at least 1 edge between

them \%I

pIatsen ‘

Brunns-
gatan |
Inarie- JZL |
n Chalmers /4
I
Wavrinskys

Plats,

S_

Paths and Cycles

A path is a sequence of vertices where each vertex is
adjacent to its predecessor:

Ann Arbor
) ’,‘“50_» Detroit
,. 40 |60_.*O 120 Cleveland 130 Pittsburgh
260 Q C
’ ‘Toledo
Chicago
148 155 150
. gFort ' . .
‘Vlayne Philadelphia

180 \, 120

180

Indianapolis Columbus

Paths and Cycles

* In a simple path, no node or edge appears twice,
except that the first and last node can be the same

Ann Arbor
'. 30 Detroit
40 P .
| 60 _ 120 Cleveland 130 Pittsburgh
260 ® ®
‘\Toledo

Chicago
155 150

Philadelphia

This path is

180 |
Indianapolis Columbus a Simple path

Paths and Cycles

* A cycleis a (non-trivial) simple path where the first
and last

nodes are the same

I Two cycles are the same, if they contain the same edges !

* A graph that contains a cycle is called cyclic,
otherwise it is called acyclic

Ann Arbor

s 50 Detroit

40 ®

| 60 120 Cleveland 130 Pittsburgh

260

oledo
320

Chicago & 248

gort
Wayne
180 120

®
80 Philadelphia

This path is a cycle,‘
and a simple path;
the graph is cyclic

180

®

Indianapolis Columbus

Question

* How many nodes are there in the smallest cycle that
you can find in the following snapshot of the
Vasttrafik map ?

1.1 L wx

Frihamnen ggy _ San
2.2

3.3 L | &/ % govote.at
4.4 ‘:;\ﬂ\ spuien] angspors | Code 442748

Paths and Cycles

* A graphis called connected if there is a path from
every node to every other node

) 8)

This graph is
connected §) .Z)
8) 9)

Paths and Cycles

* A graphis called connected if there is a path from
every node to every other node

~ (a) 5)

This graph is
not connected P
.) @) (7)

8) 9)

Paths and Cycles

* If a graphis unconnected, it still consists of
connected components

(4) (5)

" {4,5}isa " (6,7.8,9}isa |

connected connected
§) 'Z) ~ component

component

Paths and Cycles
..m,mmj::z:im—m_m P R Fredrik

Johansson
4 i\ frejohk
) line_engineer... ' “wDistributed) syste i @
chalmers.se

Agile_development_processes

Empirical_software_engineering
Embedded_system_design_project

Recaarc -o/w‘_spocial_eoue \
Advanced_col ’uw_gmphles Artificial Stelligence

More Graphs

A graph where there is an edge between any two
nodes is called a complete graph

Question

* How many cycles are there in the following complete
graph ?

1.4
2.5
3.6
4.7

govote.at

Code 683175

More Graphs

Let’s consider the following notation for graphs:

The graph G = (V,E) where
V —represents the set of vertices
E — represents the edges of the graph

When |E| is O(|V|”2) the graph is dense, otherwise it is
sparse
* Complete graphs are dense, because

|E| = |V]| (|]V] - 1) = maximum number of edges

Question

Is the following kind of graph dense ?

1. Yes
2. No

33

9% ee

mQQ

Implementing a Graph — Take 1

Adjacency lists
-keep a list of all nodes in the graph

- with each node, associate a list of all the nodes
adjacent to that nodes

Implementing a Graph — Take 1

Adjacency lists — directed graph

0 (1) 2 ,
L (0]{ -
(1]] |
[2]] ‘
y A > {:}
(3 {4 (5]l

Implementing a Graph — Take 1

Adjacency lists — undirected graph

Each edge (a, b)
appears twice -
once in a's list
and once in b's list

Implementing a Graph — Take 2

Adjacency matrix

- we use a 2-dimensional array
- for an unweighted graph, we use an array of booleans

ali][j] = true if there is an edge between node i and
node j

- for an undirected graph, ali][j] = a[j][i]

- for a weighted graph, the array contains weights instead
of booleans

- We can e.g. use an infinite value if there is no edge
between a pair of nodes

Implementing a Graph — Take 2

Adjacency matrix — weighted graph

Column

|| 21|31] 41| 15)
(0)—10 .3 (2) | [10] |09
~ ™ ' [110
09 087 10 Z. |10 2|12 | 10.3]1.0
! ' '
, ’ A 31| |06
(3)= 4 (5 F— | | !
1.0 N (4] 10|
' 0.5’ | (5] 0.5
Column
| |[e1] (1)) [2]{(3] | (4]
10 | |10 0.9
@) A0 | ’
on 2 z|[0]10| |10]0.3]08
09 7 03 \2) =1[2)] [10]| |05
L 0.5 3] |0.3]|0.5 1.0
(e T
4 - (4109 [0.6| [1.0]

Implementing a Graph — Best Way

Many graph algorithms have the form:

for each node u in the graph

for each node v adjacent to u
do something with edge (u, v)

With an adjacency list, we can just iterate through all nodes and edges in
the graph

- this gives a time complexity of O(|V| + |E|)
With an adjacency matrix, we must try each pair (u, v) of nodes to check if
there is an edge

- this gives a time complexity of O(|V|"2)

Winner:
+ adjacency lists for sparse graphs
+ unclear for dense graphs

Implementing a Graph — Best Way

* So:
- if the graph is sparse adjacency lists are better (common)
- if the graph is dense an adjacency matrix are better (rare)

What about memory consumption?

- An adjacency matrix needs space for |V|”2 values, so takes O(|V|"2)
memory

(but with a low constant factor because each value is just a bool)
- An adjacency list needs O(|V| + |E|) space
(but with a higher constant factor because of the node objects)

* Again depends on how sparse the graph is !

Graph Traversals

 Many graph algorithms involve visiting each node in
the graph in some systematic order

e The two commonest methods are:
+ breadth-first search
+ depth-first search

Breadth-First Search

* A breadth-first search (BFS) visits the nodes in the following
order:

- First the start node
- Then all nodes that are adjacent to the start node

- Then all nodes that are adjacent to those
-And soon ...

 We end up visiting all nodes that are k edges away from the
start node, before visiting any nodes that are k+1 edges away

Breadth-First Search

* Implementing BFS:
- we maintain a queue of nodes that we are going to visit next
- initially, the queue contains the start node
- we repeat the following process:
- remove a node from the queue
- visit it
- find all nodes adjacent to the visited node and add

them to the queue, unless they have been visited or added to
the queue already

Breadth-First Search

(olueue: 5)

Visit order:

Initially, "
queue contains 9) | 8)

start node
D Q)unvisited '0) queued 0 visited

Breadth-First Search

Queue: 53)

0 3) SO 1)
Step 1: 4
remove node :'_ 9) 8)

from queue |
and visit it - .
Q)unvisited (__0) queued Q visited

Breadth-First Search

;1u1eue: 5)

Visit order:

0 5 W w

add adjacent nodes = | g) 8)
to queue | |
(only unvisited ones)

;\ 0) unvisited 'Q) queued 6 visited

Breadth-First Search

?ueue: 5)

Visit order:
9 3

Step 1: N
remove node (9) §)

from queue |
and visit it -
| 0) unvisited 10) queued O visited

Breadth-First Search

Fast forward to the end

(demonstration on the board)

Breadth-First Search

Queue:

L

VlSlt order '
03124 .
67985

We reach step 1, but .
the queue is empty,
and we're finished!

/ Q) unvisited (Q) queued o visited

Depth-First Search

* Depth-first search is an alternative search
order that's easier to implement

* To do a DFS starting from a node:
- visit the node

- recursively DFS all adjacent nodes (skipping
any already-visited nodes)

* Much simpler ©

Question

* |s it possible to obtain DFS by replacing the
qgueue from BFS with another data structure ?

1. Yes
2. No

govote.at

Code 916362

Depth-First Search

Stack: 5)

Visit order:

stack contains 9) ‘ §)

start node
| 0) unvisited '0) queued Q visited

Depth-First Search

Stack: (5)

Visitorder: .~
0 3) U e
Step 1:
remove node g) 8)

from stack |
and visit it .
Q) unvisited (;_0) queued 0 visited

Depth-First Search

Stack: 5)

Visit order:

0) W ®

Step 2: -/ .
add adjacent nodes = | 9) 8)

to stack
Q) unvisited '\Q) queued Q visited

(only unvisited ones)

Breadth-First Search

Fast forward to the end

(demonstration on the board)

Depth-First Search

Stack: '

Visit order: ’ ‘

16 45 F ‘

72 8 9 3
'

0) unvisited '@ queued o visited

Complexity of BFS and DFS

* We only look at each edge once (twice for
undirected graphs)

* So we look at maximum |E| edges (2 x |E| for
undirected graphs)

 Complexity is therefore O(|E|) - for both
breadth-first and depth-first search

To Do

Read from the book:
+9.1-9.3

- AN
URAL X7
R

o
4 Yo

Implement:
+ graphs in your favourite programming language

Fun with graphs:
+ famous graph problem: The Seven Bridges of Konigsberg
http://www.mathsisfun.com/activity/seven-bridges-konigsberg.html

