Lecture 6 Data Structures (DAT037)

Ramona Enache
(with slides from Nick Smallbone)

A **graph** is a data structure consisting of *nodes* (or vertices) and *edges*

An edge is a connection between two nodes

Nodes: A, B, C, D, E

Edges: (A, B), (A, D), (D, E), (E, C)

More Graphs

- Graphs are used all over the place:
 - + communications networks
 - + social networks Facebook, LinkedIn, Google+
 - + maps, transport networks, route finding
- + finding good ways to lay out components in an integrated circuit
 - + etc.
- Anywhere where you have entities, and relations between them!

Graphs can be either directed or undirected

 In an undirected graph, an edge simply connects two nodes

 In a directed graph, one node of each edge is the source and the other is the target (we draw an arrow from the source to the target)

Undirected graphs

- + transportation maps
- + friendship graph in social networks

Directed graph

- + follower's graph in social networks
- + course prerequisite graph

Drawing Graphs

 We represent nodes as points, and edges as lines – in a directed graph, edges are arrows:

$$V = \{A, B, C, D, E\}$$

 $E = \{(A, B), (A, D),$
 $(C, E), (D, E)\}$

$$V = \{A, B, C, D, E\}$$

 $E = \{(A, B), (B, A), (B, E), (D, A),$
 $(E, A), (E, C), (E, D)\}$

Drawing Graphs

 The layout of the graph is completely irrelevant: only the nodes and edges matter

$$V = \{0, 1, 2, 3, 4, 5, 6\}$$

 $E = \{(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)\}$

Weighted graphs

 In a weighted graph, each edge has a weight associated with it

 A graph can be directed, weighted, neither or both

 Two vertices are adjacent if there is an edge between them:

 In a directed graph, the target of an edge is adjacent to the source, not the other way around:

 A multigraph has multiple edges between 2 nodes (directed/undirected/weighted)

Here adjacent nodes have at least 1 edge between

them

 A path is a sequence of vertices where each vertex is adjacent to its predecessor:

 In a simple path, no node or edge appears twice, except that the first and last node can be the same

 A cycle is a (non-trivial) simple path where the first and last

nodes are the same

- ! Two cycles are the same, if they contain the same edges!
- A graph that contains a cycle is called cyclic, otherwise it is called acyclic

Question

 How many nodes are there in the smallest cycle that you can find in the following snapshot of the Västtrafik map?

1. **1**

2. **2**

3. **3**

4. 4

govote.at Code 442748

 A graph is called connected if there is a path from every node to every other node

 A graph is called connected if there is a path from every node to every other node

 If a graph is unconnected, it still consists of connected components

Masterexamensarbete vid Data- ... Fault-tolerant_computer_systems Masterexamensarbete vid Data- ... Computer security Software_evolution_project Network security Cryptography Requirements engineering Language-based_security Distributed systems2 Software product line engineer... Distributed systems Software project and quality m... Energy aware computing Computer networks Research internship Advanced_software_architecture ICT_Support_for Adaptiveness_a... Agile development processes Empirical_software_engineering Advanced topics in computer sy... Embedded system design project Autonomous and Cooperative Veh... Discrete optimization Parallel and distributed real-... Project in computer science Algorithms2 Computational methods in bioin... Advanced_topics in_electronic Mixed-signal system design **Algorithms** Methods_for_electronic_system_ Algorithms for machine learnin... Real_time_systems Model-based testing Frontiers of programming langu... Introduction to electronic sys... Research-oriented special course Artificial_intelligence Advanced_computer_graphics Parallel computer organization... Computer graphics Computer architecture Programming language technology Parallel functional programming Logic_in_computer_science Software engineering using for., Compiler construction Model-driven engineering Types for programs and proofs Advanced_functional_programming

Models of computation

Fredrik
Johansson
frejohk
@

chalmers.se

More Graphs

 A graph where there is an edge between any two nodes is called a complete graph

Question

 How many cycles are there in the following complete graph?

- 1.4
- 2. 5
- 3. **6**
- 4. 7

govote.at Code 683175

More Graphs

Let's consider the following notation for graphs:

The graph G = (V,E) where

V – represents the set of vertices

E – represents the edges of the graph

When |E| is $O(|V|^2)$ the graph is **dense**, otherwise it is **sparse**

Complete graphs are dense, because

|E| = |V| (|V| - 1) - maximum number of edges

Question

Is the following kind of graph dense?

- 1. Yes
- 2. No

govote.at Code 649102

Adjacency lists

- -keep a list of all nodes in the graph
- with each node, associate a list of all the nodes adjacent to that nodes

Adjacency lists – directed graph

Adjacency lists – undirected graph

Adjacency matrix

- we use a 2-dimensional array
- for an unweighted graph, we use an array of booleans
 a[i][j] = true if there is an edge between node i and node j
- for an undirected graph, a[i][j] = a[j][i]
- for a weighted graph, the array contains weights instead of booleans
- We can e.g. use an infinite value if there is no edge between a pair of nodes

Adjacency matrix – weighted graph

Column						
Row		[0]	[1]	[2]	[3]	[4]
	[0]		1.0			0.9
	[1]	1.0		1.0	0.3	0.6
	[2]		1.0		0.5	
	[3]		0.3	0.5		1.0
	[4]	0.9	0.6		1.0	

Implementing a Graph – Best Way

Many graph algorithms have the form:

```
for each node u in the graph
for each node v adjacent to u
do something with edge (u, v)
```

- With an adjacency list, we can just iterate through all nodes and edges in the graph
 - this gives a time complexity of O(|V| + |E|)
- With an adjacency matrix, we must try each pair (u, v) of nodes to check if there is an edge
 - this gives a time complexity of $O(|V|^2)$

Winner:

- + adjacency lists for sparse graphs
- + unclear for dense graphs

Implementing a Graph – Best Way

- So:
 - if the graph is sparse adjacency lists are better (common)
 - if the graph is dense an adjacency matrix are better (rare)
- What about memory consumption?
- An adjacency matrix needs space for |V|^2 values, so takes O(|V|^2) memory

(but with a low constant factor because each value is just a bool)

- An adjacency list needs O(|V| + |E|) space
 (but with a higher constant factor because of the node objects)
- Again depends on how sparse the graph is!

Graph Traversals

 Many graph algorithms involve visiting each node in the graph in some systematic order

- The two commonest methods are:
 - + breadth-first search
 - + depth-first search

Breadth-First Search

- A breadth-first search (BFS) visits the nodes in the following order:
 - First the start node
 - Then all nodes that are adjacent to the start node
 - Then all nodes that are adjacent to those
 - And so on ...
- We end up visiting all nodes that are k edges away from the start node, before visiting any nodes that are k+1 edges away

Breadth-First Search

- Implementing BFS:
 - we maintain a queue of nodes that we are going to visit next
 - initially, the queue contains the start node
 - we repeat the following process:
 - remove a node from the queue
 - visit it
- find all nodes adjacent to the visited node and add them to the queue, **unless** they have been visited or added to the queue already

Breadth-First Search

0 unvisited

Queue:

0

Visit order:

Initially, queue contains start node

0 queued

visited

Queue:

Visit order:

0

Step 1: remove node from queue and visit it

Queue:

3 1

Visit order:

0

Step 2: add adjacent nodes to queue (only unvisited ones)

Queue:

1

Visit order:

0 3

Step 1: remove node from queue and visit it

Fast forward to the end (demonstration on the board)

unvisited

Queue:

Visit order:

0 3 1 2 4

6 7 9 8 5

We reach step 1, but the queue is empty, and we're finished!

- Depth-first search is an alternative search order that's easier to implement
- To do a DFS starting from a node:
 - visit the node
- recursively DFS all adjacent nodes (skipping any already-visited nodes)
- Much simpler ©

Question

- Is it possible to obtain DFS by replacing the queue from BFS with another data structure?
- 1. Yes
- 2. No

govote.at Code 916362

0 unvisited

Stack:

0

Visit order:

Initially, stack contains start node

0 queued

visited

Stack:

Visit order:

0

Step 1: remove node from stack and visit it

Stack:

3 1

Visit order:

0

Step 2: add adjacent nodes to stack (only unvisited ones)

Fast forward to the end (demonstration on the board)

Stack:

Visit order:

0 1 6 4 5

7 2 8 9 3

0 unvisited

0 queued

0 visite

Complexity of BFS and DFS

- We only look at each edge once (twice for undirected graphs)
- So we look at maximum |E| edges (2 × |E| for undirected graphs)
- Complexity is therefore O(|E|) for both breadth-first and depth-first search

To Do

Read from the book:

$$+9.1 - 9.3$$

Implement:

+ graphs in your favourite programming language

Fun with graphs:

+ famous graph problem: **The Seven Bridges of Königsberg**http://www.mathsisfun.com/activity/seven-bridges-konigsberg.html