Lecture 5
Data Structures (DAT037)

Ramona Enache
(with slides from Nick Smallbone)

Hash Tables

A hash table implements a set or map

The plan:

- take an array of size k

- define a hash function that maps values to indices in
the range {0,...,k-1}

Hash Tables — Take 1

* Example:

if the values are integers, hash function might
be

h(n)=n mod k

* To find, insert or remove a value x, put it in
index h(x) of the array

Hash Tables — Take 1

* Implementing a set of integers, suppose we
take a hash table of size 5 and a hash function
h(n) = n mod 5

The table contains 5, 17 and 8 | O 1 | 2 | 3 | 4
already > 17_ 8 |

Inserting 14 gives: 01 2 3 4
5 17 8 14

Hash Tables — Take 1

 This naive idea doesn't work.
What if we want to insert 12 into the set?

e We should store 12 at index 2, but there's
already something there!

 This is called a collision

Problems with Hash Tables — Take 1

1. Sometimes two values have the same hash —
this is called a collision

Two ways of avoiding collisions, chaining and probing — we
will see them later

2. The hash function is specific to a particular size
of array

Allow the hash function to return an arbitrary integer and
then take it modulo the array size:

h(x) = x.hashCode() mod array.size

Chaining: Hash Tables — Take 2

* |nstead of an array of elements, have an array

of linked lists
* To add an element, calculate its hash and
insert it into the list at that index

012 34

\ vy
5 17 8

Chaining: Hash Tables — Take 2

* |nstead of an array of elements, have an array

of linked lists
* To add an element, calculate its hash and
insert it into the list at that index

01234

Inserting 12

j Vi into the table

5 17 8
v
2

1

Chaining: Hash Tables — Take 2

* Performance

e |f the linked lists are small, chained hash tables are fast
* If the size is bounded, operations are O(1) time

But if they get big, everything gets slow ®

* Observation: the array must be big enough

e If the hash table gets too full (a high load factor), allocate a
new array of about twice the size (rehashing)

Chaining: Hash Tables — Take 2

* Consider a hash table of size 2216 and the sequence 1, 10,
100...10”n. The hash function is h(x) = x mod 2/16.

What is the problem with this ?
1. The odd positions will never be filled
2. The function is not efficiently computable

3. One of the cells will contain most of the elements for N large
enough

4. All of the above

Hash Functions

* Observation 2: the hash function must evenly distribute the
elements!

* |f everything has the same hash code, all operations are O(n)

Hash Functions

 What is wrong with the following hash function on strings?

Add together the character code of each character in the string
(character code of a=97,b=98,c=99etc.)

Hash Functions

Maps e.g. bass and bart to the same hash code! (s+s=r +t)
Maps creative and reactive to the same hash code (anagrams)

Similar strings will be mapped to nearby hash codes — does
not distribute strings evenly !

Even though collisions are hard to avoid, we want, either a
good distribution or to have a better control over what gets to
have the same hash code!

Hash Functions

An idea: map strings to integers as follows:
s - 128"n-1 + s1 - 128"n-2 + ... + sn-1
where si is the code of the character at index i

If all characters are ASCII (character code 0 — 127), each string
is mapped to a different integer!

Similar to representation of integers in binary!

Hash Functions

* In many languages, when calculating

s0 «128"n-1 +s1 +*128"n-2 +...+sn-1,

e the calculation happens modulo 2732 (integer overflow)

* So the hash will only use the last few characters!

* Solution: replace 128 with 37 s0O -:37An-1 +s1 -:37°n-2 +...+sn-1

 Use a prime number to get a good distribution This is what
Java uses for strings

Linear Probing: Hash Tables — Take 3

Another way of dealing with collisions is linear probing

* Uses an array of values, like in the naive hash table

* If you want to store a value at index i but it's full, store it in
index i+1 instead!

e If that's full, try i+2, and so on
e ..if you get to the end of the array, wrap around to O

Linear Probing: Hash Tables — Take 3

uestion
N | ton bickHarry sampere [
What happens if we use —
Tom" 84274 4
linear probing for the "pick™ | 2129869 4
. [0] "Harry" 69496448 3
following example ? {%} "sam" 82879 4
[3] "Pete" 2484038 3
[4]
1. Dick, Sam, Pete, Harry, Tom
2. Sam, Pete, Dick, Harry, Tom
3. Dick, Pete, Harry, Sam, Tom
4. Tom, Dick, Sam, Harry, Dick

Code 28871

Linear Probing: Hash Tables — Take 3

Answer:
Dick Harry SamPete Name hashCod inashCode()
e() %5
"Tom" 84274 4
"Dick" 2129869 4
0. "Harry" 69496448 3
.1- ” 1]
% Sam 82879 4
3 "Pete" 2484038 3
4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
"Tom" 84274 4
"Dick" 2129869 4
0 "Harry" 69496448 3
1) o
S "Sam' 82879 4
3 "Pete" 2484038 3
Dickf4f Tom

Linear Probing: Hash Tables — Take 3

Answer:
"Tom" 84274 4
"Dick" 2129869 4
0] | 'Dick "Harry" 69496448 3
1]
oY "Sam" 82879 4
3. "Pete" 2484038 3
4 Tom

Linear Probing: Hash Tables — Take 3

Answer:
SamPete Name hashCod ilaShCOde()
e() %5

"Tom" 84274 4
"Dick" 2129869 4

:O: DiCk "Harry" 69496448 3

.1. " 1]

o% Sam 82879 4

3] Harry "Pete" 2484038 3

4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
hashCod | hashCode()
"Tom" 84274 4
"Dick" 2129869 4
0] Dick "Harry" 69496448 3
.1- " 1]
o% Sam 82879 4
3] Harry "Pete" 2484038 3
Sam [4] | Tom

Linear Probing: Hash Tables — Take 3

Answer:
hashCod | hashCode()
"Tom" 84274 4
"Dick" 2129869 4
Sam [0] | Dick "Harry" 69496448 3
.1- " "
o% Sam 82879 4
3] Harry "Pete" 2484038 3
4]| Tom

Linear Probing: Hash Tables — Take 3

Answer:
hashCod | hashCode()
Pet
.
"Tom" 84274 4
"Dick" 2129869 4
0] Dick "Harry" 69496448 3
1] Sam . .
) Sam 82879 4
3] Harry "Pete" 2484038 3
4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
hashCod | hashCode()
Pet
.
"Tom" 84274 4
"Dick" 2129869 4
0] Dick "Harry" 69496448 3
1] Sam . .
) Sam 82879 4
3] Harry "Pete" 2484038 3
4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
Name hashCod | hashCode()
e() %5
"Tom" 84274 4
"Dick" 2129869 4
O] Dick "Harry" 69496448 3
1] Sam -
S Sam 82879 4
Pete [3] Harry "Pete" 2484038 3
4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
Name hashCod | hashCode()
e %5
"Tom" 84274 4
"Dick" 2129869 4
0] Dick "Harry" 69496448 3
'1]| Sam R
o% Sam 82879 4
3] Harry "Pete" 2484038 3
Pete [4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
Name hashCod | hashCode()
e() %5
"Tom" 84274 4
"Dick" 2129869 4
Pete [0] | Dick "Harry" 69496448 3
1] Sam "
> Sam 82879 4
3] Harry "Pete" 2484038 3
4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
Name hashCod | hashCode()
0 %5
"Tom" 84274 4
"Dick" 2129869 4
O] Dick "Harry" 69496448 3
Pete [1]| Sam -
o3 Sam 82879 4
3] Harry "Pete" 2484038 3
4] Tom

Linear Probing: Hash Tables — Take 3

Answer:
Name hashCod | hashCode()
e() %5
"Tom" 84274 4
"Dick" 2129869 4
0] Dick "Harry" 69496448 3
:1: SEi "Sam" 82879 4
2] | Pete
3] Harry N Qanad —2_
4] Tom | To find “Pete” (hash 3),
you must start at index 3
and work your way all the

way around to index 2

Linear Probing: Hash Tables — Take 3

Similar things will happen with our previous example
10”n with hash code 0!

Linear Probing: Hash Tables — Take 3

 To find an element under linear probing:
- Calculate the hash of the element, i

- Look at array|i]
- If it's the right element, return it!

- If there's no element there, fail
- If there's a different element there, search again at index
(1+1) % array.size

 We call a group of adjacent non-empty indices a cluster

Linear Probing: Hash Tables — Take 3

* Deleting with linear probing
- we can’t just delete an element ®

hashCod | hashCode()
e() %5

"Tom" 84274 4

"Dick" 2129869 4
[0O]| Dick "Harry" 69496448 3
1] Sam "sam" 82879 4
[;%.] Hgiii "Pete" 2484038 3
4] Tom

| If we remove Harry,
Pete will be in the wrong cluster
and we won't be able to find him

Linear Probing: Hash Tables — Take 3

Instead we mark it as deleted (lazy deletion)

hashCod | hashCode()

"Tom" 84274 4

"Dick" 2129869 4
0] | Dick "Harry" 69496448 3
1] Sam "Sam" 82879 4
4] | Tom

The search algorithm will
skip over XXXXXX

Linear Probing: Hash Tables — Take 3

e |t's useful to think of the invariant here:

* Linear chaining: each element is found at the index given by
its hash code

* Linear probing: each element is found at the index given by its
hash code, or a later index in the same cluster

* Naive deletion will split a cluster in two, which may break the
invariant

* Hence the need for an empty value that does not mark the
end of a cluster

Linear Probing: Hash Tables — Take 3

Linear probing performance

* Toinsert or find an element under linear probing, you might
have to look through a whole cluster of elements

* Performance depends on the size of these clusters:
- Small clusters — expected O(1) performance

- Almost-full array — O(n) performance
- If the array is full, you can't insert anything!

* Thus you need:
- to expand the array and rehash when it starts getting full
- a hash function that distributes elements evenly
 Same situation as with linear chaining!

Linear Probing vs Linear Chaining

* Inlinear chaining, if you insert several elements with
the same hash i, those elements become slower to
find

* Inlinear probing, elements with hash i+1, i+2, etc.,

will belong to the same cluster as element i, and will
also get slower to find

* |If the load factor is too high, this tends to result in
very long clusters in the hash table —a phenomenon
called primary clustering

Linear Probing vs Linear Chaining

Linear probing is more sensitive to high load

On the other hand, linear probing uses less memory for a
given load factor, so you can use a bigger array than you

would with chainin g #comparisons #comparisons

load factor

linear linear
(Z::‘:;:;;t:)/ p(robing) clSaining)

0 % 1.00 1.00
25 % 1.17 1.13
50 % 1.50 1.25
75 % 2.50 1.38
85 % 3.83 1.43
90 % 5.50 1.45
95 % 10.50 1.48
100 % — 1.50
200 % — 2.00

Hash Table Design

Several details to consider:
- Rehashing: resize the array when the load factor is too high
- A good hash function: need an even distribution
- Collisions: either chaining or probing

Hash tables have expected (average) O(1) performance if the
hash function is random (there are no patterns) — but it's
normally not!

Nevertheless, performance is O(1) in practice with decent
hash functions.

So — theoretical foundations a little shaky, but very good
practical performance ©

Implementing Hash Tables in Java

* Hashtable
- synchronized
- more control over hashing process
- legacy class — use ConcurrentHashMap instead!

 HashMap
- unsynchronized
- automatic rehashing

e java.util.Objects.hash.
public int hashCode() {

return Objects.hash(fieldl, field2, field3); }

Implementing Hash Tables in Haskell

 Data.Hashtable
- uses linear probing
- 10 monad — not pure
- mutable data structure — insert/deletion

* Not a hash table — Data.Map
- based on balanced binary trees
- persistent data structure

Hash Functions in the Real World

e MurmurHash http://en.wikipedia.org/wiki/MurmurHash

* CityHash http://en.wikipedia.org/wiki/CityHash

e Various hash functions from Google:
com.google.common.hash.

To Do

Read from the book
+5.1-5.6

Extra reading:

+ not in exam/dugga: Perfect Hashing (5.7.1),
Universal Hashing (5.8)

Implement:
+ hash tables in your favourite programming language

