Lecture 3
Data Structures (DAT037)

Ramona Enache
(with slides from Nick Smallbone)

Abstract Datatype (ADT)

ADT = mathematical model of a data type with a certain
behaviour

Stacks

A stack — stores a sequence of values

Main operations

- push (x) —add value x to the stack
- pop () —remove the most-recently-pushed value

from the stack

LIFO: last in first out

-value removed by pop is always the one that was
pushed most recently

Stacks

* Analogy for LIFO: stack of plates

* Can only add or remove plates at the top! You
always take off the most recent plate

Stacks

e Stacks are used everywhere!

* Example: call stack —whenever you call a
function or method, the computer has to
remember where to continue after the
function returns — it does this by pushing
where it had got to onto the call stack

Implementing stacks in Haskell

type Stack a = ?2?2?

push :: a — Stack a — Stack a
pop :: Stack a — Stack a
empty :: Stack a — Bool

[better API:

pop :: Stack a — Maybe (a, Stack a)]

Implementing stacks in Haskell

type Stack a = [a]

push :: a — Stack a — Stack a
push X xXs = X:Xs

pop :: Stack a — Stack a

pop (X:xXs) = XS

empty :: Stack a — Bool

empty [] = True

empty (X:xXs) = False

Implementing stacks in Haskell

In Haskell we don’t need to implement a special data
type for stacks, as we can use lists instead!

Implementing stacks in Java

* ldea: use a dynamic array!
- push: add a new element to the end of the array

- pop: decrease size by 1
- empty?: is size 0?

 Complexity: all operations have amortised O(1) complexity

- Means: although one push may take O(n) time (if the
array needs to be copied), this happens rarely enough not to
affect the complexity of the whole sequence of operations

- Formally means: n operations take O(n) time

Queues

A queue is similar to a stack:

- enqueue(x) — add value x to the queue

- dequeue() — remove earliest-added value
Difference: FIFO (first in first out)!

Value dequeued is always the oldest one that's still in the
queue

Used all over the place — not quite as often as stacks

Example: controlling access to shared resources in an
operating system, e.g. a printer queue

Queues

* Analogy for FIFO: a queue!

* The first person to enter the queue is the first person to leave

Implementing queues in Java

* Oneidea: a dynamic array as before
- enqueue(x): add x to the end of the dynamic array
- dequeue(): return first element of array...
...but how to remove it?

Question

 What is the time complexity of dequeue implemented in this
way ?

a) O(1)
b) O(log N)
c) O(N)

govote.at

Code 285116

Implementing queues in Java — Take 2

Implement a queue as an array, but keep two indices into the
array:

-rear: the index where we enqueue elements
-front: the index where we dequeue elements

Compare with stacks, where we had an array plus one index
(the top of the stack)

To enqueue an element, increment rear and put the new
element there

To dequeue, take the element from front and increment front

Question

* What is the problem with this implementation ?

a) repeated insertions/deletions
b) complexity of enqueue
c) complexity of dequeue

govote.at

Code 504731

Implementing queues in Java — Extra

Queues as circular arrays

Problem: when rear reaches the end of the array, we can't
enqueue anything else

Idea: circular array

- when rear reaches the end of the array, put the next element
atindex 0 —and setrearto O

- next after that goes at index 1 front wraps around in the
same way

Implementing queues in Haskell

type Queue a = ?22?27?

enqueue :: a — Queue a — Queue a
dequeue :: Queue a — (a, Queue a)
empty :: Queue a — Bool

[better API:
dequeue :: Queue a — Maybe (a, Queue a)]

Implementing queues in Haskell

type Queue a = [a]

enqueue :: a — Queue a — Queue a
enqueue X Xs = Xs++[X]

dequeue :: Queue a — (a, Queue a)
dequeue (x:xXs) = (X, Xs)

empty :: Queue a — Bool

empty [] = True

empty (X:xXs) = False

Implementing queues in Haskell — Take 2

data Queue a = Queue { front :: [a], rear :: [a] }
deriving Show

empty :: Queue a
empty = Queue [] []

enqueue :: a -> Queue a -> Queue a
enqueue X (Queue xXs ys) = Queue Xs (X:yYS)
dequeue :: Queue a -> (a, Queue a)
dequeue (Queue [] []) = error "empty queue”
dequeue (Queue (X:Xs) ys) = (X, Queue Xs ys)
dequeue (Queue [] ys) = dequeue q

where

qd = Queue (reverse ys) |[]

Stacks and Queues in practice

Your favourite programming language should have a library module
for stacks and queues

Java: use java.util.Deque<E> — provides addFirst/Last, removeFirst/
Last methods

For using as a queue, provides add = addFirst, remove = removelast
For using as a stack, provides push = addFirst, pop = removeFirst

Note: Java also provides a Stack class, but this is deprecated — don't
use it

Haskell: instead of a stack, just use a list

For queues, use also Data.Sequence — a general- purpose sequence
data type

Linked Lists

* Inserting and removing elements in the middle of a dynamic
array takes O(n) time

(though inserting at the end takes O(1) time)

(and you can also delete from the middle in O(1) time if you
don't care about preserving the order)

* Alinked list supports inserting and deleting elements from
any position in constant time

e But it takes O(n) time to access a specific position in the list

Linked Lists

* Main operations on Linked Lists:

- add a new node (beginning/middle)
- remove a node (beginning/middle)
- iterate

- access a hode

Singly-Linked Lists

* Asingly-linked list is made up of nodes, where each node
contains:

- some data (the node's value)
- a link (reference) to the next node in the list

The list also has a special header node |

class Node<E>

{ E data; E data [KO>—
Node<E> next; } next

Singly-Linked Lists - Example

Linked-list representation of the list
[“Tom”, “Dick”, “Harry”, ‘(Sam’,]:

next = |

LiSt itself iS value = "Tom" value = "Dick"

just a reference
to the first node

Doubly-Linked Lists

In a singly-linked list you can only go forwards through the list:

If you're at a node, and want to find the previous node, too bad ®
Only way is to search forward from the beginning of the list

In a doubly-linked list, each node has a link to the next and the
previous nodes

You can in O(1) time:
- go forwards and backwards through the list
- insert a node before or after the current one
- modify or delete the current node
The “classic” data structure for sequential access

Doubly-Linked Lists - Example

" Each node links to
the next and the
previous node

head = |]

tail L —

A - \

K Y
>

The list itself
links to the first
| and last nodes ||

Implementing Linked Lists in Java

* LinkedList<E> class
- generic doubly-linked lists
- implements all linked lists + queue operations

Or

Make your own

Example

 Delete node from double-linked list (3.5)

p.prev.next = p.next
p.next.prev = p.prev
—
Afi: >

<~

L A______/
p

Example
* Insert node in double-linked list (3.5)
Node newNode = new Node(x,p.prev,p) //1,2

p.prev.next = newNode; //3

p.prev = newNode; //4

prev

Implementing Linked Lists in Haskell

Singly-linked lists
- [a] (normal Haskell list)
- two type of cells — null (end cell) and cons cells
- a list is represented by the pointer to the first cell

Example:
[3,4,5] — Cons 3 (Cons 4 (Cons 5 Null))
1:2:xs — Cons 1 (Cons 2 xs)

Implementing Linked Lists in Haskell

* Ordinary Haskell lists can’t be updated (persistent data
structure)

« When we add an element to a list, the old list stays (until it’s
garbage collected)

* Pros

- we don’t need to copy lists

- parallel programming can be implemented more easily
* Cons

- some operations could be less effective

* Persistent data structures could be implemented in Java also!

To Do

Read from the book
+ linked lists, stacks, queues (Chapter 3)

Implement:
+ stacks/queues/linked lists in your favourite programming language

Use ADTs for applications:
+ closing brackets using stacks

+ represent polynomials as linked lists and implement basic
operations

+ implement a queue with two stacks

Send your lab before November 12th, 23:59

Next time — 14/11

Guest lecturer — Nils Anders Danielsson

Topic - Priority queues (heaps), binary heaps,
leftist heaps

