Lecture 2
Data Structures (DAT037)

Ramona Enache
(with slides from Nick Smallbone)

Update on complexity issue

for (i=0; i<n; 1i++)

for (3 =0; j<n; Jj++)
if (a[i][J]==0) then
for (11=0; il<n; 11++)
for (j1=0; jl<n; Jjl++)
if (a[il][3j1] ==0 && (il '= 1 || J1 '= 9))
then return O0;
return 1;

Cases:

- no zero: n*2 comparisons (all false)
- one zero: <= n"2 comparisons(all false, except the last — find the zero) + n*2

comparisons (all false)
- at least two zeros < n*2 comparisons (all false, except the last — find 15t zero) +

<= n”"2 comparisons (all false, except the last — find 2"d zero)

Update on complexity issue

Best case - O(1)
first two elements are O
Worst case O(n”2)
~2n”2 steps (last element is O, rest are not)

T(n) is O(n"2)

Sorting

5 3 9 2 8 7 3 2 1 4

112,23/ 3|4,5 7,89

Why Sorting ?

* Easier to perform further operations on a
sorted array

| Remember the min problem from last time!
O(1) — sorted array
O(N) — unsorted array

Why Sorting ?

e Easier to perform further operations on a
sorted array

+ searching: O(N) vs O(log N)

+ finding duplicates: O(N”2) vs O(N)

Sorting

* Most sorting algorithms are based on
comparisons

+ they can be used for any kinds of
elements

- more specialized input is easier to
optimize ->

Insertion Sort

Insertion Sort

* Imagine that someone is dealing you cards

* Whenever you get a new card, you put it into
the right place in your hand

Insertion Sort

e Basic algorithm (7.2.2)

for (1 = 0; 1 < v.length; 1++) {
tmp = v[i];
for (j=1i; j3>0 && tmp < al[j-11; J--)
alj] = alg-11];
alj] = tmp ;

Example

Sorting 5 3 9 2 8
Start by “picking up” the 5:

5

Example

5 3 9 2 8

Insert the 3 into the correct place:
3 5 9 2 8

Example

3 5 9 2 8

Insert the 9 into the correct place:
3 5 9 2 8

Example

3 5 9 2 8

Insert the 2 into the correct place:
2 3 5 9 8

Example

2 3 5 9 8

Insert the 8 into the correct place:
2 3 5 8 9

Intuition

 For each iteration with i, we assume that v is
sorted between 0 and i-1 (not necessarily the
final order from the array)

* We add v|i] so that v is sorted between 0 and
i, by moving the larger elements 1 position to

the right

Complexity

 The inner loop (with j) takes at most |
iterations each time

T(N)<=1+2+...(N-1) = N(N-1)/2
So, T(N) is O(N~2)

Complexity

e Best case scenario — O(N)

Why ?

Question

* Which of the arrays fall in the best-case
scenario ?

a) [1,2,3,4]
b) [2,4,1,3]
c) [4,3,2,1]
d) [1,3,2,4]

govote.at

code 192509

Question

* Which of the arrays fall in the worst-case
scenario ?

a) [1,2,3,4]
b) [2,4,1,3]
c) [4,3,2,1]
d) [1,3,2,4]

govote.at

Code 789176

Merge sort

We can merge two sorted lists into one in
linear time:

235\89 112 34*7

VN N TN
1 020 2 B3N 3 | 4 B 7 Bg e

Merge sort

* Split the list into 2 equal parts
* Recursively merge sort the 2 parts
* Merge sorted lists together

Merge sort

1. Split the list into two equal parts

5 3 9 2 8 7 3 2 1 4

SSRGS 7 3| 2 | 1

Merge sort

2. Recursively mergesort the two parts

/7 3 2 1

s[3fe]z]s
! | |
2[3]s]e]s

Merge sort

3. Merge the two sorted lists together

Merge sort

mergeSort (v[], tmp[], left, right) {
1f (left < right) {
center = (left + right)/2;
mergeSort (v, tmp, left, center);
mergeSort (v, tmp, center+l, right);
merge (v, tmp, left, center+l, right);

Merge sort

merge (v[], tmp[], leftPos, rightPos, rightEnd) {
leftEnd = rightPos - 1;

tmpPos = leftPos;
numElems = rightEnd - leftPos + 1 Merge loop

while (leftPos <= leftEnd && rightPos <= rightEnd)
if (v[leftPos] < v[rightPos]) tmp[tmpPos++]= v[leftPos]++;

else tmp[tmpPos++] = v[rightPos++];
while (leftPos <= leftEnd)

tmp [tmpPos++] = v[leftPos++]; Add remaining elements
while (rightPos <= rightEnd)

tmp [tmpPos++] = v[rightPos++];

for (i=0; i<numElems; i++, rightEnd--) Copy back to originalarray
v[rightEnd] = tmp[rightEnd]

Complexity of Merge sort

merge is O(N)
mergeSort is O(?)

Complexity of Merge sort

Let T(N) be the complexity of merge sort
T(1) =1
T(N) =N+ 2T(N/2)

Complexity of Merge sort

T(N) = N + 2T(N/2)
=N+ 2(N/2 +2(T/4)) =2N + 4T(N/4)

N

Q\ T(N) = kN + 2AkT(N/2/k)
fork>=1, k<=log N

Prove it

by induction!

Complexity of Merge sort

for k =1log N
T(N/272k)=T(1) =1
So
T(N)=Nlog N+ 1=>T(N)is O(N log N)

For N I=2”AN, k= ceil (log N)

Complexity of Merge sort

e best and worst case complexity — O(N log N)
* notin place — O(N) extra space (tmp)

* only sequential access to the list — good for
functional programming

Dynamic Arrays

A dynamic array is an array which can be
resized.

* |t contains a variable for storing the size of
the used part of the array

* add copies the array when it gets full but
doubles the size of the array each time

Dynamic Arrays

Dynamic arrays provide

- indexing — O(1)

- insert/delete at first — O(N)
- insert/delete after — O(1)

Dynamic Arrays

Dynamic arrays in Java
-ArraylList
- reading elements sequentially from a
file
-StringBuilder
- appending strings efficiently

Complexity of recursive programs

Divide and Conquer — split the problem into
smaller instances of the same problem, solve
them and combine the result

Complexity of recursive programs

To solve this...

g

Complexity of recursive programs

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions

Complexity of recursive programs

Example:
Merge sort

Quick sort m

Complexity of recursive programs

Computing complexity T(N)
- Recursive expression
- No general formula

- It helps to see a pattern that expresses T(N) as
a formula which only depends on N and the
base case (T(1)/T(0))

Example

T(1) =1
T(N) = N + T(N-1)
=N+ (N-1 + T(N-2))
=N+ (N-1)+...+2+1=N(N+1)/2

So T(N) is O(N”2)

Example

T(1)=1
T(N) = N + T(N-1)
= N+ (N/2 + T(N/4))

=N+ N/2+ ...+ N/2*log N) 2+ N/2”og N)
=N(1+%+..+%"log#e1)) + T(N/2”log N)
=N(1-1/2*logN))/ (1 —-1/2) + T(1)

= 2N+1

So T(N) is O(N)

Question

T(1) =1
T(N) =2 + T(N-1)

T(N) is :

a) O(log N)
b) O(N)

¢) O(N log N) govote.at
d) O(NA2) Code 308412

To Do

Read from the book
+ 7.2 (insertion sort)
+ 7.6 (merge sort)
+ 3.4 (array list) — if you’re curious
better: http://en.wikipedia.org/wiki/Dynamic_array

Videos:
+ Insertion sort: https://www.youtube.com/watch?v=R0alU379I3U

+ Merge sort: https://www.youtube.com/watch?v=XaqR3G_NVoo

