Lecture 10
Data Structures (DAT037)

Ramona Enache

(with slides from Nick Smallbone and
Nils Anders Danielsson)

Balanced BSTs: Problem

The BST operations take O(height of tree), so for unbalanced trees
can take O(n) time

The

g =
quick
@\@ e

brown the

&@ - 58
fox
5 /\
&) dog jumps
() 2

&8&@ over
e

lazy

Balanced BSTs: Solution

Take BSTs and add an extra invariant that makes sure that the tree
is balanced

* Height of tree must be O(log n)
=» all operations will take O(log n) time

One possible idea for an invariant:
Height of left child = height of right child (for all nodes in the tree)

Tree would be sort of “perfectly balanced”

What's wrong with this idea?

Balanced BSTs: Solution

Perfect balance is too restrictive!

Number of nodes canonly be 1, 3, 7, 15, 31, ...

Balanced BSTs: AVL

The AVL tree is the first balanced BST discovered (from 1962) —
it's named after Adelson-Velsky and Landis

It's a BST with the following invariant:

The difference in heights between the left and right children of
any node is at most 1

This makes the tree's height O(log n), so it's balanced

Balanced BSTs: AVL

Which of these are AVL trees?

* % O

a0
eo D: 9 0

Balanced BSTs: AVL

We call the quantity right height — left height of a node its
balance

Thus the AVL invariant is:
the balance of every node is -1, 0, or 1

Whenever a node gets out of balance, we fix it with so-
called tree rotations (next)

(Implementation: store the balance of each node as a field
in the node, and remember to update it when updating
the tree)

Question

What is the number of AVL trees which contain
only {1..5} ?

1. 5

e N
w N o

govote.at

Code 615748

Balanced BSTs: AVL

Rotation rearranges a BST by moving a different node to
the root, without changing the BST's contents

Right Rotation o e
>

< .
» & oG
(pic from Wikipedia)

Balanced BSTs: AVL

We can use rotations to adjust the relative height of the
left and right branches of a tree

Height of 3

Height of 4

Balanced BSTs: AVL

Start by doing a BST insertion

This might break the AVL (balance) invariant

Then go upwards from the newly-inserted node, looking
for nodes that break the invariant (unbalanced nodes)
Whenever you find one, rotate it

Then continue upwards in the tree

There are 4 cases depending on how the node is
unbalanced

Balanced BSTs: AVL

Case 1: left-left tree

.'/.‘-_;
(50
“Each pink triangle
represents an
AVL tree
b\ ~ with heightk

| The purple represents
an insertion that has
~ increased the height
of tree a to k+1

Balanced BSTs: AVL

Case 1: left-left tree

Height k+2 V= Height k
r 50 |

The tree as a whole
has a balance of -2:
invariant broken!

Balanced BSTs: AVL

Case 1: left-left tree

__(This is called a
50 left-left tree
because both the root and
the left child are deeper
on the left

To fixitwedo a
right rotation

Balanced BSTs: AVL

Case 1: left-left tree

Height k+1//2k Height k+1

Balanced BSTs: AVL

Case 2: right-right tree

e Mirror image of left-left tree

25 Can be fixed with
— left rotation

50 \

Balanced BSTs: AVL

Case 3: left-right tree

Height k+2 p— Height k

—

The tree as a whole
has a balance of -2:
invariant broken!

Balanced BSTs: AVL

Case 1: left-right tree

We can't fix this with
one rotation
Let'slook at b's
subtrees bL and bR

Balanced BSTs: AVL

Case 1: left-right tree

(50

[25

Rotate 25-subtree to the left

Balanced BSTs: AVL

Case 1: left-right tree

Height k+2 H eight k

[
|

Height k+1

We now have a left-left tree!
So we can fix it by

rotating the whole tree

[a)| to the right

Balanced BSTs: AVL

Case 1: left-right tree

Balanced!
Notice it works whichever

of b and b has the
extra height

Balanced BSTs: AVL

Case 1: right-left tree

— . :
25 Mirror image of

left-right tree

Balanced BSTs: AVL

Right Left Case

The four cases

(picture from
Wikipedia)

Question (from last year)

govote.at
Code 635112

A
c o= ooo:eoo -

Answer

Slightly tweaked (every node info +1)

- Goto

http://visualgo.net/bst.html

- Choose AVL

- Create Empty

- Insert 1,2,3,8,10,4,5,7,9 — equivalent tree
- Insert 6 =» Result

AVL trees

A balanced BST that maintains balance by rotating the tree

Insertion: insert as in a BST and move upwards from the
inserted node, rotating unbalanced nodes

deletion (in book if you're interested): delete as in a BST
and move upwards from the node that disappeared,
rotating unbalanced nodes

Worst-case (it turns out) 1.44log n, typical log n

comparisons for any operation — very balanced. This means
lookups are quick.

Insertion and deletion can be slower than in a naive BST,
because you have to do a bit of work to repair the invariant

Balanced BSTs: Red-Black Trees

 Ared-black tree is a balanced BST

* |t has a more complicated invariant than an
AVL tree:

Each node is coloured red or black
A red node cannot have a red child

In any path from the root to a null, the number of black
nodes is the same

(The root node is black)
Implicitly, a null is coloured black

Balanced BSTs: Red-Black Trees

o
B o W

Question

What is the maximum amount of red nodes
that a Red-Black tree with 7 non-null nodes and
a black root could have ?

1. 2

2. 3

3. 4 govote.a

4. 5 Code 128448

Balanced BSTs: Red-Black Trees

A \ “A red node cannot have)
' . a red child”

“In each path from the
If the shortest root to a leaf, the number
> path has k nodes of black nodes is the same”

(all black)...

path can only have
2k nodes

> ...then the longest

Maximum height
2logn,
where n is number
of nodes

o

O

n

J u
u

n

o

O

J

Question (from re-exam August)

After colouring the following tree as a Red-Black
tree with black root, how many red nodes will
we have ?

1.5 2.6 /\

3. 4 4. 3
VARWAN
/\ \

95

Balanced BSTs: Red-Black Trees

* In AVL trees, we maintained the invariant by
rotating parts of the tree

* |n red-black trees, we use two operations:

rotations
recolouring: changing a red node to black or vice versa
* Recolouring is an “administrative” operation
that doesn't change the structure or contents
of the tree

Balanced BSTs: Red-Black Trees

* First, add the new node as in a BST, making it
red

* |f the new node's parent is black, everything's

I i
e\ /G\
b\\ /'/ \.\\
\ d \
AN / N\
\L / L
\. \
\\ \\
\\ \
L X L X X J

/‘//

Balanced BSTs: Red-Black Trees

If the parent of the new node is red, we have
broken the invariant. (How?) We need to
repair it.

We need to consider several cases.

In all cases, since the parent node is red, the
grandparent is black. (Why?)

Let's take the case where the parent's sibling
is black.

Balanced BSTs: Red-Black Trees

X: Newly-inserted
node, breaks invariant

P: Parent of
new node

G: Grandparent of
Cpo E new node

S: Sibling of
A B parent

Balanced BSTs: Red-Black Trees

/@\ Recolouring

Cp E

(‘Now the number o-f'
black nodes in each
A B pathhaschanged- A B

but right rotation
will fix it

Balanced BSTs: Red-Black Trees

X<P<G«<S |
Right rotation
- . and recolouring

~ Why does this
A B now satisfy the D E
invariant?

Balanced BSTs: Red-Black Trees

P<X<G«<S

cD E

. [Nowwe havea

B left-left tree!
We know how to
fix that already.

Balanced BSTs: Red-Black Trees

Right rotation
and recolouring |

Balanced BSTs: Red-Black Trees

Right rotation
and recolouring |

Balanced BSTs: Red-Black Trees

Insert the new node as in a BST, make it red

Problem: if the parent is red, the invariant is
broken (red node with red child)

To fix a red node with a red child:

If the node has a black sibling, rotate and
recolour

If the node has a red sibling, ...? Two
approaches, bottom-up (simpler) and top-
down (more efficient)

Balanced BSTs: Red-Black Trees

* Bottom-Up Insertion

If a new node, its parent and its parent's sibling are
all red: do a colour flip

Make the parent and its sibling black, and the

grandparent red

|
Colour flip

Balanced BSTs: Red-Black Trees

* A colour flip almost restores the invariant...

e ...butif G has a red parent, we will have a red
node with a red child

* So move up the tree to G and apply the same
double-red repair process there as we did to
X.

Balanced BSTs: Red-Black Trees

* |Insert the new node as in a BST, make it red If
the new node has a red parent P:
- If the parent's sibling S is black, use rotations and

recolourings to fix it — the rotations are the same as
In an AVL tree

- If Sis red, do a colour flip, which makes the
grandparent G red — so you need to do the same
double-red repair to G if its parent is red

- Lastly: if you get to the root and the root is red,
make it black

Balanced BSTs: Red-Black Trees

 Top-down approach

- Extra reading 12.2.2

- Not in exam!

Red-Black vs AVL

Red-black trees have a weaker invariant than AVL
trees (less balanced) — but still O(log n) running
time

Advantage: less work to maintain the invariant
(top-down insertion — no need to go up tree
afterwards), so insertion and deletion are
cheaper

Disadvantage: lookup will be slower if the tree is
less balanced

But in practice red-black trees are faster than
AVL trees

B-trees

* |n a B-tree of order k, a node can have k
children

e Each non-root node must be at least half-full

10 2230 40

13,15 18 20| | 323538 |

5|78 26 27 4246

B-trees

* B-trees are used for disk storage in databases:

* Hard drives read data in blocks of typically

~4KB
For good performance, you want to minimise

the number of blocks read
This means you want: 1 tree node = 1 block

e B-trees with k about 1024 achieve this

B-trees

* B-trees are used for disk storage in databases:

* Hard drives read data in blocks of typically

~4KB
For good performance, you want to minimise

the number of blocks read
This means you want: 1 tree node = 1 block

e B-trees with k about 1024 achieve this

B-trees

 Examples of nodes from a B-tree

2
s, 21, 38> (79

(J © @ 6. &> @

Red-Black trees are B-trees!

e A 2-nodeis a black node

A oA

Red-Black trees are B-trees!

* A 3-node is a black node with one red child

Red-Black trees are B-trees!

e A4-nodeis a black node with two red children

To Do

Read from the book:
+4.4,45,4.7,12.2
+ more details: Cormen and
Wikipedia

Extra:
2,3-trees — the link between
B-trees and AVL

Practice AVLs here:
visualalgo.net

Coming up:
+ more on sorting (lecture by Andreas)

