Lecture 10 Data Structures (DAT037)

Ramona Enache
(with slides from Nick Smallbone and

Nils Anders Danielsson)

Balanced BSTs: Problem

The BST operations take O(height of tree), so for unbalanced trees can take O(n) time

Balanced BSTs: Solution

Take BSTs and add an extra invariant that makes sure that the tree is balanced

- Height of tree must be O(log n)
 - → all operations will take O(log n) time

One possible idea for an invariant:

Height of left child = height of right child (for all nodes in the tree)

Tree would be sort of "perfectly balanced"

What's wrong with this idea?

Balanced BSTs: Solution

Perfect balance is too restrictive!

Number of nodes can only be 1, 3, 7, 15, 31, ...

The **AVL tree** is the first balanced BST discovered (from 1962) – it's named after Adelson-Velsky and Landis

It's a BST with the following invariant:

The difference in heights between the left and right children of any node is at most 1

This makes the tree's height O(log n), so it's balanced

Which of these are AVL trees?

We call the quantity right height – left height of a node its balance

Thus the AVL invariant is:

the balance of every node is -1, 0, or 1

Whenever a node gets out of balance, we fix it with socalled tree rotations (next)

(Implementation: store the balance of each node as a field in the node, and remember to update it when updating the tree)

Question

What is the number of AVL trees which contain only {1..5}?

- 1. 5
- 2. 6
- 3. 7
- 4. 3

govote.at Code 615748

Rotation rearranges a BST by moving a different node to the root, without changing the BST's contents

We can use rotations to adjust the relative height of the left and right branches of a tree

Start by doing a BST insertion
This might break the AVL (balance) invariant
Then go upwards from the newly-inserted node, looking
for nodes that break the invariant (unbalanced nodes)
Whenever you find one, rotate it
Then continue upwards in the tree
There are 4 cases depending on how the node is
unbalanced

Case 1: left-left tree

Case 1: left-left tree

Case 1: left-left tree

Case 1: left-left tree

Case 2: right-right tree

Case 3: left-right tree

Case 1: right-left tree

The four cases

(picture from Wikipedia)

Question (from last year)

govote.at Code 635112

Answer

Slightly tweaked (every node info +1)

- Go to

http://visualgo.net/bst.html

- Choose AVL
- Create Empty
- Insert 1,2,3,8,10,4,5,7,9 equivalent tree
- Insert 6 → Result

AVL trees

- A balanced BST that maintains balance by rotating the tree
- Insertion: insert as in a BST and move upwards from the inserted node, rotating unbalanced nodes
- deletion (in book if you're interested): delete as in a BST and move upwards from the node that disappeared, rotating unbalanced nodes
- Worst-case (it turns out) 1.44log n, typical log n comparisons for any operation – very balanced. This means lookups are quick.
- Insertion and deletion can be slower than in a naïve BST, because you have to do a bit of work to repair the invariant

- A red-black tree is a balanced BST
- It has a more complicated invariant than an AVL tree:

Each node is coloured red or black

A red node cannot have a red child

In any path from the root to a null, the number of **black** nodes is the same

(The root node is **black**)
Implicitly, a **null** is coloured **black**

Question

What is the maximum amount of red nodes that a Red-Black tree with 7 non-null nodes and a black root could have ?

- 1. 2
- 2. 3
- 3. 4
- 4. 5

govote.at Code 128448

"A red node cannot have a red child"

"In each path from the root to a leaf, the number of black nodes is the same"

...then the longest path can only have 2k nodes

Question (from re-exam August)

After colouring the following tree as a Red-Black tree with black root, how many red nodes will we have?

- 1. 5 2. 6
- 3. 4 4. 3

govote.at Code 989807

- In AVL trees, we maintained the invariant by rotating parts of the tree
- In red-black trees, we use two operations:

rotations

recolouring: changing a red node to black or vice versa

 Recolouring is an "administrative" operation that doesn't change the structure or contents of the tree

- First, add the new node as in a BST, making it red
- If the new node's parent is black, everything's fine

- If the parent of the new node is red, we have broken the invariant. (How?) We need to repair it.
- We need to consider several cases.
- In all cases, since the parent node is red, the grandparent is black. (Why?)
- Let's take the case where the parent's sibling is black.

X: Newly-inserted node, breaks invariant

P: **P**arent of new node

G: **G**randparent of new node

S: **S**ibling of parent

- Insert the new node as in a BST, make it red
- Problem: if the parent is red, the invariant is broken (red node with red child)
- To fix a red node with a red child:
- If the node has a black sibling, rotate and recolour
- If the node has a red sibling, ...? Two approaches, bottom-up (simpler) and topdown (more efficient)

Bottom-Up Insertion

If a new node, its parent and its parent's sibling are all red: do a colour flip

Make the parent and its sibling black, and the grandparent red

- A colour flip almost restores the invariant...
- ...but if G has a red parent, we will have a red node with a red child
- So move up the tree to G and apply the same double-red repair process there as we did to X.

- Insert the new node as in a BST, make it red If the new node has a red parent P:
 - If the parent's sibling S is black, use rotations and recolourings to fix it the rotations are the same as in an AVL tree
 - If S is red, do a colour flip, which makes the grandparent G red so you need to do the same double-red repair to G if its parent is red
 - Lastly: if you get to the root and the root is red, make it black

Top-down approach

- Extra reading 12.2.2
- Not in exam!

Red-Black vs AVL

- Red-black trees have a weaker invariant than AVL trees (less balanced) – but still O(log n) running time
- Advantage: less work to maintain the invariant (top-down insertion – no need to go up tree afterwards), so insertion and deletion are cheaper
- Disadvantage: lookup will be slower if the tree is less balanced
- But in practice red-black trees are faster than AVL trees

- In a B-tree of order k, a node can have k children
- Each non-root node must be at least half-full

- B-trees are used for disk storage in databases:
- Hard drives read data in blocks of typically ~4KB
 - For good performance, you want to minimise the number of blocks read
 - This means you want: 1 tree node = 1 block
- B-trees with k about 1024 achieve this

- B-trees are used for disk storage in databases:
- Hard drives read data in blocks of typically ~4KB
 - For good performance, you want to minimise the number of blocks read
 - This means you want: 1 tree node = 1 block
- B-trees with k about 1024 achieve this

Examples of nodes from a B-tree

Red-Black trees are B-trees!

A 2-node is a black node

Red-Black trees are B-trees!

A 3-node is a black node with one red child

Red-Black trees are B-trees!

A 4-node is a black node with two red children

To Do

Read from the book:

+ 4.4, 4.5, 4.7, 12.2

+ more details: Cormen and

Wikipedia

Extra:

2,3-trees – the link between B-trees and AVL

Practice AVLs here:

visualalgo.net

Coming up:

+ more on sorting (lecture by Andreas)

