Büchi Automata and their Application to Software Verification Finite Automata Theory and Formal Languages

Wolfgang Ahrendt

22nd April 2013

But How to Express Properties Involving State Changes?

In any run of a program P

- n will become greater than 0 eventually?
- n changes its value infinitely often

etc.

But How to Express Properties Involving State Changes?

In any run of a program P

- n will become greater than 0 eventually?
- n changes its value infinitely often

etc.

Linear Temporal Logic: talks about (infinite) traces of states

Semantics of Propositional Logic

Interpretation $\ensuremath{\mathcal{I}}$

Assigns a truth value to each propositional variable

 $\mathcal{I}: \mathcal{P} \to \{T, F\}$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

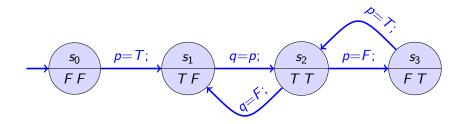
 $\mathcal{I}: \mathcal{P} \to \{T, F\}$

Example

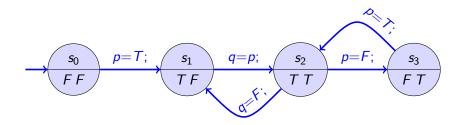
Let $\mathcal{P} = \{p, q\}$

$$\begin{array}{c|c} p & q \\ \hline \mathcal{I} & F & F \\ \mathcal{I}' & F & T \\ \mathcal{I}'' & T & F \\ \mathcal{I}''' & T & T \end{array}$$

Transition systems (aka Kripke Structures)



Transition systems (aka Kripke Structures)



- Each state s_i has its own propositional interpretation I_i
 - Convention: list values of variables in ascending lexicographic order
- Computations, or runs, are infinite paths through states
 - Intuitively 'finite' runs modelled by looping on final states
- In general, infinitely many different runs possible
- How to express (for example) that p changes its value infinitely often in each run?

(Linear) Temporal Logic

An extension of propositional logic that allows to specify properties of all runs

(Linear) Temporal Logic—Syntax

An extension of propositional logic that allows to specify properties of all runs

Syntax

Based on propositional signature and syntax

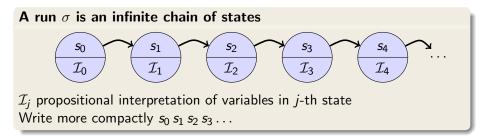
Extension with three connectives:

Always If ϕ is a formula then so is $\Box \phi$

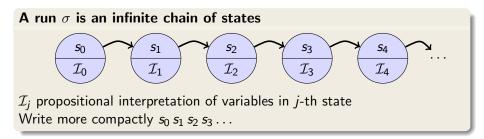
Eventually If ϕ is a formula then so is $\Diamond \phi$

Concrete Syntax text book SPIN Always [] Eventually \diamondsuit $\lt>$

Temporal Logic—Semantics



Temporal Logic—Semantics



If $\sigma = s_0 s_1 \cdots$, then $\sigma|_i$ denotes the suffix $s_i s_{i+1} \cdots$ of σ .

Valuation of temporal formula relative to run: infinite sequence of states

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$

$$\sigma \models p$$
 iff $\mathcal{I}_0(p) = T$, for $p \in \mathcal{P}$.

Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$

$$\sigma \models p \qquad \text{iff} \quad \mathcal{I}_0(p) = T, \text{ for } p \in \mathcal{P}.$$

$$\sigma \models \neg \phi \qquad \text{iff} \quad \text{not } \sigma \models \phi \quad (\text{write } \sigma \not\models \phi)$$

$$\sigma \models \phi \land \psi \qquad \text{iff} \quad \sigma \models \phi \text{ and } \sigma \models \psi$$

$$\sigma \models \phi \lor \psi \qquad \text{iff} \quad \sigma \models \phi \text{ or } \sigma \models \psi$$

$$\sigma \models \phi \rightarrow \psi \quad \text{iff} \quad \sigma \not\models \phi \text{ or } \sigma \models \psi$$

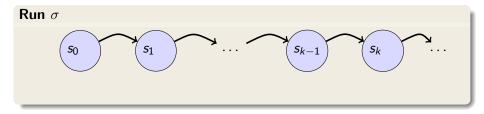
Valuation of temporal formula relative to run: infinite sequence of states

Definition (Validity Relation)

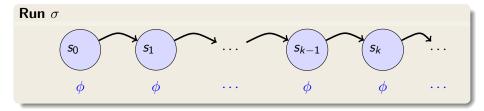
Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$

$$\begin{split} \sigma &\models p & \text{iff} \quad \mathcal{I}_0(p) = T, \text{ for } p \in \mathcal{P}. \\ \sigma &\models \neg \phi & \text{iff} \quad \text{not } \sigma \models \phi \quad (\text{write } \sigma \not\models \phi) \\ \sigma &\models \phi \land \psi & \text{iff} \quad \sigma \models \phi \text{ and } \sigma \models \psi \\ \sigma &\models \phi \lor \psi & \text{iff} \quad \sigma \models \phi \text{ or } \sigma \models \psi \\ \sigma &\models \phi \rightarrow \psi & \text{iff} \quad \sigma \not\models \phi \text{ or } \sigma \models \psi \end{split}$$

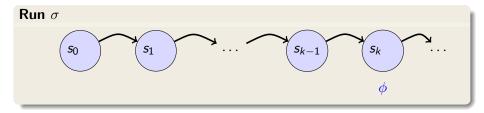
Temporal connectives?



Definition (Validity Relation for Temporal Connectives) Given a run $\sigma = s_0 s_1 \cdots$

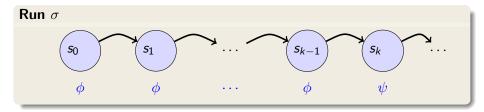


Definition (Validity Relation for Temporal Connectives) Given a run $\sigma = s_0 s_1 \cdots$ $\sigma \models \Box \phi$ iff $\sigma|_k \models \phi$ for all $k \ge 0$



Definition (Validity Relation for Temporal Connectives)

Given a run $\sigma = s_0 s_1 \cdots$ $\sigma \models \Box \phi$ iff $\sigma|_k \models \phi$ for all $k \ge 0$ $\sigma \models \Diamond \phi$ iff $\sigma|_k \models \phi$ for some $k \ge 0$



Definition (Validity Relation for Temporal Connectives)

Given a run $\sigma = s_0 s_1 \cdots$ $\sigma \models \Box \phi$ iff $\sigma|_k \models \phi$ for all $k \ge 0$ $\sigma \models \Diamond \phi$ iff $\sigma|_k \models \phi$ for some $k \ge 0$

Definition (Transition System)

A transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$ is composed of a set of states S, a set $\emptyset \neq Ini \subseteq S$ of initial states, a transition relation $\delta \subseteq S \times S$, and a labeling \mathcal{I} of each state $s \in S$ with a propositional interpretation \mathcal{I}_s .

Definition (Run of Transition System)

A run of \mathcal{T} is a sequence of states $\sigma = s_0 s_1 \cdots$ such that $s_0 \in Ini$ and for all *i* is $s_i \in S$ as well as $(s_i, s_{i+1}) \in \delta$.

Given a finite alphabet (vocabulary) Σ A word $w \in \Sigma^*$ is a finite sequence

$$w = a_o \cdots a_n$$

with $a_i \in \Sigma, i \in \{0, \dots, n\}$ $\mathcal{L} \subseteq \Sigma^*$ is called a language Given a finite alphabet (vocabulary) Σ An ω -word $w \in \Sigma^{\omega}$ is an infinite sequence

 $w = a_o \cdots a_k \cdots$

with $a_i \in \Sigma, i \in \mathbb{N}$ $\mathcal{L}^{\omega} \subseteq \Sigma^{\omega}$ is called an ω -language

Büchi Automaton

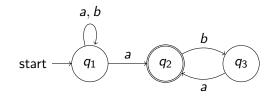
Definition (Büchi Automaton)

A (non-deterministic) Büchi automaton over an alphabet Σ consists of a

- finite, non-empty set of locations Q
- ▶ a non-empty set of initial/start locations $I \subseteq Q$
- ▶ a set of accepting locations $F = \{F_1, \ldots, F_n\} \subseteq Q$
- a transition relation $\delta \subseteq Q \times \Sigma \times Q$

Example

$$\Sigma = \{a, b\}, Q = \{q_1, q_2, q_3\}, I = \{q_1\}, F = \{q_2\}$$



Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B} = (Q, I, F, \delta)$ be a Büchi automaton over alphabet Σ . An execution of \mathcal{B} is a pair (w, v), with

•
$$w = a_o \cdots a_k \cdots \in \Sigma^{\omega}$$

$$\blacktriangleright \ v = q_o \cdots q_k \cdots \in Q^\omega$$

where $q_0 \in I$, and $(q_i, a_i, q_{i+1}) \in \delta$, for all $i \in \mathbb{N}$

Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B} = (Q, I, F, \delta)$ be a Büchi automaton over alphabet Σ . An execution of \mathcal{B} is a pair (w, v), with

•
$$w = a_o \cdots a_k \cdots \in \Sigma^{\omega}$$

$$\blacktriangleright \ v = q_o \cdots q_k \cdots \in Q^{\omega}$$

where $q_0 \in I$, and $(q_i, a_i, q_{i+1}) \in \delta$, for all $i \in \mathbb{N}$

Definition (Accepted Word)

A Büchi automaton \mathcal{B} accepts a word $w \in \Sigma^{\omega}$, if there exists an execution (w, v) of \mathcal{B} where some accepting location $f \in F$ appears infinitely often in v

Let $\mathcal{B} = (Q, I, F, \delta)$ be a Büchi automaton, then

 $\mathcal{L}^{\omega}(\mathcal{B}) = \{ w \in \Sigma^{\omega} | w \in \Sigma^{\omega} \text{ is an accepted word of } \mathcal{B} \}$

denotes the ω -language recognised by \mathcal{B} .

Let $\mathcal{B} = (Q, I, F, \delta)$ be a Büchi automaton, then

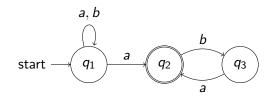
 $\mathcal{L}^{\omega}(\mathcal{B}) = \{ w \in \Sigma^{\omega} | w \in \Sigma^{\omega} \text{ is an accepted word of } \mathcal{B} \}$

denotes the ω -language recognised by \mathcal{B} .

An ω -language for which an accepting Büchi automaton exists is called ω -regular language.

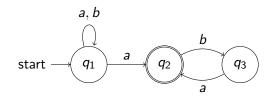
Example, ω -Regular Expression

Which language is accepted by the following Büchi automaton?



Example, ω -Regular Expression

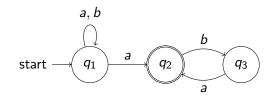
Which language is accepted by the following Büchi automaton?



Solution: $(a + b)^* (ab)^\omega$	$[NB:(ab)^\omega=a(ba)^\omega$
-----------------------------------	--------------------------------

Example, ω -Regular Expression

Which language is accepted by the following Büchi automaton?



Solution: $(a + b)^* (ab)^{\omega}$ [NB: $(ab)^{\omega} = a(ba)^{\omega}$]

 $\omega\text{-}\mathrm{regular}$ expressions like standard regular expression

ab a then b

a + b a or b

- a* arbitrarily, but finitely often a
- **new:** a^{ω} infinitely often a

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

The set of ω -regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_1, \mathcal{L}_2$ are ω -regular then $\mathcal{L}_1 \cap \mathcal{L}_2$ and $\mathcal{L}_1 \cup \mathcal{L}_2$ are ω -regular
- \mathcal{L} is ω -regular then $\Sigma^{\omega} \setminus \mathcal{L}$ is ω -regular

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

The set of ω -regular languages is closed with respect to intersection, union and complement:

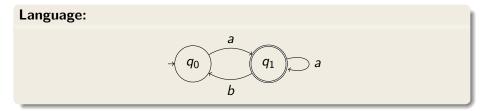
- if $\mathcal{L}_1, \mathcal{L}_2$ are ω -regular then $\mathcal{L}_1 \cap \mathcal{L}_2$ and $\mathcal{L}_1 \cup \mathcal{L}_2$ are ω -regular
- \mathcal{L} is ω -regular then $\Sigma^{\omega} \setminus \mathcal{L}$ is ω -regular

But in contrast to regular finite automata

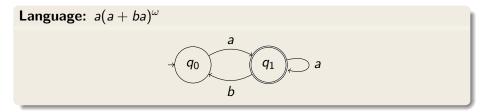
Non-deterministic Büchi automata are strictly more expressive than deterministic ones

Büchi Automata: TMV027/DIT321

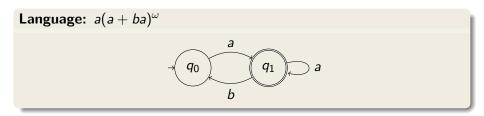
Büchi Automata—More Examples

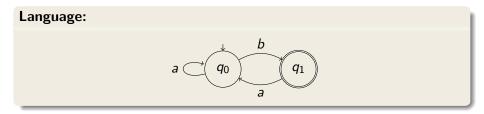


Büchi Automata—More Examples

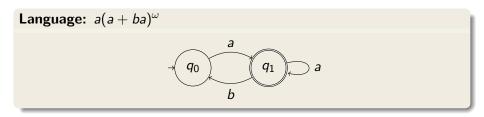


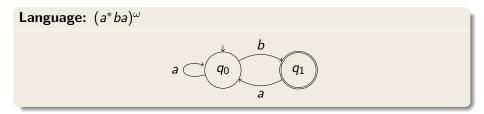
Büchi Automata—More Examples





Büchi Automata—More Examples





Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Definition (Validity Relation)

Given a transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

A run of the transition system is an infinite sequence of interpretations I

Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Definition (Validity Relation)

Given a transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

A run of the transition system is an infinite sequence of interpretations I

Intended Connection

Given an LTL formula ϕ :

Construct a Büchi automaton accepting exactly those runs (infinite sequences of interpretations) that satisfy ϕ

Encoding an LTL Formula as a Büchi Automaton

 $\mathcal P$ set of propositional variables, e.g., $\mathcal P = \{r,s\}$

Alphabet Σ of Büchi automaton

A state transition of Büchi automaton must represent an interpretation Let Σ (i.e., the alphabet of the automata) be set of all interpretations over \mathcal{P} , i.e., $\Sigma = 2^{\mathcal{P}}$

Example

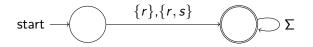
$$\Sigma = \{\emptyset, \{r\}, \{s\}, \{r, s\}\}$$
$$I_{\emptyset}(r) = F, I_{\emptyset}(s) = F, I_{\{r\}}(r) = T, I_{\{r\}}(s) = F, \dots$$

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r



In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r

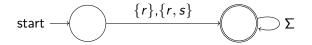


In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\Box r$ over $\mathcal{P} = \{r, s\}$)

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\cal B}$ accepting exactly those runs σ satisfying r



In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

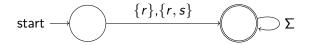
Example (Büchi automaton for formula $\Box r$ over $\mathcal{P} = \{r, s\}$)

start
$$\longrightarrow \{r\}, \{r, s\}$$

In all states s (of σ) at least r must hold

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\cal B}$ accepting exactly those runs σ satisfying r

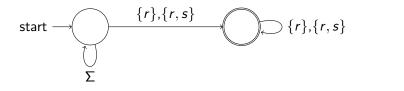


In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\Box r$ over $\mathcal{P} = \{r, s\}$)

In all states s (of σ) at least r must hold

Example (Büchi automaton for formula $\Diamond \Box r$ over $\mathcal{P} = \{r, s\}$)



Check whether a formula is valid in all runs of a transition system Given a transition system \mathcal{T} (e.g., derived from a PROMELA program) Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

Check whether a formula is valid in all runs of a transition system Given a transition system \mathcal{T} (e.g., derived from a PROMELA program) Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

In the following: Basic principle behind SPIN model checking

$$\mathcal{T} \models \phi$$
 ?

1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
- 2. Construct Büchi automaton $\mathcal{B}_{\neg\phi}$ for negation of formula ϕ

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
- Construct Büchi automaton B_{¬φ} for negation of formula φ
 If

$$\mathcal{L}^\omega(\mathcal{B}_\mathcal{T})\cap\mathcal{L}^\omega(\mathcal{B}_{\neg\phi})=\emptyset$$

then ϕ holds.

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
- Construct Büchi automaton B_{¬φ} for negation of formula φ
 If

$$\mathcal{L}^\omega(\mathcal{B}_\mathcal{T})\cap\mathcal{L}^\omega(\mathcal{B}_{\neg\phi})=\emptyset$$

then ϕ holds.

lf

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}})\cap\mathcal{L}^{\omega}(\mathcal{B}_{\neg\phi})
eq\emptyset$$

then each element of the set is a counterexample for ϕ .

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ such that $\mathcal{B}_{\mathcal{T}}$ accepts exactly those words corresponding to runs through \mathcal{T}
- Construct Büchi automaton B_{¬φ} for negation of formula φ
 If

$$\mathcal{L}^\omega(\mathcal{B}_\mathcal{T})\cap\mathcal{L}^\omega(\mathcal{B}_{\neg\phi})=\emptyset$$

then ϕ holds.

lf

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}})\cap\mathcal{L}^{\omega}(\mathcal{B}_{\neg\phi})
eq\emptyset$$

then each element of the set is a counterexample for ϕ .

To check $\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi})$ construct intersection automaton and search for cycle through accepting state

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

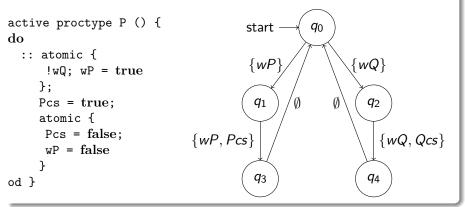
Example

```
active proctype P () {
do
    :: atomic {
      !wQ; wP = true
    };
    Pcs = true;
    atomic {
      Pcs = false;
      wP = false
    }
od }
```

First location skipped and second made atomic just to keep automaton small; similar code for process Q

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

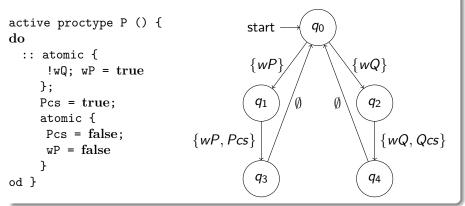
Example



First location skipped and second made $\verb+atomic just$ to keep automaton small; similar code for process Q

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

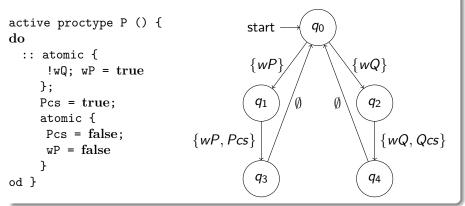
Example



Which are the accepting locations?

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

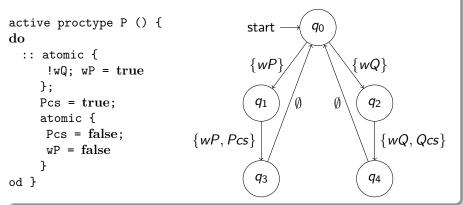
Example



Which are the accepting locations? All!

First Step: Represent transition system \mathcal{T} as Büchi automaton $\mathcal{B}_{\mathcal{T}}$ accepting exactly those words representing a run of \mathcal{T}

Example



The property we want to check is $\phi = \Box \neg Pcs$ (which does not hold)

Büchi Automaton $B_{\neg\phi}$ for $\neg\phi$

Second Step:

Construct Büchi Automaton corresponding to negated LTL formula

 $\mathcal{T} \models \phi$ holds iff there is no accepting run of \mathcal{T} for $\neg \phi$

Simplify $\neg \phi = \neg \Box \neg Pcs = \Diamond Pcs$

Büchi Automaton $B_{\neg\phi}$ for $\neg\phi$

Second Step:

Construct Büchi Automaton corresponding to negated LTL formula

 $\mathcal{T} \models \phi \text{ holds iff there is no accepting run of } \mathcal{T} \text{ for } \neg \phi$ Simplify $\neg \phi = \neg \Box \neg Pcs = \Diamond Pcs$

Büchi Automaton $\mathcal{B}_{\neg\phi}$

$$\mathcal{P} = \{ wP, wQ, Pcs, Qcs \}, \ \Sigma = 2^{\mathcal{P}}$$

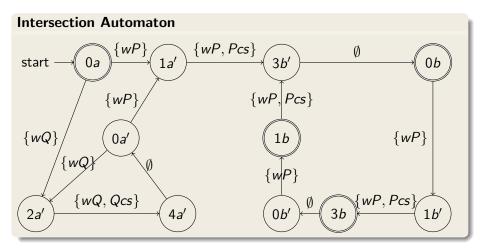
$$\Sigma_{\textit{Pcs}} = \{ \textit{I} | \textit{I} \in \Sigma, \textit{Pcs} \in \textit{I} \}, \quad \Sigma_{\textit{Pcs}}^{c} = \Sigma - \Sigma_{\textit{Pcs}}$$

Checking for Emptiness of Intersection Automaton

Third Step: $\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$?

Checking for Emptiness of Intersection Automaton

Third Step:
$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$$
 ?



Checking for Emptiness of Intersection Automaton

$$\begin{array}{ll} \mathsf{Third Step:} \quad \mathcal{L}^\omega(\mathcal{B}_\mathcal{T}) \cap \mathcal{L}^\omega(\mathcal{B}_{\neg \phi}) \neq \emptyset \end{array}$$

Counterexample

