Handout: More About Turing Machines
Laura Kovacs May 23, 2013

1. Decision problems, instances. A decision problem (I, f) has the form “Given z € I, is f(z) = YES
or f(x) = No?”, for some set I of possible inputs, and some function f that maps all inputs x € I to either
YES or NO. Here are two examples of decision problems:

GRAPHREACHABILITY Given a directed graph (V, E) and two nodes u, w € V, is there a path from u to w?

HILBERTSTENTH Given a multivariate polynomial equation e, does e have an integer solution?

An instance of the decision problem “Given x € I, is f(x) = YES or f(z) = NO?” is a particular input
x € I. Here are two sample instances, one for each of the above problems:

GRAPHREACHABILITY

V = {wo,v1,v2,v3}

E = {(vo,v1), (v1,v2), (v3,v2)}
u = v

w = V3

This is a No-instance, because this particular graph has no path from v; to vs.
HILBERTSTENTH
e: 32y 4272322 —2yz +52=0

This is a YES-instance, because x = y = z = 0 is an integer solution of e.

2. Decidability. Let QUESTION be the decision problem “Given z € I, is f(x) = YES or f(z) = No?”.
The set
L(QUESTION) = {z |z €I A f(x)=YEs}
of YEs-instances is a language. The decision problem QUESTION is recursive, or decidable, if the language
L(QUESTION) is recursive. Decidable problems can be solved by deterministic Turing deciders: for a recursive
problem QUESTION, there is a deterministic Turing decider M such that if you wish to know whether
f(z) = YEs or f(x) = No for some x € I, you can run M with the initial tape content z and wait until it
halts. If M halts in q,, then the answer is YES; if it halts in ¢, then the answer is NO. Since M is a Turing
decider, it is guaranteed to halt.
The decision problem QUESTION is r.e., or semi-decidable, if the language L(QUESTION) is r.e.

3. Examples. The problem GRAPHREACHABILITY is decidable. The problem HILBERTSTENTH is semi-
decidable and is not decidable. The proof of HILBERTSTENTH not being decidable was a major mathematical
breakthrough in the 20th century.

4. Church-Turing thesis. Since a DTM is a very simple computational apparatus (you surely can build a
simulator of DTMs in your favorite programming language), it follows that every recursive problem can be
solved by computational means. The Church-Turing thesis states the converse, namely, that all problems
which can be solved by computational means are recursive. This is a claim that cannot be proved, because any
proof would require an unassailable, general definition of what it means to solve a problem “by computational
means.” But the claim has been proved to be true for all specific definitions of “computational means” that
people have suggested. For example, all problems that can be solved by Java programs, even when run on
idealized machines with unbounded memory, are recursive. So in a very fundamental sense, Java programs
are no more “powerful” than DTMs: both Java programs and DTMs can solve the same problems (namely,
the recursive ones). And the same can be said for every programming language.



