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Overview of the Course

We have covered/you should know chapters 1–5 + 7 + (8):

Formal proofs: mainly proofs by induction

Regular languages: DFA, NFA, ε-NFA, RE
Algorithms to transform one formalism to the other
Properties of RL

Context-free languages: CFG
Properties of CFL

Turing machines: Just a bit
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Formal Proofs

We have extensively used formal proofs in the course; mainly proofs by
(course of value) induction:

On the structure of the argument;

On the length of the string;

On the length of the derivation;

On the height of a parse tree.
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Finite Automata and Regular Expressions

FA and RE can be used to model and understand a certain
situation/problem.

Example: Consider the problem with the man, the wolf, the goat and the
cabbage.

Also the Gilbreath’s principle. There we went from NFA → DFA → RE.

They can also be used to describe (parts of) a certain language.

Example: RE are used to specify and document the lexical analyser
(lexer) in languages (the part of the compiler reading the input and
producing the different tokens).

The implementation performs the steps RE → NFA → DFA → min DFA.
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Example: Using Regular Expression to Identify the Tokens

Tokens = Space (Token Space)*
Token = TInt | TId | TKey | TSpec
TInt = Digit Digit*
Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ |

’7’ | ’8’ | ’9’
TId = Letter IdChar*
Letter = ’A’ | ... | ’Z’ | ’a’ | ... | ’z’
IdChar = Letter | Digit
TKey = ’i’’f’ | ’e’’l’’s’’e’ | ...
TSpec = ’+’’+’ | ’+’ | ...
Space = (’ ’ | ’\n’ | ’\t’)*
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Regular Languages

Intuitively, a language is regular when a machine needs only limited
amount of memory to recognise it.

We can use the Pumping lemma for RL to show that a certain language is
not regular.

Closure properties can help us to deduce if a certain language is regular or
not.

There are several decision properties for RL.
Some of them are:

L 6= ∅? w ∈ L? L ⊆ L′? L = L′?
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Context-Free Grammars

CFG play an important role in the description and design of programming
languages and compilers.

CFG are used to define the syntax of most programming languages.

Parse trees reflect the structure of the word and contain concrete features.

In a compiler, the parser builds the abstract syntax tree of the input.

A grammar is ambiguous if a word in the language has more than one
parse tree.

LL grammars are unambiguous.

There are algorithms to decide if a grammar is LL(1).
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Context-Free Languages

These languages are generated by CFG.
It is enough to provide a stack to a NFA in order to recognise CFL.

We can use the Pumping lemma for CFL to show that a certain language
is not context-free.
Closure properties can help us to deduce if a certain language is
context-free or not.

There are fewer decision properties for CFL. We have seen

L 6= ∅? w ∈ L?

However there are no algorithms to determine whether L ⊆ L′ or L = L′.

There is no algorithm either to decide if a grammar is ambiguous or a
language is inherently ambiguous.
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Turing Machines

Simple but powerful devices.

They can be though of as a DFA plus a tape which we can read and write,
and move to the right and to the left.

Define the recursively enumerated languages.

It allows the study of decidability: what can or cannot be done by a
computer (halting problem).

Computability vs complexity theory: we should distinguish between what
can or cannot be done by a computer, and the inherent difficulty of the
problem (tractable (polynomial)/intractable (NP-hard) problems).
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Church-Turing Thesis

In the 1930’s there has been quite a lot of work about the nature of
effectively computable (calculable) functions:

Recursive functions by Stephen Kleene;

λ-calculus by Alonzo Church;

Turing machines by Alan Turing.

The three computational processes were shown to be equivalent by Church,
Kleene, (John Barkley) Rosser (1934—6) and Alan Turing (1936—7).

The Church-Turing thesis states that if an algorithm (a procedure that
terminates) exists then, there is an equivalent Turing machine,
recursively-definable function, or a definable λ-function for that algorithm.
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