
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2013

Lecture 13
Ana Bove

May 14th 2013

Overview of today’s lecture:

Closure properties for CFL;

Decision properties for CFL;

Undecidable problems;

Push-down automata.

Closure under Union

Theorem: Let G1 = (V1,T ,R1, S1) and G2 = (V2,T ,R2, S2) be CFG.
Then L(G1) ∪ L(G2) is a context-free language.

Proof: Let us assume V1 ∩ V2 = ∅ (easy to get via renaming).

Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1 | S2},S).

It is now easy to see that L(G) = L(G1) ∪ L(G2) since a derivation will
have the form

S ⇒ S1 ⇒∗ u if u ∈ L(G1)

or
S ⇒ S2 ⇒∗ u if u ∈ L(G2)

May 14th 2013, Lecture 13 TMV027/DIT321 1/26

Closure under Concatenation

Theorem: Let G1 = (V1,T ,R1, S1) and G2 = (V2,T ,R2, S2) be CFG.
Then L(G1)L(G2) is a context-free language.

Proof: Again, let us assume V1 ∩ V2 = ∅.
Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1S2},S).

It is now easy to see that L(G) = L(G1)L(G2) since a derivation will have
the form

S ⇒ S1S2 ⇒∗ u1u2

with
S1 ⇒∗ u1 and S2 ⇒∗ u2

for u1 ∈ L(G1) and u2 ∈ L(G2).

May 14th 2013, Lecture 13 TMV027/DIT321 2/26

Closure under Closure

Theorem: Let G = (V ,T ,R, S) be a CFG. Then L(G)+ and L(G)∗ are
context-free languages.

Proof: Let S ′ be a fresh variable.

We construct G + = (V ∪ {S ′},T ,R∪ {S ′ → S | SS ′}, S ′) and
G∗ = (V ∪ {S ′},T ,R∪ {S ′ → ε | SS ′},S ′).

It is easy to see that S ′ ⇒ ε in G∗.
It is also easy to see that S ′ ⇒∗ S ⇒∗ u if u ∈ L(G) is a valid derivation
both in G + and in G∗.
In addition, if u1, . . . , uk ∈ L(G), it is easy to see that the derivation

S ′ ⇒ SS ′ ⇒∗ u1S ′ ⇒ u1SS ′ ⇒∗ u1u2S ′ ⇒∗ . . .
⇒∗ u1u2 . . . uk−1S ′ ⇒∗ u1u2 . . . uk−1S ⇒∗ u1u2 . . . uk−1uk

is a valid derivation both in G + and in G∗.
May 14th 2013, Lecture 13 TMV027/DIT321 3/26

Non Closure under Intersection

Example: Consider the following languages over {a, b, c}:

L1 = {akbkcm | k,m > 0}

L2 = {ambkck | k ,m > 0}

It is easy to give CFG generating both L1 and L2, hence L1 and L2 are
CFL.

However L1 ∩ L2 = {akbkck | k > 0} is not a CFL (see slide 25 lecture
12).

May 14th 2013, Lecture 13 TMV027/DIT321 4/26

Closure under Intersection with Regular Language

Theorem: If L is a CFL and P is a RL then L ∩ P is a CFL.

Proof: See Theorem 7.27 in the book.

(It uses push-down automata which we have not seen.)

Example: Consider the following language over Σ = {0, 1}:

L = {uu | u ∈ Σ∗}

Consider now L′ = L ∩ L(0∗1∗0∗1∗) = {0n1m0n1m | n,m > 0}.
L′ is not a CFL (see exercise 6 on exercises for week 7).

Hence L cannot be a CFL since L(0∗1∗0∗1∗) is a RL.

May 14th 2013, Lecture 13 TMV027/DIT321 5/26

Non Closure under Complement

Theorem: CFL are not closed under complement.

Proof: Notice that
L1 ∩ L2 = L1 ∪ L2

If CFL are closed under complement then they should be closed under
intersection (since they are closed under union).

Then CFL are in general not closed under complement.

May 14th 2013, Lecture 13 TMV027/DIT321 6/26

Closure under Difference?

Theorem: CFL are not closed under difference.

Proof: Let L be a CFL over Σ.

It is easy to give a CFG that generates Σ∗.

Observe that L = Σ∗ − L.

Then if CFL are closed under difference they would also be closed under
complement.

Theorem: If L is a CFL and P is a RL then L − P is a CFL.

Proof: Observe that P is a RL and L − P = L ∩ P.

May 14th 2013, Lecture 13 TMV027/DIT321 7/26

Closure under Reversal and Prefix

Theorem: If L is a CFL then so is Lr = {rev(w) | w ∈ L}.

Proof: Given a CFG G = (V ,T ,R,S) for L we construct the grammar
G r = (V ,T ,Rr, S) where Rr is such that, for each rule A→ α in R, then
A→ rev(α) is in Rr.

One should show by induction on the length of the derivations in G and
G r that L(G r) = Lr.

Theorem: If L is a CFL then so is Prefix(L).

Proof: For closure under prefix see exercise 7.3.1 part a) in the book.

May 14th 2013, Lecture 13 TMV027/DIT321 8/26

Closure under Homomorphisms and Inverse
Homomorphisms

Theorem: CFL are closed under homomorphism and inverse
homomorphisms.

Proof: For the closure under homomorphisms see Theorem 7.24 point 4
in the book.

(It uses the notion of substitution which we have not seen.)

For the closure under inverse homomorphisms see Theorem 7.30 in the
book.

(It uses push-down automata which we have not seen.)

May 14th 2013, Lecture 13 TMV027/DIT321 9/26

Decision Properties of Context-Free Languages

Very little can be answered when it comes to CFL.

The major tests we can answer are whether:

The language is empty;

(See the algorithm that tests for generating symbols in slide 5 lecture
12: if L is a CFL given by a grammar with start variable S , then L is
empty if S is not generating.)

A certain string belong to the language.

May 14th 2013, Lecture 13 TMV027/DIT321 10/26

Testing Membership in a Context-Free Language

To check if w ∈ L(G), where |w | = n, by trying all productions may be
exponential on n.

An efficient way to check for membership in a CFL is based on the idea of
dynamic programming.
(method of solving complex problems by breaking them down into simpler problems,

applicable mainly to problems where many of their subproblems are really the same; not

to be confused with the divide and conquer strategy).

The algorithm is called the CYK algorithm after the 3 people who
independently discovered the idea: Cock, Younger and Kasami.

It is a O(n3) algorithm.

May 14th 2013, Lecture 13 TMV027/DIT321 11/26

The CYK Algorithm

Let G = (V ,T ,R, S) be a CFG in CNF and w = a1a2 . . . an ∈ T ∗.

Does w ∈ L(G)?

In the CYK algorithm we fill a table

V1n

V1(n−1) V2n
...

...
V12 V23 V34 . . . V(n−1)n

V11 V22 V33 . . . V(n−1)(n−1) Vnn

a1 a2 a3 . . . an−1 an

where Vij ⊆ V is the set of A’s such that A⇒∗ aiai+1 . . . aj .

We want to know if S ∈ V1n, hence S ⇒∗ a1a2 . . . an.

May 14th 2013, Lecture 13 TMV027/DIT321 12/26

CYK Algorithm: Observations

Each row corresponds to the substrings of a certain length: bottom
row is length 1, second from bottom is length 2, . . . , top row is
length n;

We work row by row upwards and compute the Vij ’s;

In the bottom row we have i = j , that is, ways of generating the
string ai ;

Vij is the set of variables generating aiai+1 . . . aj of length j − i + 1;
Hence, Vij is in row j − i + 1;

When i < j , in the row below that of Vij we have all ways to generate
shorter strings, including all prefixes and suffixes of aiai+1 . . . aj .

May 14th 2013, Lecture 13 TMV027/DIT321 13/26

CYK Algorithm: Table Filling

Remember we work with a CFG in CNF.

We compute Vij as follows:

Base case: First row in the table. Here i = j .
Then Vii = {A | A→ ai ∈ R}.

Induction step: To compute Vij for i < j we have all Vpq’s in rows below.

The length of the string is at least 2, so A⇒∗ aiai+1 . . . aj

starts with A⇒ BC such that B ⇒∗ aiai+1 . . . ak and
C ⇒∗ ak+1 . . . aj for some k .

So A ∈ Vij if ∃k , i 6 k < j such that

B ∈ Vik and C ∈ V(k+1)j ;
A→ BC ∈ R.

We need to look at
(Vii ,V(i+1)j), (Vi(i+1),V(i+2)j), . . . , (Vi(j−1),Vjj).

May 14th 2013, Lecture 13 TMV027/DIT321 14/26

CYK Algorithm: Example

Consider the grammar given by the rules

S → AB | BA A→ AS | a B → BS | b

Does abba belong to the language generated by the grammar?

We fill the corresponding table:

{S}
∅ {B}
{S} ∅ {S}
{A} {B} {B} {A}

a b b a

S ∈ V14 then S ⇒∗ abba.
May 14th 2013, Lecture 13 TMV027/DIT321 15/26

CYK Algorithm: Example

Consider the grammar given by the rules

S → XY X → XA | a | b
Y → AY | a A→ a

Does babaa belong to the language generated by the grammar?

We fill the corresponding table:

∅
∅ ∅
∅ ∅ {S ,X}

{S ,X} ∅ {S ,X} {S ,X ,Y }
{X} {A,X ,Y } {X} {A,X ,Y } {A,X ,Y }

b a b a a

S /∈ V15 then S 6⇒∗ babaa.
May 14th 2013, Lecture 13 TMV027/DIT321 16/26

Undecidable Problems for Context-Free
Grammars/Languages

Definition: An undecidable problem is a decision problem for which it is
impossible to construct a single algorithm that always leads to a correct
yes-or-no answer.

Example: Halting problem: does this program terminate?

The following problems are undecidable:

Is the CFG G ambiguous?

Is the CFL L inherently ambiguous?

If L1 and L2 are CFL, is L1 ∩ L2 = ∅?
If L1 and L2 are CFL, is L1 = L2? is L1 ⊆ L2?

If L is a CFL and P a RL, is P = L? is P ⊆ L?

If L is a CFL over Σ, is L = Σ∗?
May 14th 2013, Lecture 13 TMV027/DIT321 17/26

LL(k) Parsers and Grammars

Definition: An LL parser is a top-down parser for a subset of the
context-free grammars. It parses the input from left to right, and
constructs a leftmost derivation of the sentence.

The class of grammars which are parsable in this way is known as the LL
grammars.

An LL parser is called an LL(k) parser if it uses k tokens of look-ahead
when parsing a sentence. If such a parser exists for a certain grammar
then it is called an LL(k) grammar.

May 14th 2013, Lecture 13 TMV027/DIT321 18/26

LL(1) Grammars

Then a grammar is LL(1) if to construct the leftmost derivation we can
decide what is the production to use next just by looking only at the first
symbol of the string to be parsed.

Example: S → +SS | a | b is LL(1).

Example: S → F | (S + F) F → a is also LL(1).

Any LL(1) grammar is unambiguous: by definition there is at most one
leftmost derivation for any string.

Any regular grammar is LL(1) iff it corresponds to a DFA.

There are algorithms to decide if a grammar is LL(1).

May 14th 2013, Lecture 13 TMV027/DIT321 19/26

Undecidable Problems

To prove that a certain problem P is undecidable one usually reduces an
already known undecidable problem U to the problem P: instances of U
become instances of P.

(Can be seen like one “transforms” U so it “becomes” P).

That is, w ∈ U iff w ′ ∈ P for certain w and w ′.

Then, a solution to P would serve as a solution to U.

However, we know there are no solutions to U since U is known to be
undecidable.

Then we have a contradiction.

May 14th 2013, Lecture 13 TMV027/DIT321 20/26

Post Correspondence Problem

It is an undecidable decision problem introduced by Emil Post in 1946.

(See Section 9.4 in the book.)

Given words u1, . . . , un and v1, . . . , vn in {0, 1}∗, is it possible to
find i1, . . . , ik such that ui1 . . . uik = vi1 . . . vik ?

Example: Given u1 = 1, u2 = 10, u3 = 001, v1 = 011, v2 = 11, v3 = 00
we have that u3u2u3u1 = v3v2v3v1 = 001100011.

May 14th 2013, Lecture 13 TMV027/DIT321 21/26

Post Correspondence Problem and Context-Free Languages

Let Σ = {0, 1, a1, . . . , an}.
To the sequence u1, . . . , un we associate the grammar Gu with rules

A→ u1a1 | . . . | unan | u1Aa1 | . . . | unAan

To the sequence v1, . . . , vn we associate the grammar Gv with rules

B → v1a1 | . . . | vnan | v1Ba1 | . . . | vnBan

The grammars Gu and Gv are not ambiguous. (Can you see why?)

Let G be the grammar with all the productions of Gu and Gv plus
S → A | B.

May 14th 2013, Lecture 13 TMV027/DIT321 22/26

Post Correspondence Problem and Context-Free Languages

Theorem: The grammar G is ambiguous iff the Post correspondence
problem for u1, . . . , un and v1, . . . , vn has a solution.

Theorem: L(Gu) ∩ L(Gv) 6= ∅ iff the Post correspondence problem for
u1, . . . , un and v1, . . . , vn has a solution.

See Section 9.5 in the book for proofs that most of the statements in slide
17 are undecidable using the Post correspondence problem.

May 14th 2013, Lecture 13 TMV027/DIT321 23/26

Push-down Automata

Push-down automata (PDA) are essentially ε-NFA with the addition of a
stack where to store information.

The stack is needed to give the automata extra “memory”.

Example: To recognise the language 0n1n we proceed as follows:

When reading the 0’s, we push a symbol into the stack;

When reading the 1’s, we pop the symbol on top of the stack;

We accept the word if when we finish reading the input the stack is
empty.

The languages accepted by the PDA are exactly the CFL.

See the book, sections 6.1–6.3.

May 14th 2013, Lecture 13 TMV027/DIT321 24/26

Variation of Push-down Automata

DPDA = DFA + stack: Accepts a language that is between the RL and
the CFL.
The lang. accepted by DPDA have unambiguous grammars.
However, not all languages that have unambiguous
grammars can be accepted by these DPDA.

Example: The language generated by the unambiguous
grammar

S → 0S0 | 1S1 | ε
cannot be recognised by a DPDA.
See section 6.4 in the book.

2 or more stacks: A PDA with at least 2 stacks is as powerful as a TM.
Hence these PDA can recognise the recursively enumerable
languages.
See section 8.5.2.

May 14th 2013, Lecture 13 TMV027/DIT321 25/26

Overview of Next Lecture and Next Week’s Lectures

Thursday: Old exams;

Next Week: Lectures given by Laura Kovács.
Section 8:

Turing machines.

Will include some exercises as well.

May 14th 2013, Lecture 13 TMV027/DIT321 26/26

