Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2013

Lecture 12 Ana Bove

May 7th 2013

Overview of today's lecture:

- Regular grammars and Chomsky hierarchy;
- Simplifications and Normal Forms for CFL;
- Pumping Lemma for CFL.

Regular Languages and Context-Free Languages

Theorem: If \mathcal{L} is a regular language then \mathcal{L} is context-free.

Proof: If \mathcal{L} is a regular language then $\mathcal{L} = \mathcal{L}(D)$ for a DFA D.

Let $D = (Q, \Sigma, \delta, q_0, F)$.

We define a CFG $G = (Q, \Sigma, \mathcal{R}, q_0)$ where \mathcal{R} is the set of productions:

• $p \rightarrow aq$ if $\delta(p, a) = q$ • $p \rightarrow \epsilon$ if $p \in F$

We must prove by induction on |w| that $p \Rightarrow^* wq$ iff $\hat{\delta}(p, w) = q$ and $p \Rightarrow^* w$ iff $\hat{\delta}(p, w) \in F$.

Then, in particular $w \in \mathcal{L}(G)$ iff $w \in \mathcal{L}(D)$.

Regular Languages and Context-Free Languages

We prove by induction on |w| that $p \Rightarrow^* wq$ iff $\hat{\delta}(p, w) = q$ and $p \Rightarrow^* w$ iff $\hat{\delta}(p, w) \in F$.

Base case: If |w| = 0 then $w = \epsilon$. Given the rules in the grammar, $p \Rightarrow^* q$ only when p = q and $p \Rightarrow^* \epsilon$ only when $p \to \epsilon$. We have $\hat{\delta}(p, \epsilon) = p$ by definition of $\hat{\delta}$ and $p \in F$ by the way we defined the grammar.

Inductive step: Suppose |w| = n + 1, then w = av. $\hat{\delta}(p, av) = \hat{\delta}(\delta(p, a), v)$ with |v| = n. By IH $\delta(p, a) \Rightarrow^* vq$ iff $\hat{\delta}(\delta(p, a), v) = q$. By construction we have a rule $p \to a\delta(p, a)$. Then $p \Rightarrow a\delta(p, a) \Rightarrow^* avq$ iff $\hat{\delta}(p, av) = \hat{\delta}(\delta(p, a), v) = q$. By IH $\delta(p, a) \Rightarrow^* v$ iff $\hat{\delta}(\delta(p, a), v) \in F$. Now $p \Rightarrow a\delta(p, a) \Rightarrow^* av$ iff $\hat{\delta}(p, av) = \hat{\delta}(\delta(p, a), v) \in F$.

May 7th 2013, Lecture 12

TMV027/DIT321

2/26

Chomsky Hierarchy

This hierarchy of grammars was described by Noam Chomsky in 1956:

Type 0: Unrestricted grammars

They generate exactly all languages that can be recognised by a Turing machine;

- Type 1: Context-sensitive grammars Rules are of the form $\alpha A\beta \rightarrow \alpha \gamma \beta$. α and β may be empty, but γ must be non-empty;
- Type 2: Context-free grammars Are used to produce the syntax of most programming languages;
- Type 3: Regular grammars Rules are of the form $A \rightarrow Ba$, $A \rightarrow aB$ or $A \rightarrow \epsilon$.

We have that Type $3 \subset$ Type $2 \subset$ Type $1 \subset$ Type 0.

Generating, Reachable, Useful and Useless Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

Let $X \in V \cup T$ and let $\alpha, \beta \in (V \cup T)^*$.

Definition: X is *reachable* if $S \Rightarrow^* \alpha X \beta$.

Definition: X is generating if $X \Rightarrow^* w$ for some $w \in T^*$.

Definition: The symbol X is *useful* if $S \Rightarrow^* \alpha X\beta \Rightarrow^* w$ for some $w \in T^*$. **Note:** A symbol that is useful should be generating and reachable.

Definition: X is *useless* iff it is not useful.

We shall simplify the grammars by eliminating useless symbols.

May 7th 2013, Lecture 12

TMV027/DIT321

Eliminating Useless Symbols

If we eliminate useless symbols we do not change the language generated by the grammar.

Note: It is important in which order we check these conditions.

Example: Consider the following grammar

 $S \rightarrow AB \mid a \qquad A \rightarrow b$

If we first check for generating symbols and then for reachability we get

 $S \rightarrow a$

If we first check for reachability and then for generating we get

 $S \rightarrow a \qquad A \rightarrow b$

Computing the Generating Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the generating symbols of G: Base Case: All elements of T are generating;

Inductive Step: If a production $A \rightarrow \alpha$ is such that all symbols of α are known to be generating, then A is also generating. Observe that α could be ϵ .

Theorem: The procedure above finds all and only the generating symbols of a grammar.

Proof: See Theorem 7.4 in the book.

May 7th 2013, Lecture 12

TMV027/DTT32

Example: Generating Symbols

Consider the grammar over $\{a\}$ given by the rules:

$$egin{array}{rcl} S &
ightarrow & aS \mid W \mid U \ W &
ightarrow & aW \ U &
ightarrow & a \ V &
ightarrow & aa \end{array}$$

a is generating. *U* and *V* are generating since $U \rightarrow a$ and $V \rightarrow aa$. *S* is generating since $S \rightarrow U$. *W* is however not generating.

After eliminating the non-generating symbols and their productions we get

$$S \rightarrow aS \mid U \qquad U \rightarrow a \qquad V \rightarrow aa$$

Computing the Reachable Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the reachable symbols of G:

Base Case: The start variable *S* is reachable;

Inductive Step: If A is reachable and we have a production $A \rightarrow \alpha$ then all symbols in α are reachable.

Theorem: The procedure above finds all and only the reachable symbols of a grammar.

Proof: See Theorem 7.6 in the book.

May 7th 2013, Lecture 12

Example: Reachable Symbols

Consider the grammar given by the rules:

$S ightarrow aB \mid BC$	$C \rightarrow b$
$A ightarrow aA \mid c \mid aDb$	b $D \to B$
$B \rightarrow DB \mid C$	

S is reachable. Hence a, B and C are reachable. Then b and D are reachable. However A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

$$S \rightarrow aB \mid BC \qquad C \rightarrow b \\ B \rightarrow DB \mid C \qquad D \rightarrow B$$

Eliminating Useless Symbols

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG and let $\mathcal{L}(G) \neq \emptyset$. Let $G' = (V', T', \mathcal{R}', S)$ be constructed as follows:

- Eliminate all non-generating symbols and all productions involving one or more of those symbols;
- In the same way, eliminate now all symbols that are not reachable in the grammar.

Then G' has no useless symbols and $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof: See Theorem 7.2 in the book.

May 7th 2013, Lecture 12

TMV027/DIT32

Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

S	\rightarrow	gAe aYB CY	A	\rightarrow	bBY ooC
В	\rightarrow	dd D	С	\rightarrow	jVB gl
D	\rightarrow	n	U	\rightarrow	kW
V	\rightarrow	baXXX oV	W	\rightarrow	С
X	\rightarrow	fV	Y	\rightarrow	Yhm

The simplified grammar is:

$$egin{array}{rcl} S &
ightarrow & gAe \ A &
ightarrow & ooC \ C &
ightarrow & gl \end{array}$$

Nullable Variables

Definition: A variable A is *nullable* if $A \Rightarrow^* \epsilon$. **Note:** Observe that only variables are nullable.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the nullable variables of G:

Base Case: If $A \rightarrow \epsilon$ is a production then A is nullable;

Inductive Step: If $B \to X_1 X_2 \dots X_k$ is a production and all the X_i are nullable then B is also nullable.

Theorem: The procedure above finds all and only the nullable variables of a grammar.

Proof: See Theorem 7.7 in the book.

May 7th 2013, Lecture 12

TMV027/DIT321

Eliminating ϵ -Productions

Definition: An ϵ -production is a production of the form $A \rightarrow \epsilon$.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the ϵ -production of G:

- Determine all nullable variables of G;
- ② Build P with all the productions of R plus a rule A → αβ whenever we have A → αBβ and B is nullable.
 Note: If A → X₁X₂...X_k and all X_i are nullable, we do not include the case where all the X_i are absent;
- Solutions Construct $G' = (V, T, \mathcal{R}', S)$ where \mathcal{R}' contains all the productions in \mathcal{P} except for the ϵ -productions.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

Proof: See Theorem 7.9 in the book. May 7th 2013, Lecture 12

Example: Eliminating ϵ -Productions

Example: Consider the grammar given by the rules:

 $S \rightarrow aSb \mid SS \mid \epsilon$

By eliminating ϵ -productions we obtain

 $S \rightarrow ab \mid aSb \mid S \mid SS$

Example: Consider the grammar given by the rules:

 $S \rightarrow AB$ $A \rightarrow aAA \mid \epsilon$ $B \rightarrow bBB \mid \epsilon$

By eliminating ϵ -productions we obtain

 $S \rightarrow A \mid B \mid AB$ $A \rightarrow a \mid aA \mid aAA$ $B \rightarrow b \mid bB \mid bBB$

May 7th 2013, Lecture 12

TMV027/DIT32

Eliminating Unit Productions

Definition: A *unit production* is a production of the form $A \rightarrow B$.

This is similar to ϵ -transitions in a ϵ -NFA.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the unit production of G:

- Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \to \alpha$ whenever we have $A \to B$ and $B \to \alpha$;
- Onstruct $G' = (V, T, \mathcal{R}', S)$ where R' contains all the productions in \mathcal{P} except for the unit production.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G)$.

Proof: See Theorem 7.13 in the book.

May 7th 2013, Lecture 12

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

By eliminating unit productions we obtain:

S	\rightarrow	CBh be SABC	$A \rightarrow$	aaC
В	\rightarrow	Sf ggg	$C \rightarrow$	cA d
D	\rightarrow	be SABC	$E \rightarrow$	be

May 7th 2013, Lecture 12

TMV027/DIT321

Simplification of a Grammar

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG whose language contains at least one string other than ϵ . If we construct G' by

- Eliminating ϵ -productions;
- eliminating unit productions;
- Eliminating useless symbols;

using the procedures shown before then $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

In addition, G' contains no ϵ -productions, no unit productions and no useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

Chomsky Normal Form

Definition: A CFG is in *Chomsky Normal Form* (CNF) if *G* has no useless symbols and all the productions are of the form $A \rightarrow BC$ or $A \rightarrow a$.

Observe that a CFG that is in CNF has no unit or ϵ -productions.

Theorem: For any CFG G whose language contains at least one string other than ϵ , there is a CFG G' that is in Chomsky Normal Form and such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

Proof: See Theorem 7.16 in the book.

May 7th 2013, Lecture 12

TMV027/DIT321

Constructing a Chomsky Normal Form

Let us assume G has no ϵ - or unit productions and no useless symbols.

Then every production is of the form $A \rightarrow a$ or $A \rightarrow X_1 X_2 \dots X_k$ for k > 1.

If X_i is a terminal introduce a new variable A_i and a new rule $A_i \rightarrow X_i$ (if no such rule exists for X_i).

Use A_i in place of X_i in any rule whose body has length > 1.

Now, all rules are of the form $B \rightarrow b$ or $B \rightarrow C_1 C_2 \dots C_k$ with all C_j variables.

Introduce k - 2 new variables and break each rule $B \rightarrow C_1 C_2 \dots C_k$ as

 $B \rightarrow C_1 D_1 \quad D_1 \rightarrow C_2 D_2 \quad \cdots \quad D_{k-2} \rightarrow C_{k-1} C_k$

Example: Chomsky Normal Form

Consider the grammar given by the rules:

$$S
ightarrow aSb \mid SS \mid ab$$

We first obtain

 $S \rightarrow ASB \mid SS \mid AB \qquad A \rightarrow a \qquad B \rightarrow b$

Then we build a grammar in Chomsky Normal Form

May 7th 2013, Lecture 12

TMV027/DIT321

Pumping Lemma for Left Regular Languages

Let $G = (V, T, \mathcal{R}, S)$ be a left regular grammar and let n = |V|.

If $a_1a_2...a_m \in \mathcal{L}(G)$ and m > n, then any derivation

 $S \Rightarrow a_1A_1 \Rightarrow a_1a_2A_2 \Rightarrow \ldots \Rightarrow a_1 \ldots a_iA \Rightarrow \ldots \Rightarrow a_1 \ldots a_jA \Rightarrow \ldots \Rightarrow a_1 \ldots a_m$

has length m and there is at least one variable A which is used twice.

(Pigeon-hole principle)

If $x = a_1 \dots a_i$, $y = a_{i+1} \dots a_j$ and $z = a_{j+1} \dots a_m$, we have $|xy| \leq n$ and $xy^k z \in \mathcal{L}(G)$ for all k.

Pumping Lemma for Context-Free Languages

Theorem: Let \mathcal{L} be a context-free language. Then, there exists a constant n such that for every $w \in \mathcal{L}$ with $|w| \ge n$, then we can write w = xuyvz such that

- $|uyv| \leq n;$
- 2 $uv \neq \epsilon$, that is, at least one of u and v is not empty;
- $\forall k \geq 0, \ x u^k y v^k z \in \mathcal{L}.$

Proof: (Sketch)

We can assume that the language is presented by a grammar in Chomsky Normal Form, working with $\mathcal{L} - \{\epsilon\}$.

Observe that parse trees for grammars in CNF have at most 2 children.

Note: If m + 1 is the height of a parse tree for w, then $|w| \leq 2^m$ (prove this as an exercise!).

May 7th 2013, Lecture 12

TMV027/DIT321

Proof Sketch: Pumping Lemma for Context-Free Languages

Let |V| = m > 0. Take $n = 2^m$ and w such that $|w| \ge 2^m$.

Any parse tree for w has a path from root to leave of length at least m+1.

Let A_0, A_1, \ldots, A_k be the variables in the path. We have $k \ge m$.

Then at least 2 of the last m + 1 variables should be the same, say A_i and A_j .

Observe figures 7.6 and 7.7 in pages 282–283.

See Theorem 7.18 in the book for the complete proof.

Example: Pumping Lemma for Context-Free Languages

Consider the following grammar:

Consider the derivation for the string aaaabbbb

 $S \Rightarrow AC \Rightarrow aC \Rightarrow aSB \Rightarrow aACB \Rightarrow aaCB \Rightarrow aaSBB \Rightarrow aaABBB \Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB \Rightarrow aaabbb$

Consider the parse tree and the last 2 occurrences of the symbol S.

Then we have x = a, u = a, y = ab, v = b, z = b.

May 7th 2013, Lecture 12

TMV027/DIT3

Example: Pumping Lemma for Context-Free Languages

Lemma: The language $\mathcal{L} = \{a^m b^m c^m \mid m > 0\}$ is not context-free.

Proof: Assume \mathcal{L} is context-free.

Then we have n as stated in the Pumping lemma.

Consider $w = a^n b^n c^n$. We have that $|w| \ge n$.

So we know that w = xuyvz such that

 $|uyv| \leq n$ $uv \neq \epsilon$ (alt. |uv| > 0) $\forall k \geq 0, xu^k yv^k z \in \mathcal{L}$

Since $|uyv| \leq n$ there is one letter $d \in \{a, b, c\}$ that *does not* occur in *uyv*.

Since |uv| > 0 there is another letter $e \in \{a, b, c\}, e \neq d$ that *does* occur in uv.

Then *e* has more occurrences than *d* in xu^2yv^2z and this contradicts the fact that $xu^2yv^2z \in \mathcal{L}$.

Overview of Next Lecture

Guest lecture by *Aarne Ranta*

Using Grammars in Compilers and Translation

and sections 7.3-7.4:

- Closure properties of CFL;
- Decision properties of CFL.

May 7th 2013, Lecture 12

TMV027/DIT321

26/26