# Finite Automata and Formal Languages TMV027/DIT321- LP4 2013

Lecture 8 Ana Bove

April 23rd 2013

#### Overview of today's lecture:

- Equivalence between FA and RE: from RE to FA;
- Pumping Lemma for RL;
- Closure properties of RL.

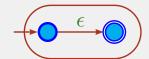
#### From Regular Expressions to Finite Automata

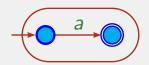
**Proposition:** Every language defined by a RE is accepted by a FA.

**Proof:** Let  $\mathcal{L} = \mathcal{L}(R)$  for some RE R. By induction on R we construct a  $\epsilon$ -NFA E with only one final state and no arcs into the initial state or out of the final state, and such that  $\mathcal{L} = \mathcal{L}(E)$ .

Base cases are  $\emptyset$ ,  $\epsilon$  and  $a \in \Sigma$ . The corresponding  $\epsilon$ -NFA recognising the languages  $\emptyset$ ,  $\{\epsilon\}$  and  $\{a\}$  respectively, are:



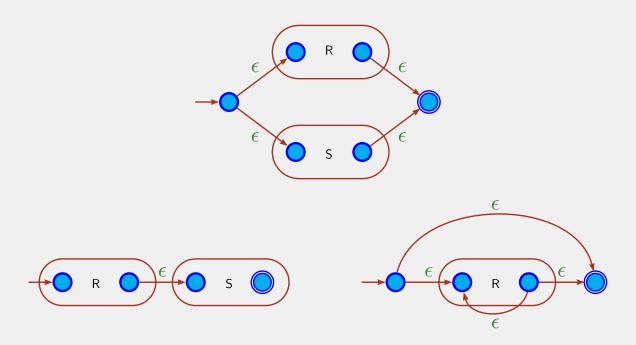




April 23rd 2013, Lecture 8 TMV027/DIT321 1/22

# From RE to FA: Inductive Step

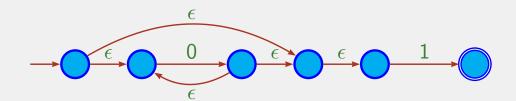
Given the RE R and S and FA for them, we construct the FA for R+S, RS and  $R^*$  recognising the languages  $\mathcal{L}(R)\cup\mathcal{L}(S)$ ,  $\mathcal{L}(R)\mathcal{L}(S)$  and  $\mathcal{L}(R)^*$  respectively:



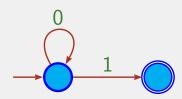
April 23rd 2013, Lecture 8 TMV027/DIT321 2/2

### Example: From RE to FA

Let us follow this method to construct a FA for the RE 0\*1.



Compare it with the following FA:



April 23rd 2013, Lecture 8 TMV027/DIT321 3/22

# How to Identify Regular Languages?

We have seen that a language is regular iff there is a DFA that accepts the language.

Then we saw that DFA, NFA and  $\epsilon$ -NFA are equivalent in the sense that we can convert between them.

Hence FA accept all and only the regular languages (RL).

Now we have seen how to convert between FA and RE.

Thus RE also define all and only the RL.

April 23rd 2013, Lecture 8

TMV027/DIT32

4/22

## How to Prove that a Language is NOT Regular?

In a FA with n states, any path

$$q_1 \stackrel{a_1}{\rightarrow} q_2 \stackrel{a_2}{\rightarrow} q_3 \stackrel{a_3}{\rightarrow} \dots \stackrel{a_{m-1}}{\rightarrow} q_m \stackrel{a_m}{\rightarrow} q_{m+1}$$

has a loop if  $m \geqslant n$ .

That is, we have i < j such that  $q_i = q_j$  in the path above.

This can be seen as an application of the *Pigeonhole Principle*, which is an important reasoning technique in mathematics and computer science.

(See Wikipedia.)

April 23rd 2013, Lecture 8 TMV027/DIT321 5/22

## How to Prove that a Language is NOT Regular?

**Example:** Let us prove that  $\mathcal{L} = \{0^m 1^m | m \geqslant 0\}$  is not a RL.

Let us assume it is: then  $\mathcal{L} = \mathcal{L}(A)$  for some FA A with n states, n > 0.

Let  $k \geqslant n > 0$  and let  $w = 0^k 1^k \in \mathcal{L}$ .

Then there must be an accepting path  $q_0 \stackrel{w}{\rightarrow} q \in F$ .

Since  $k \ge n$ , there is a loop (pigeonhole principle) when reading the 0's.

Then w = xyz with  $|xy| = j \leqslant n$ ,  $y \neq \epsilon$  and  $z = 0^{k-j}1^k$  such that

$$q_0 \xrightarrow{x} q_I \xrightarrow{y} q_I \xrightarrow{z} q \in F$$

Observe that the following path is also an accepting path

$$q_0 \xrightarrow{x} q_I \xrightarrow{z} q \in F$$

However y must be of the form  $0^i$  with i > 0 hence  $xz = 0^{k-i}1^k \notin \mathcal{L}$ .

This contradicts the fact that A accepts  $\mathcal{L}$ .

April 23rd 2013, Lecture 8

TMV027/DIT32:

6/2

## The Pumping Lemma for Regular Languages

**Theorem:** Let  $\mathcal{L}$  be a RL. Then, there exists a constant n—which depends on  $\mathcal{L}$ —such that for every string  $w \in \mathcal{L}$  and  $|w| \geqslant n$ , we can break w into 3 strings x, y and z such that w = xyz and

- $|xy| \leq n$

April 23rd 2013, Lecture 8 TMV027/DIT321 7/22

## Proof of the Pumping Lemma

Assume we have a FA A that accepts the language, then  $\mathcal{L} = \mathcal{L}(A)$ .

Let *n* be the number of states in *A*.

Then any path of length  $m \ge n$  has a loop.

Let us consider  $w = a_1 a_2 \dots a_m \in \mathcal{L}$ .

We have an accepting path and a loop such that

$$q_0 \stackrel{x}{\rightarrow} q_I \stackrel{y}{\rightarrow} q_I \stackrel{z}{\rightarrow} q \in F$$

with  $w = xyz \in \mathcal{L}$ ,  $y \neq \epsilon$ ,  $|xy| \leqslant n$ .

Then we also have

$$q_0 \stackrel{\times}{\rightarrow} q_I \stackrel{y^k}{\rightarrow} q_I \stackrel{z}{\rightarrow} q \in F$$

for any k, that is,  $\forall k \geqslant 0, xy^k z \in \mathcal{L}$ .

April 23rd 2013, Lecture 8

TMV027/DIT32

8/22

## Example: Application of the Pumping Lemma

Let us use the Pumping lemma to prove that  $\{0^m1^m|m\geqslant 0\}$  is not a RL.

We assume it is.

Let n be the constant given by the lemma and let  $w = 0^n 1^n$ , then  $|w| \ge n$ .

By the lemma we know that w = xyz with  $y \neq \epsilon$ ,  $|xy| \leq n$  and  $\forall k \geq 0, xy^kz \in \mathcal{L}$ .

Since  $y \neq \epsilon$  and  $|xy| \leq n$ , we know that  $y = 0^i$  with  $i \geq 1$ .

However, we have a contradiction since  $xy^kz \notin \mathcal{L}$  for  $k \neq 1$ .

**Note:** The Pumping lemma is connected to the fact that a FA has *finite* memory! If we could build a machine with infinitely many states it would be able to recognise the language.

April 23rd 2013, Lecture 8 TMV027/DIT321 9/22

## Example: Application of the Pumping Lemma

**Example:** Let us prove that  $\mathcal{L} = \{0^i 1^j | i \leq j\}$  is not a RL.

Let n be given by the Pumping lemma and let  $w = 0^n 1^{n+1} \in \mathcal{L}$ , hence  $|w| \geqslant n$ .

Then we know that w = xyz with  $y \neq \epsilon$ ,  $|xy| \leq n$  and  $\forall k \geq 0, xy^kz \in \mathcal{L}$ .

Since  $y \neq \epsilon$  and  $|xy| \leq n$ , we know that  $y = 0^r$  with  $r \geq 1$ .

However, we have a contradiction since  $xy^kz \notin \mathcal{L}$  for k > 2.

(Even for k = 2 if r > 1.)

**Example:** What about the languages  $\{0^i1^j \mid i \geqslant j\}$ ,  $\{0^i1^j \mid i > j\}$  and  $\{0^i1^j \mid i \neq j\}$ ?

Does the Pumping lemma help?

April 23rd 2013, Lecture 8 TMV027/DIT321

#### Pumping Lemma is not a Necessary Condition

By showing that the Pumping lemma does not apply to a certain language  $\mathcal{L}$  we prove that  $\mathcal{L}$  is not regular.

However, if the Pumping lemma *does* apply to  $\mathcal{L}$ , we *cannot* conclude whether  $\mathcal{L}$  is regular or not!

**Example:** We know  $\mathcal{L} = \{b^m c^m \mid m \ge 0\}$  is not regular.

Let us consider  $\mathcal{L}' = a^+ \mathcal{L} \cup (b+c)^*$ .

 $\mathcal{L}'$  is not regular. If  $\mathcal{L}'$  would be regular, then we can prove that  $\mathcal{L}$  is regular (using the closure properties we will see next).

However, the Pumping lemma does apply for  $\mathcal{L}'$  with n=1.

This shows the Pumping lemma is not a necessary condition for a language to be regular.

April 23rd 2013. Lecture 8 TMV027/DIT321 11/22

## Closure Properties for Regular Languages

Let  $\mathcal{M}$  and  $\mathcal{N}$  be RL. Then  $\mathcal{M} = \mathcal{L}(R) = \mathcal{L}(D)$  and  $\mathcal{N} = \mathcal{L}(S) = \mathcal{L}(F)$  for RE R and S, and DFA D and F.

We have seen that RL are closed under the following operations:

*Union:*  $\mathcal{M} \cup \mathcal{N} = \mathcal{L}(R+S)$  or  $\mathcal{M} \cup \mathcal{N} = \mathcal{L}(D \oplus F)$  (s.20, l.4);

Complement:  $\overline{\mathcal{M}} = \mathcal{L}(\overline{D})$  (slide 21, lec. 4)

*Intersection:*  $\mathcal{M} \cap \mathcal{N} = \overline{\overline{\mathcal{M}} \cup \overline{\mathcal{N}}}$  or  $\mathcal{M} \cap \mathcal{N} = \mathcal{L}(D \times F)$  (s.19, l.4);

*Difference:*  $\mathcal{M} - \mathcal{N} = \mathcal{M} \cap \overline{\mathcal{N}}$ ;

Concatenation: MN = L(RS);

*Closure:*  $\mathcal{M}^* = \mathcal{L}(R^*)$ .

April 23rd 2013, Lecture 8

TMV027/DIT32

12/2

#### More Closure Properties for Regular Languages

We shall now see that RL are also closed under the following operations:

See exercise 2 on DFA.

*Prefix:* Hint: in D, make final all states in a path from the

start state to final state.

Reversal: Recall that  $rev(a_1...a_n) = a_n...a_1$  and

 $\forall x, \text{rev}(\text{rev}(x)) = x \text{ (slides 34 \& 36, lec. 2)};$ 

Structure-preserving functions between 2 algebraic

structures (slide 29, lec. 2).

Homomorphism: Recall languages are monoids.

We will map symbols to strings.

Intuitively,  $h(a_1 \ldots a_n) = h(a_1) \ldots h(a_n)$ .

Inverse homomorphism:

April 23rd 2013. Lecture 8 TMV027/DIT321 13/22

#### Closure under Prefix

Another way to prove that the language of prefixes of a RL is regular is as follows.

Define the following function over RE:

$$pre(\emptyset) = \emptyset$$
  
 $pre(\epsilon) = \epsilon$   
 $pre(a) = \epsilon + a$   
 $pre(R_1 + R_2) = pre(R_1) + pre(R_2)$   
 $pre(R_1R_2) = pre(R_1) + R_1pre(R_2)$   
 $pre(R^*) = R^*pre(R)$ 

and prove that  $\mathcal{L}(pre(R)) = \text{Prefix}(\mathcal{L}(R))$ .

Then, if  $\mathcal{M} = \mathcal{L}(R)$  for some RE R then  $\mathsf{Prefix}(\mathcal{M}) = \mathsf{Prefix}(\mathcal{L}(R)) = \mathcal{L}(\mathit{pre}(R))$ .

April 23rd 2013, Lecture 8

TMV027/DIT32

14/22

#### Closure under Reversal

We define the following function over RE:

$$\emptyset^{r} = \emptyset$$
  $\epsilon^{r} = \epsilon$   $a^{r} = a$   
 $(R_{1} + R_{2})^{r} = R_{1}^{r} + R_{2}^{r}$   
 $(R_{1}R_{2})^{r} = R_{2}^{r}R_{1}^{r}$   
 $(R^{*})^{r} = (R^{r})^{*}$ 

**Theorem:** If  $\mathcal{M}$  is regular so is  $\mathcal{M}^{r}$ .

**Proof:** (See theo. 4.11, pages 139–140).

Let R be a RE such that  $\mathcal{M} = \mathcal{L}(R)$ .

We need to prove by structural induction on R that  $\mathcal{L}(R^r) = (\mathcal{L}(R))^r$ . Hence  $\mathcal{M}^r = (\mathcal{L}(R))^r = \mathcal{L}(R^r)$  and  $\mathcal{M}^r$  is regular.

**Example:** The reverse of the language defined by  $(0+1)^*0$  can be defined by  $0(0+1)^*$ .

April 23rd 2013, Lecture 8 TMV027/DIT321 15/22

#### Closure under Reversal

Another way to prove this result is by constructing a  $\epsilon$ -NFA for  $\mathcal{M}^{\mathsf{r}}$ .

**Proof:** Let  $N = (Q, \Sigma, \delta_N, q_0, F)$  be a NFA such that  $\mathcal{M} = \mathcal{L}(N)$ .

Define  $E = (Q \cup \{q\}, \Sigma, \delta_E, q, \{q_0\})$  with  $q \notin Q$  and  $\delta_E$  such that

$$r \in \delta_E(s, a)$$
 iff  $s \in \delta_N(r, a)$  for  $r, s \in Q$   
 $r \in \delta_E(q, \epsilon)$  iff  $r \in F$ 

April 23rd 2013, Lecture 8

TMV027/DIT321

16/2

#### Closure under Homomorphisms

**Theorem:** If  $\mathcal{M}$  is a RL over  $\Sigma$  and  $h : \Sigma^* \to \Delta^*$  is an homomorphism on  $\Sigma$  then  $h(\mathcal{M})$  is also regular.

**Proof:** We define the following function over RE:

$$f_h(\emptyset) = \emptyset$$
  $f_h(\epsilon) = \epsilon$   $f_h(a) = h(a)$   
 $f_h(R_1 + R_2) = f_h(R_1) + f_h(R_2)$   
 $f_h(R_1R_2) = f_h(R_1)f_h(R_2)$   
 $f_h(R^*) = (f_h(R))^*$ 

We need to prove by structural induction on R that  $\mathcal{L}(f_h(R)) = h(\mathcal{L}(R))$ .

Now, if  $\mathcal{M} = \mathcal{L}(R)$  then we have that  $h(\mathcal{M})$  is regular since  $h(\mathcal{M}) = h(\mathcal{L}(R)) = \mathcal{L}(f_h(R))$ .

(See Theorem 4.14, pages 141-142.)

April 23rd 2013, Lecture 8 TMV027/DIT321 17/2

## Closure under Homomorphisms

Let  $h: \Sigma^* \to \Delta^*$  be a homomorphism and  $\mathcal{M}$  a RL over  $\Sigma$ .

By the previous theorem and the definition of RL, we know that there exists a DFA D over  $\Sigma$  and a DFA F over  $\Delta$  such that

$$\mathcal{M} = \mathcal{L}(D)$$
 and  $h(\mathcal{M}) = \mathcal{L}(F)$ 

*F* can be constructed from the RE for  $\mathcal{M}$  (via an  $\epsilon$ -NFA).

Often not obvious how to construct the DFA directly.

April 23rd 2013, Lecture 8

TMV027/DIT321

18/2

#### Inverse Homomorphisms

**Definition:** If  $h: \Sigma^* \to \Delta^*$  is a homomorphism and  $\mathcal{L}$  is a language over  $\Delta$ ,  $h^{-1}(\mathcal{L})$  (read h inverse of  $\mathcal{L}$ ) is the set of strings w such that  $h(w) \in \mathcal{L}$ .

In other words,  $h^{-1}(\mathcal{L}) = \{ w \in \Sigma^* \mid h(w) \in \mathcal{L} \}.$ 

**Note:**  $h^{-1}$  does not necessarily correspond to a function!

**Example:** Imagine we have that h(a) = c, h(b) = c and  $\mathcal{L} = \{c\}$ .

Then  $h^{-1}(\mathcal{L}) = \{a, b\}$  but  $h^{-1}$  itself is not a function.

April 23rd 2013, Lecture 8 TMV027/DIT321 19/22

## Closure under Inverse Homomorphisms

**Theorem:** Let  $h: \Sigma^* \to \Delta^*$  be a homomorphism. If  $\mathcal{M}$  is a RL over  $\Delta$  then  $h^{-1}(\mathcal{M})$  is a RL over  $\Sigma$ .

**Proof:** Let  $D = (Q, \Delta, \delta, q_0, F)$  be a DFA such that  $\mathcal{M} = \mathcal{L}(D)$ .

We define the DFA  $D'=(Q,\Sigma,\delta',q_0,F)$  over  $\Sigma$  such that  $\delta'(q,a)=\hat{\delta}(q,h(a))$ 

By induction on |w| we prove that  $\hat{\delta}'(q,w) = \hat{\delta}(q,h(w))$ 

(Recall that  $\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$ .)

Then D' accepts w iff D accepts h(w) (since the set of accepting states is the same in both DFA).

**Note:** Since  $h^{-1}$  might not be a function it seems difficult to directly define the RE that corresponds to the h inverse of  $\mathcal{M}$ .

April 23rd 2013, Lecture 8

TMV027/DIT32

20/23

## Example: $\mathcal{L}'$ from Slide 11

**Example:** We know  $\mathcal{L} = \{b^m c^m \mid m \geqslant 0\}$  is not regular.

Let us consider  $\mathcal{L}' = a^+ \mathcal{L} \cup (b+c)^*$ .

We will prove that  $\mathcal{L}'$  is not regular. Let us assume it is.

Then  $a^+\mathcal{L}=\mathcal{L}'\cap\overline{(b+c)^*}$  must be regular.

Then,  $\mathcal{L} = h(a^+\mathcal{L})$  must also be regular, where h is the following homomorphism:  $h(a) = \epsilon, h(b) = b, h(c) = c$ .

We arrive at a contradiction, hence  $\mathcal{L}'$  cannot be regular.

April 23rd 2013, Lecture 8 TMV027/DIT321 21/22

# Overview of Next Lecture

#### Sections 4.3–4.4:

- Decision Properties for RL;
- Equivalence of RL;
- Minimisation of automata.

April 23rd 2013, Lecture 8 TMV027/DIT321 22/22