Finite Automata and Formal Languages TMV027/DIT321– LP4 2013

Lecture 7 Ana Bove

April 18th 2013

Overview of today's lecture:

- More on RE;
- Algebraic laws for regular expressions;
- Equivalence between FA and RE: from FA to RE.

Recall: RE and the Language they Define

$$R, S ::= \emptyset \mid \epsilon \mid a \mid R + S \mid RS \mid R^*$$

Definition: The *language* defined by a regular expression is defined by recursion on the expression:

Base cases:
$$\mathcal{L}(\emptyset) = \emptyset;$$

 $\mathcal{L}(\epsilon) = \{\epsilon\};$
 $\mathbf{Given} \ a \in \Sigma, \ \mathcal{L}(a) = \{a\}.$
Recursive cases: $\mathcal{L}(R+S) = \mathcal{L}(R) \cup \mathcal{L}(S);$
 $\mathcal{L}(RS) = \mathcal{L}(R)\mathcal{L}(S);$
 $\mathcal{L}(R^*) = \mathcal{L}(R)^*.$

Example of Regular Expressions

Let $\Sigma = \{0, 1\}$:

•
$$(01)^* = \{\epsilon, 01, 0101, 010101, \ldots\}$$

• $0^* + 1^* = \{\epsilon, 0, 00, 000, \ldots\} \cup \{\epsilon, 1, 11, 111, \ldots\}$
• $(0+1)^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \ldots\}$
• $(000)^* = \{\epsilon, 000, 000000, 00000000, \ldots\}$
• $01^* + 1 = \{0, 01, 011, 0111, \ldots\} \cup \{1\}$
• $((0(1^*)) + 1) = \{0, 01, 011, 0111, \ldots\} \cup \{1\}$
• $(01)^* + 1 = \{\epsilon, 01, 0101, 010101, \ldots\} \cup \{1\}$
• $(\epsilon + 1)(01)^*(\epsilon + 0) = (01)^* + 1(01)^* + (01)^*0 + 1(01)^*0$
• $(01)^* + 1(01)^* + (01)^*0 + 1(01)^*0$

What do they mean? Are there expressions that are equivalent?

April 18th 2013, Lecture 7

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T:

Idempotent:	R + R = R	
Commutative:	R + S = S + R	In general, $\mathit{RS} eq \mathit{SR}$
Associative:	R + (S + T) = (R + S) + T	R(ST) = (RS)T
Distributive:	R(S+T) = RS + RT	(S+T)R = SR + TR
Identity:	$R + \emptyset = \emptyset + R = R$	$R\epsilon = \epsilon R = R$
Annihilator:	$R\emptyset = \emptyset R = \emptyset$	
	$\emptyset^* = \epsilon^* = \epsilon$	
	$R? = \epsilon + R$	
	$R^+ = RR^* = R^*R$	
	$R^*=(R^*)^*=R^*R^*=\epsilon+R^+$	

Note: Compare these laws with those for sets on slide 14 lecture 2.

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

- Shifting rule: $R(SR)^* = (RS)^*R$
- **Denesting rule**: $(R^*S)^*R^* = (R+S)^*$

Note: By the shifting rule we also get $R^*(SR^*)^* = (R+S)^*$

• Variation of the denesting rule: $(R^*S)^* = \epsilon + (R+S)^*S$

TMV027/DIT32

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that $a^*b(c + da^*b)^* = (a + bc^*d)^*bc^*$:

$a^*b(c+da^*b)^*=a^*b(c^*da^*b)^*c^*$	by denesting $(R = c, S = da^*b)$
$a^*b(c^*da^*b)^*c^* = (a^*bc^*d)^*a^*bc^*$	by shifting $(R = a^*b, S = c^*d)$
$(a^*bc^*d)^*a^*bc^*=(a+bc^*d)^*bc^*$	by denesting $(R = a, S = bc^*d)$

Example: The set of all words with no substring of more than two adjacent 0's is $(1 + 01 + 001)^*(\epsilon + 0 + 00)$. Now,

$$(1+01+001)^*(\epsilon+0+00) = ((\epsilon+0)(\epsilon+0)1)^*(\epsilon+0)(\epsilon+0)$$

= (\epsilon+0)(\epsilon+0)(\epsilon+0)(\epsilon+0))^* by shifting
= (\epsilon+0+00)(1+10+100)^*

Then $(1 + 01 + 001)^*(\epsilon + 0 + 00) = (\epsilon + 0 + 00)(1 + 10 + 100)^*$

Equality of Regular Expressions

Remember that RE are a way to denote languages.

Then, for RE R and S, R = S actually means $\mathcal{L}(R) = \mathcal{L}(S)$.

Hence we can prove the equality of RE in the same way we can prove the equality of languages.

Example: Let us prove that $R^* = R^*R^*$. Let $\mathcal{L} = \mathcal{L}(R)$.

 $\mathcal{L}^* \subseteq \mathcal{L}^* \mathcal{L}^*$ since $\epsilon \in \mathcal{L}^*$.

Conversely, if $\mathcal{L}^*\mathcal{L}^* \subseteq \mathcal{L}^*$ then $x = x_1x_2$ with $x_1 \in \mathcal{L}^*$ and $x_2 \in \mathcal{L}^*$.

If $x_1 = \epsilon$ or $x_2 = \epsilon$ then it is clear that $x \in \mathcal{L}^*$.

Otherwise $x_1 = u_1 u_2 \dots u_n$ with $u_i \in \mathcal{L}$ and $x_2 = v_1 v_2 \dots v_m$ with $v_i \in \mathcal{L}$.

Then
$$x = x_1 x_2 = u_1 u_2 \dots u_n v_1 v_2 \dots v_m$$
 is in \mathcal{L}^* .

April 18th 2013, Lecture 7

MV027/DIT3

6/24

Proving Algebraic Laws for Regular Expressions

In general, given the RE R and S we can prove the law R = S as follows:

Convert R and S into concrete regular expressions C and D, respectively, by replacing each variable in the RE R and S by (different) concrete symbols.

Example: $R(SR)^* = (RS)^*R$ can be converted into $a(ba)^* = (ab)^*a$.

Prove or disprove whether $\mathcal{L}(C) = \mathcal{L}(D)$. If $\mathcal{L}(C) = \mathcal{L}(D)$ then R = S is a true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the shifting law was (somehow) one of the exercises in assignment 1: prove that for all n, $a(ba)^n = (ab)^n a$.

April 18th 2013, Lecture 7

MV027/DIT321

Example: Proving the Denesting Rule

We can state $(R^*S)^*R^* = (R+S)^*$ by proving $\mathcal{L}((a^*b)^*a^*) = \mathcal{L}((a+b)^*)$: \subseteq : Let $x \in (a^*b)^*a^*$, then x = vw with $v \in (a^*b)^*$ and $w \in a^*$. By induction on v. If $v = \epsilon$ we are done. Otherwise v = av' or v = bv'. In both cases $v' \in (a^*b)^*$ hence by IH $v'w \in (a+b)^*$ and so is vw. \supset : Let $x \in (a + b)^*$. By induction on x. If $x = \epsilon$ then we are done. Otherwise x = x'a or x = x'b and $x' \in (a + b)^*$. By IH $x' \in (a^*b)^*a^*$ and then x' = vw with $v \in (a^*b)^*$ and $w \in a^*$. If $x'a = v(wa) \in (a^*b)^*a^*$ since $v \in (a^*b)^*$ and $(wa) \in a^*$. If $x'b = (v(wb))\epsilon \in (a^*b)^*a^*$ since $v(wb) \in (a^*b)^*$ and $\epsilon \in a^*$. April 18th 2013, Lecture 7

Regular Languages and Regular Expressions

Theorem: If \mathcal{L} is a regular language then there exists a regular expression R such that $\mathcal{L} = \mathcal{L}(R)$.

Proof: Recall that each regular language has an automata that recognises it.

We shall construct a regular expression from such automata.

We will see 2 ways of constructing a regular expression from an automata.

- Eliminating states (section 3.2.2);
- By solving a *linear equation system* using Arden's Lemma (**OBS:** not in the book!)

From FA to RE: Eliminating States in an Automaton A

This method of constructing a RE from a FA involves eliminating states.

When we eliminate the state s, all the paths that went through s do not longer exists!

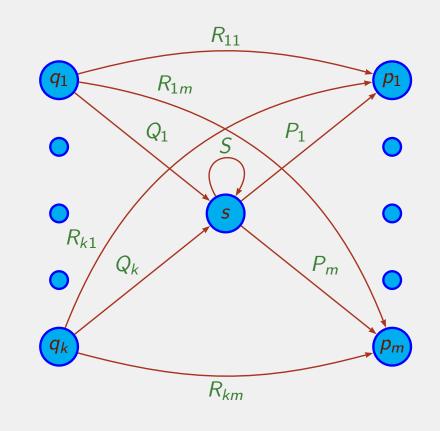
To preserve the language of the automaton we must include, on an arc that goes directly from q to p, the labels of the paths that went from q to p passing through s.

Labels now are not just symbols but (possible an infinite number of) strings: hence we will use RE as labels.

April 18th 2013, Lecture 7

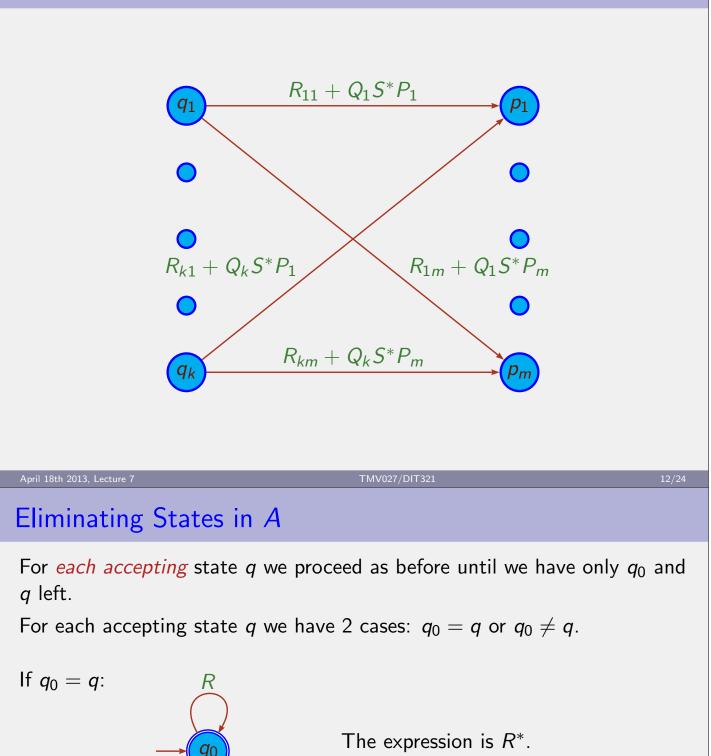
TMV027/DIT321

Eliminating State s in A



If an arc does not exist in A, then it is labelled \emptyset here.

For simplification, we assume the q's are different from the p's.



The expression is $(R + SU^*T)^*SU^*$.

The final expression is the sum of the expressions derived for each final state.

S

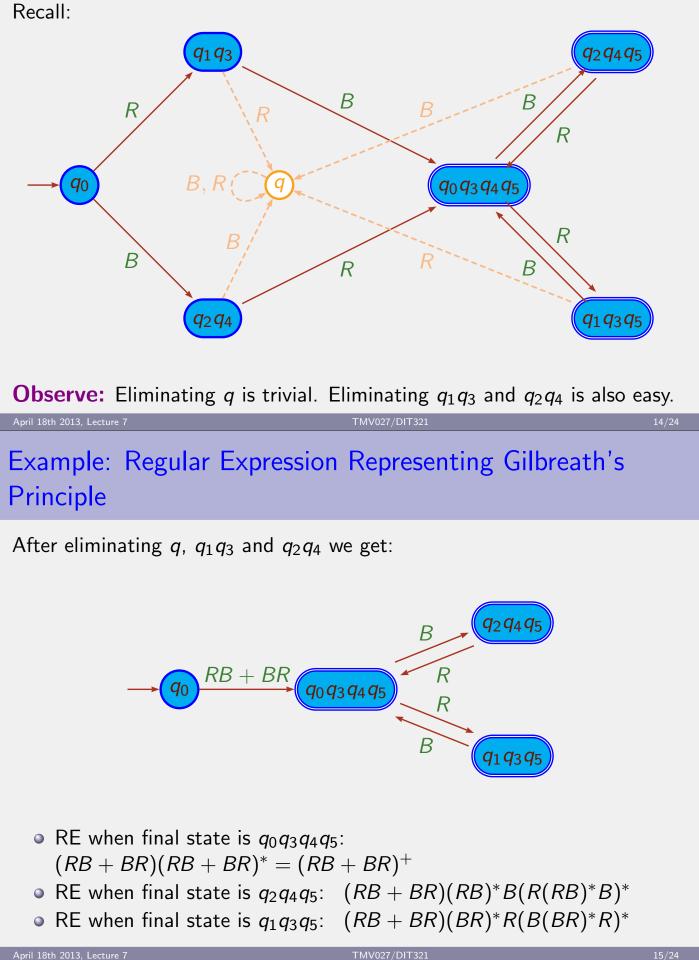
Т

 q_0

q

If $q_0 \neq q$:

Example: Regular Expression Representing Gilbreath's Principle



Example: Regular Expression Representing Gilbreath's Principle

The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

 $(RB + BR)(RB)^*B(R(RB)^*B)^* = (RB + BR)(RB)^*(BR(RB)^*)^*B$ by shifting = $(RB + BR)(RB + BR)^*B$ by the shifted-denesting rule = $(RB + BR)^+B$

Similarly $(RB + BR)(BR)^*R(B(BR)^*R)^* = (RB + BR)^+R$.

Hence the final RE is

$$(RB + BR)^{+} + (RB + BR)^{+}B + (RB + BR)^{+}R$$

which is equivalent to

$$(RB + BR)^+(\epsilon + B + R)$$

April 18th 2013, Lecture 7

TMV027/DIT321

16/24

From FA to RE: Linear Equation System

To any automaton we associate a system of equations such that the solution will be REs.

At the end we get a RE for the language recognised by the automaton.

This works for DFA, NFA and ϵ -NFA.

To every state q_i we associate a variable E_i .

Each E_i represents the set $\{x \in \Sigma^* \mid \hat{\delta}(q_i, x) \in F\}$ (for DFA).

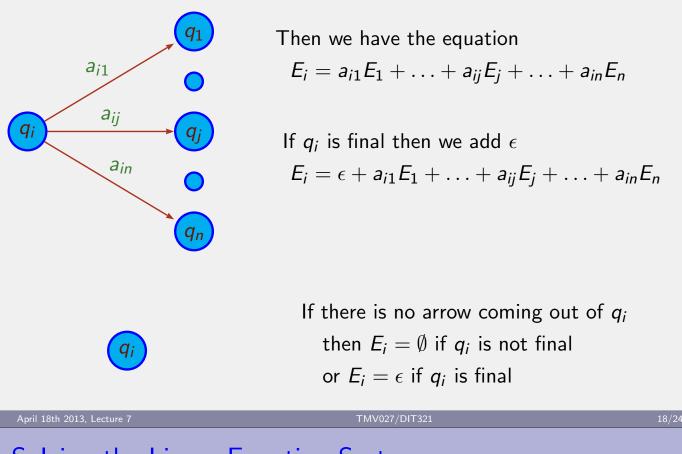
Then E_0 represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each variable E_i .

Then the solution for E_0 is the RE generating the same language that is accepted by the FA.

Constructing the Linear Equation System

Consider a state q_i and all the transactions coming out if it:



Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is $X = R^*S$. Furthermore, if $\epsilon \notin \mathcal{L}(R)$ then this is the only solution to the equation X = RX + S.

Proof: We have that $R^* = RR^* + \epsilon$.

Hence $R^*S = RR^*S + S$ and then $X = R^*S$ is a solution to X = RX + S.

One should also prove that:

• Any solution to X = RX + S contains at least R^*S ;

• If $\epsilon \notin \mathcal{L}(R)$ then R^*S is the only solution to the equation X = RX + S (that is, no solution is "bigger" than R^*S).

Note: See for example Theorem 6.1, pages 185–186 of *Theory of Finite Automata, with an introduction to formal languages* by John Carroll and Darrell Long, Prentice-Hall International Editions.

Example: Regular Expression Representing Gilbreath's Principle

We obtain the following system of equations (see slide 14):

$E_0 = 1E_{13} + 0E_{24}$	$E_{0345} = \epsilon + 0E_{245} + 1E_{135}$
$E_{13} = 0E_{0345} + 1E_q$	$E_{245} = \epsilon + 1E_{0345}$
$E_{24} = 1E_{0345} + 0E_q$	$E_{135} = \epsilon + 0E_{0345}$
	$E_{oldsymbol{g}}=\emptyset$

This can be simplified to:

$E_0 = 1E_{13} + 0E_{24}$	$E_{0345} = \epsilon + 0E_{245} + 1E_{135}$
$E_{13} = 0E_{0345}$	$E_{245} = \epsilon + 1E_{0345}$
$E_{24} = 1E_{0345}$	$E_{135} = \epsilon + 0E_{0345}$

April 18th 2013, Lecture 7

TMV027/DIT32

20/24

Example: Regular Expression Representing Gilbreath's Principle

And further to:

$$egin{aligned} & E_0 = (10+01) E_{0345} \ & E_{0345} = (10+01) E_{0345} + \epsilon + 0 + 1 \end{aligned}$$

Then a solution to E_{0345} is

$$(10+01)^*(\epsilon+0+1)$$

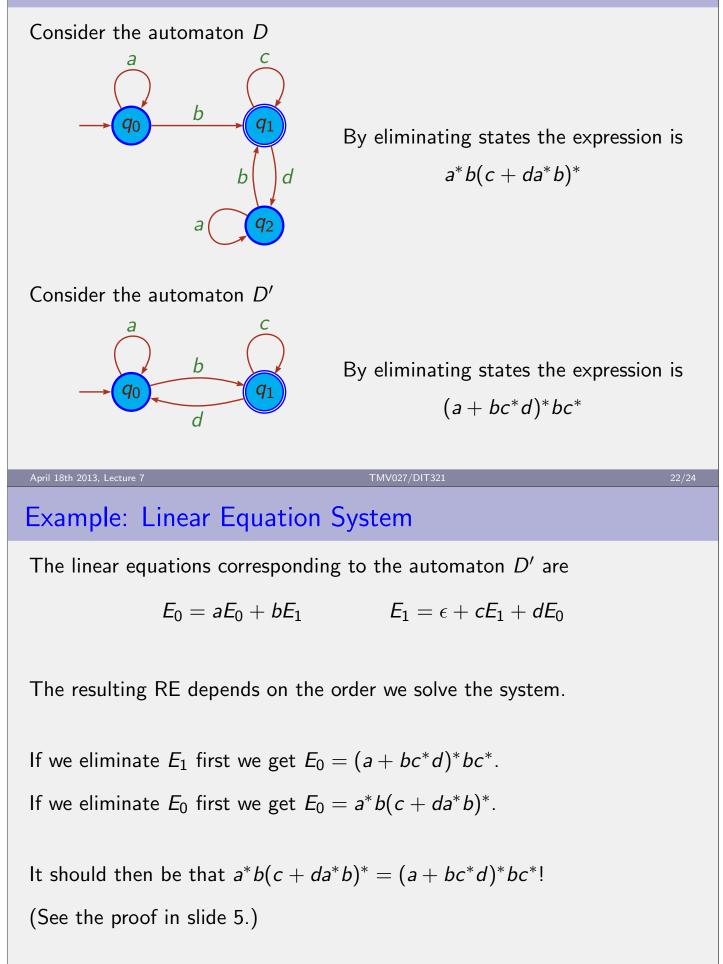
and the RE which is the solution to the problem is

$$(10+01)(10+01)^*(\epsilon+0+1)$$

or

$$(10+01)^+(\epsilon+0+1)$$

Example: Eliminating States



What RE do we obtain for the automaton D? April 18th 2013, Lecture 7 TMV027/DIT32

```
<section-header><section-header><section-header><section-header><section-header><text><text><list-item><list-item><list-item>
```