Lecture 6
Ana Bove

April 16th 2013

Overview of today’s lecture:

More on NFA;
NFA with e-Transitions:

Q
5
o Equivalence between DFA and e-NFA;
5

Regular expresssions.

Proposition: Any DFA recognising the same language as the NFA below
has at least 2" states:

0,1
g 1 .0,1‘0,1 0,1‘0,10

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let £, = {xlu | x€ X*,uc X"} and D= (Q,%,6,qo, F) a
DFA.

We want to show that if |Q| < 2" then L(D) # L.

April 16th 2013, Lecture 6 TMV027/DIT321 1/24

A Bad Case for the Subset Construction (Cont.)

Lemma: If¥X ={0,1} and |Q| < 2" then there exists x,y € ¥* and
u,v € X"t such that 0(qo, x0u) = 0(qo, y1v).

Proof: Let us define a function h: " — Q such that h(z) = §(qo, 2).
h cannot be injective because |Q| < 2" = |¥L"|.
Hence, we have a; ...a, # by ... b, such that
h(ai...an) =6(qo,a1...an) = 0(qo, b1...by) = h(b1...bp)
Let us assume that a; = 0 and b; = 1.
Llet x=a1...9j—1, y=b1...bji_1, u=aj11... a,0~1 v= bii1... b0~ 1.

Recall that for a DFA, §(q, zw) = 6(8(g, z), w) and hence:
5(qo, x0u) = 0(qo, a1 - . . a,0'~1) = 6(0(qgo, a1 - - - ap), 0"~ 1) =
5(8(qo, b1 . .. by),0"1) = &(qo, b1 . .. b0'™1) = 6(qo, y1v)

April 16th 2013, Lecture 6 TMV027/DIT321 2/24

A Bad Case for the Subset Construction (Cont.)

Lemma: If|Q| < 2" then L(D) # L.

Proof: Assume L(D) = L,.

Let x,y € ¥* and u,v € £"! as in previous lemma.
Then we must have that ylv € £(D) but x0u ¢ L(D),
That is, 4(qo, y1v) € F but §(qo, x0u) ¢ F.

However, this contradicts the previous lemma that says that
0(qgo, x0u) = (qo, y1v).

April 16th 2013, Lecture 6 TMV027/DIT321 3/24

Product Construction for NFA

Definition: Given 2 NFA Ny = (Qq, %, 01, g1, F1) and
No = (@2, X, 62, 2, F2) over the same alphabet ¥, we define the product
/V1 X /V2 = (Q,Z,(S, qo, F) as follows:

0 Q=01 x &

o 0((p1, p2),a) = d1(p1,a) x d2(p2; a);
° qo = (91, q2);

o F= F1 X F2.

Lemma: (tl, t2) € 3((p1,p2),X) ifft; € Sl(pl,x) and tp € 82(p2,X).

Proof: By induction on x.

Proposition: L£(Ny x Ny) = L(Ny) N L(N>).
April 16th 2013, Lecture 6 TMV027/DIT321 4/24

Complement for NFA

OBS: Given NFA N = (Q,X,0,q,F) and N' = (Q,%,0,q9,Q — F) we do
not have in general that L(N') = £* — L(N).

Example: Let ¥ = {a} and N and N’ as follows:

~@ @

L(N) = {a}

% L(N') = {e} £ ¥* — {a}

April 16th 2013, Lecture 6 TMV027/DIT321

Another useful extension of automata that does not add more power is the
possibility to allow e-transitions, that is, transitions from one state to
another without reading any input symbol.

Example: The following e-NFA searches for the keyword web and ebay:

April 16th 2013, Lecture 6 TMV027/DIT321

Example: Let © = {1}.

April 16th 2013, Lecture 6 TMV027/DIT321 7/24

e-NFA Accepting Decimal Numbers

Exercise: Define a NFA accepting number with an optional +/- symbol

and an optional decimal part.

+,- . 0,1,....,9 €

—qo | {q} | 0) {a1}
qu| 0 0 {qo}]

2| 0 |{g {g2} | {94}
q3 0 0 {qa} 0
xqq || 0 0 {qa} 0

The uses of e-transitions represent the optional symbol + /- and the

optional decimal part.

April 16th 2013, Lecture 6

NFA with e-Transitions

TMV027/DIT321

8/24

Definition: A NFA with e-transitions (e-NFA) is a 5-tuple (Q, X, d, qo, F)

consisting of:

Q A finite set Q of states:

Q A finite set L of symbols (alphabet);

Q A transition function § : Q X (X U {e}) — Pow(Q)
(“partial” function that takes as argument a state and a symbol or
the e-transition, and returns a set of states);

Q A start state qp € Q;

Q Aset F C Q of final or accepting states.

April 16th 2013, Lecture 6

TMV027/DIT321

9/24

e-Closures

Informally, the e-closure of a state q is the set of states we can reach by
doing nothing or by only following paths labelled with €.

Example: For the automaton

k. 6 k.
€

QORE O

the e-closure of do Is {q07 d1, g2, q3; q4}

April 16th 2013, Lecture 6 TMV027/DIT321 10/24

e-Closures

Definition: Formally, we define the e-closure of a set of states as follows:

o If g € S then g € ECLOSE(S);
o If g € ECLOSE(S) and p € 6(q, €) then p € ECLOSE(S).

Note: Alternative formulation

ge S g € ECLOSE(S) p € d(q,e)
qg € ECLOSE(S) p € ECLOSE(S)

Definition: We say that S is e-closed iff S = ECLOSE(S).

April 16th 2013, Lecture 6 TMV027/DIT321 11/24

Remarks: e-Closures

o Intuitively, p € ECLOSE(S) iff there exists g € S and a sequence of
e-transitions such that

OREOEENEEOREO

o The e-closure of a single state g can be computed as ECLOSE({q}).

o ECLOSE(®) = 0.
o Sis e-closed iff g € S and p € 6(q, €) implies p € S.

@ We can prove that ECLOSE(S) is the smallest subset of @ containing
S which is e-closed.

April 16th 2013, Lecture 6 TMV027/DIT321 12/24

Extending the Transition Function to Strings

Definition: Given an e-NFA E = (Q, %, 6, qo, F) we define

5:Qx ¥ —[Q]
6(q,) = ECLOSE({q})

6(q, ax) = UpeA(ECLOSE({q}),a) 0(p, x)
where A(S, a) = Upesé(p, a)

Remark: By definition, (g, a) = ECLOSE(A(ECLOSE({q}), a)).

Remark: We can prove by induction on x that all sets §(q, x) are
e-closed.

This result uses that the union of e-closed sets is also a e-closed set.

April 16th 2013, Lecture 6 TMV027/DIT321 13/24

Language Accepted by a e-NFA

Definition: The /anguage accepted by the e-NFA (Q, X, 0, qo, F) is the
set L=1{xeX*|d(go,x)NF #0D}.

Example: Let X = {b}.

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a e-NFA and
let the program tell us whether a certain string is accepted or not.

Exercise: Do it!

April 16th 2013, Lecture 6 TMV027/DIT321 14/24

Eliminating e-Transitions

Definition: Given an e-NFA E = (Qg, X, 0k, e, FE) we define a DFA
D = (Qp,X,dp,qp, Fp) as follows:

o Qp = {ECLOSE(S) | S € Pow(QE)};

o 0p(S,a) = ECLOSE(A(S, a)) with A(S, a) = Upesd(p, a);
o gp = ECLOSE({qEe});

o Fp={Se€Qp|SNFe#0}.

Note: This construction is similar to the subset construction but now we
need to e-close after each step.

April 16th 2013, Lecture 6 TMV027/DIT321

Let E be an e-NFA and D the corresponding DFA.

Lemma: Vx € ¥*. §e(qe, x) = dp(qp, X).

Proof: By induction on x.
Proposition: £(E) = L(D).

lemma) dp(qp,x) € Fp iff x € L(D).

April 16th 2013, Lecture 6 TMV027/DIT321

Let us eliminate the e-transitions in e-NFA that recognises numbers in
slide 8.

We obtain the following DFA:

April 16th 2013, Lecture 6 TMV027/DIT321

Proof: x € L(E) iff de(qe, x) N Fe # 0 iff 0e(qe, x) € Fp iff (by previous

17/24

Finite Automata and Regular Languages

We have shown that DFA, NFA and e-NFA are equivalent in the sense that
we can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA
or e-NFA) that accepts the language.

April 16th 2013, Lecture 6 TMV027/DIT321 18/24

Regular Expressions

Regular expressions (RE) are an “algebraic” way to denote languages.

RE are a simple way to express the strings we want to accept.

They serve as input language for certain systems.
Example: grep command in UNIX (K. Thompson) is given a (variation)

of a RE as input

We will show that RE are as expressive as DFA and hence, they define all
and only the regular languages.

Inductive Definition of Regular Expressions

Definition: Given an alphabet ¥, we inductively define the regular
expressions over X as follows:

Base cases: @ The constants () and € are RE;
o If a€ X then ais a RE.

Inductive steps: Given the RE R and S, we define the following RE:

o R+ S and RS are RE;
o R* is RE.

The precedence of the operands is the following:

o The closure operator * has the highest precedence;
o Next comes concatenation;

o Finally, comes the operator +;

o We use parentheses (,) to change the precedence.

April 16th 2013, Lecture 6 TMV027/DIT321 20/24

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following
BNF (Backus-Naur Form), for a € ¥:

R:=0|e|la| R+R|RR|R*

alternatively
R,S:=0|e|la|R+S|RS|R"

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing context-free grammars and in particular
the syntax of most programming languages.

April 16th 2013, Lecture 6 TMV027/DIT321 21/24

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

For example the expression b + (bc)* is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

April 16th 2013, Lecture 6 TMV027/DIT321 22/24

Language Defined by the Regular Expressions

Given a RE R, it defines the language L(R).

Definition: The /anguage defined by a regular expression is defined by
recursion on the expression:

Base cases: o L(0) =
o L(e) = {6}
o Given ac€ ¥, L(a) ={a}.

Recursive cases: o L(R+ S) = L(R)U L(S);
o L(RS) = L(R)L(S);
o L(R*) = L(R)*.

Note: x € L(R) iff x is generated/accepted by R.

Notation: We write x € R or x € L(R) indistinctly.

April 16th 2013, Lecture 6 TMV027/DIT321 23/24

Sections 3.2, 3.4:

o More on RE;
o Equivalence between FA and RE;

o Algebraic laws for regular expressions.

April 16th 2013, Lecture 6 TMV027/DIT321 24/24

