Finite Automata and Formal Languages TMV027/DIT321– LP4 2013

Lecture 6 Ana Bove

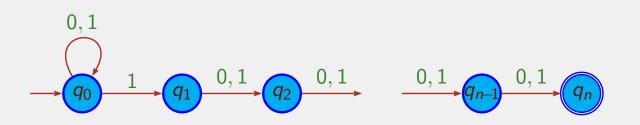
April 16th 2013

Overview of today's lecture:

- More on NFA;
- NFA with ϵ -Transitions;
- Equivalence between DFA and ϵ -NFA;
- Regular expresssions.

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below has at least 2^n states:



This NFA recognises strings over $\{0,1\}$ such that the *n*th symbol from the end is a 1.

Proof: Let $\mathcal{L}_n = \{x \mid x \in \Sigma^*, u \in \Sigma^{n-1}\}$ and $D = (Q, \Sigma, \delta, q_0, F)$ a DFA.

We want to show that if $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

April 16th 2013, Lecture 6

IV027/DIT321

A Bad Case for the Subset Construction (Cont.)

Lemma: If $\Sigma = \{0,1\}$ and $|Q| < 2^n$ then there exists $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ such that $\hat{\delta}(q_0, x0u) = \hat{\delta}(q_0, y1v)$.

Proof: Let us define a function $h : \Sigma^n \to Q$ such that $h(z) = \hat{\delta}(q_0, z)$. *h* cannot be *injective* because $|Q| < 2^n = |\Sigma^n|$.

Hence, we have $a_1 \ldots a_n \neq b_1 \ldots b_n$ such that

$$h(a_1 \ldots a_n) = \hat{\delta}(q_0, a_1 \ldots a_n) = \hat{\delta}(q_0, b_1 \ldots b_n) = h(b_1 \ldots b_n)$$

Let us assume that $a_i = 0$ and $b_i = 1$.

Let
$$x = a_1 \dots a_{i-1}$$
, $y = b_1 \dots b_{i-1}$, $u = a_{i+1} \dots a_n 0^{i-1}$, $v = b_{i+1} \dots b_n 0^{i-1}$.
Recall that for a DFA, $\hat{\delta}(q, zw) = \hat{\delta}(\hat{\delta}(q, z), w)$ and hence:

$$\hat{\delta}(q_0, x 0 u) = \hat{\delta}(q_0, a_1 \dots a_n 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, a_1 \dots a_n), 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, b_1 \dots b_n), 0^{i-1}) = \hat{\delta}(q_0, b_1 \dots b_n 0^{i-1}) = \hat{\delta}(q_0, y 1 v)$$

April 16th 2013, Lecture 6

TMV027/DIT321

A Bad Case for the Subset Construction (Cont.)

Lemma: If $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

Proof: Assume $\mathcal{L}(D) = \mathcal{L}_n$.

Let $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ as in previous lemma.

Then we must have that $y1v \in \mathcal{L}(D)$ but $x0u \notin \mathcal{L}(D)$,

That is, $\hat{\delta}(q_0, y1v) \in F$ but $\hat{\delta}(q_0, x0u) \notin F$.

However, this contradicts the previous lemma that says that $\hat{\delta}(q_0, x 0 u) = \hat{\delta}(q_0, y 1 v)$.

Product Construction for NFA

Definition: Given 2 NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ over the same alphabet Σ , we define the product $N_1 \times N_2 = (Q, \Sigma, \delta, q_0, F)$ as follows:

Q = Q₁ × Q₂;
δ((p₁, p₂), a) = δ₁(p₁, a) × δ₂(p₂, a);
q₀ = (q₁, q₂);
F = F₁ × F₂.

Lemma: $(t_1, t_2) \in \hat{\delta}((p_1, p_2), x)$ iff $t_1 \in \hat{\delta}_1(p_1, x)$ and $t_2 \in \hat{\delta}_2(p_2, x)$.

Proof: By induction on *x*.

Proposition: $\mathcal{L}(N_1 \times N_2) = \mathcal{L}(N_1) \cap \mathcal{L}(N_2).$

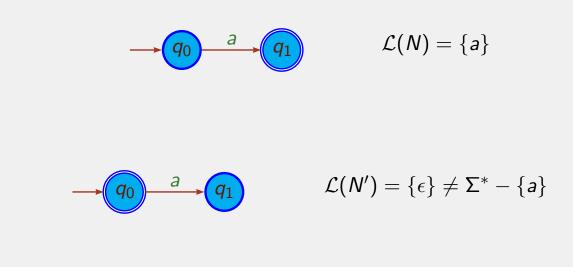
April 16th 2013, Lecture 6

TMV027/DIT321

Complement for NFA

OBS: Given NFA $N = (Q, \Sigma, \delta, q, F)$ and $N' = (Q, \Sigma, \delta, q, Q - F)$ we do *not* have in general that $\mathcal{L}(N') = \Sigma^* - \mathcal{L}(N)$.

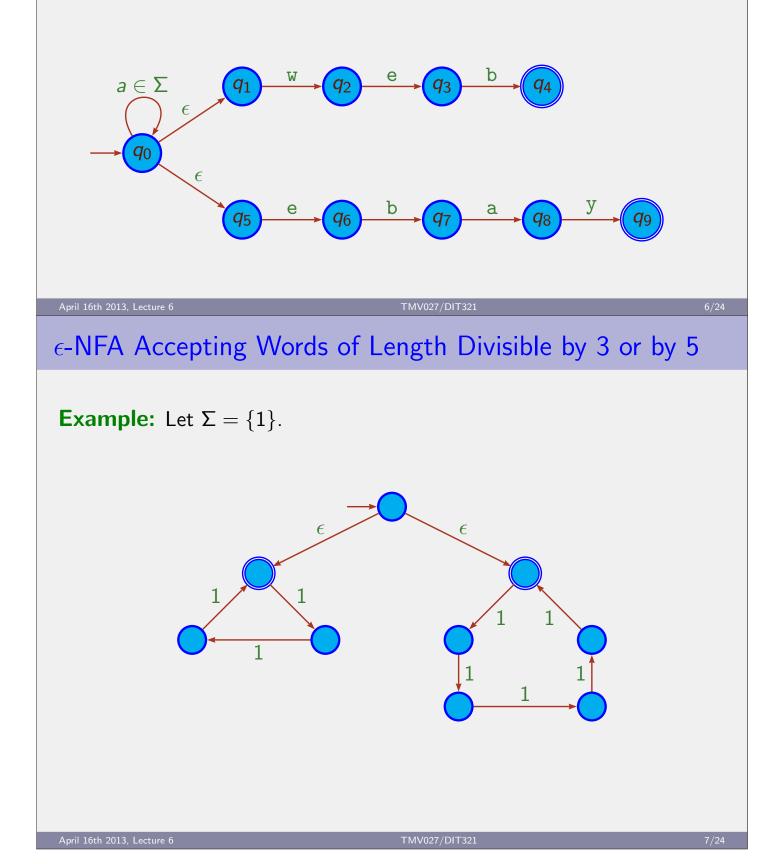
Example: Let $\Sigma = \{a\}$ and N and N' as follows:



NFA with ϵ -Transitions

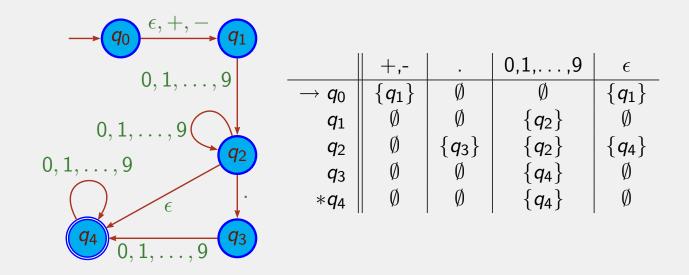
Another useful extension of automata that does not add more power is the possibility to allow ϵ -transitions, that is, transitions from one state to another *without* reading any input symbol.

Example: The following ϵ -NFA searches for the keyword web and ebay:



$\epsilon\text{-NFA}$ Accepting Decimal Numbers

Exercise: Define a NFA accepting number with an optional +/- symbol and an optional decimal part.



The uses of ϵ -transitions represent the *optional* symbol +/- and the *optional* decimal part.

April 16th 2013, Lecture 6

NFA with ϵ -Transitions

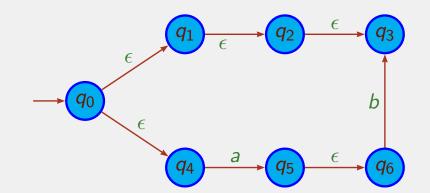
Definition: A *NFA with* ϵ *-transitions* (ϵ -NFA) is a 5-tuple ($Q, \Sigma, \delta, q_0, F$) consisting of:

- A finite set Q of *states*;
- **Q** A finite set Σ of *symbols* (alphabet);
- A transition function δ : Q × (Σ ∪ {ε}) → Pow(Q) ("partial" function that takes as argument a state and a symbol or the ε-transition, and returns a set of states);
- A start state $q_0 \in Q$;
- A set $F \subseteq Q$ of *final* or *accepting* states.

ϵ -Closures

Informally, the ϵ -closure of a state q is the set of states we can reach by doing nothing or by only following paths labelled with ϵ .

Example: For the automaton



the ϵ -closure of q_0 is $\{q_0, q_1, q_2, q_3, q_4\}$.

April 16th 2013, Lecture 6

TMV027/DIT321

ϵ -Closures

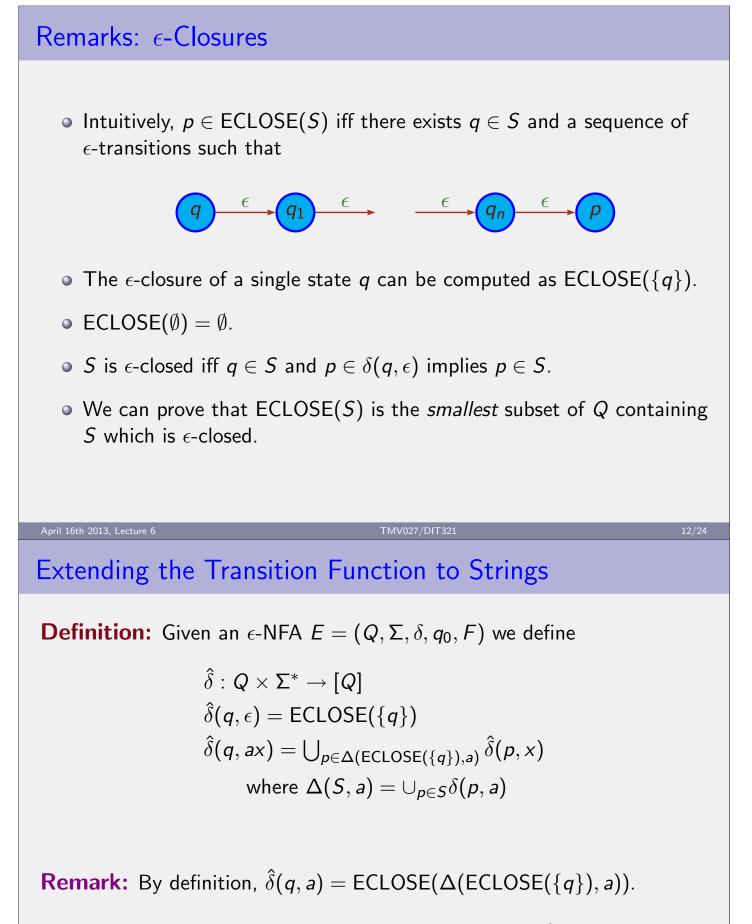
Definition: Formally, we define the ϵ -closure of a set of states as follows:

If q ∈ S then q ∈ ECLOSE(S);
If q ∈ ECLOSE(S) and p ∈ δ(q, ε) then p ∈ ECLOSE(S).

Note: Alternative formulation

$$\frac{q \in S}{q \in \mathsf{ECLOSE}(S)} \qquad \qquad \frac{q \in \mathsf{ECLOSE}(S) \quad p \in \delta(q, \epsilon)}{p \in \mathsf{ECLOSE}(S)}$$

Definition: We say that S is ϵ -closed iff S = ECLOSE(S).

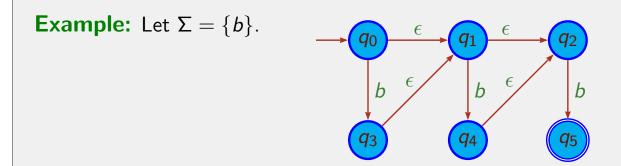


Remark: We can prove by induction on x that all sets $\hat{\delta}(q, x)$ are ϵ -closed.

This result uses that the union of ϵ -closed sets is also a ϵ -closed set.

Language Accepted by a $\epsilon\text{-NFA}$

Definition: The *language* accepted by the ϵ -NFA $(Q, \Sigma, \delta, q_0, F)$ is the set $\mathcal{L} = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$



The automaton accepts the language $\{b, bb, bbb\}$.

Note: Yet again, we could write a program that simulates a ϵ -NFA and let the program tell us whether a certain string is accepted or not.

TMV027/DIT321

Exercise: Do it!

April 16th 2013, Lecture 6

Eliminating ϵ -Transitions

Definition: Given an ϵ -NFA $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$ we define a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ as follows:

- $Q_D = \{ \mathsf{ECLOSE}(S) \mid S \in \mathcal{P}ow(Q_E) \};$
- $\delta_D(S, a) = \text{ECLOSE}(\Delta(S, a))$ with $\Delta(S, a) = \bigcup_{p \in S} \delta(p, a)$;
- $q_D = \text{ECLOSE}(\{q_E\});$
- $F_D = \{ S \in Q_D \mid S \cap F_E \neq \emptyset \}.$

Note: This construction is similar to the subset construction but now we need to ϵ -close after each step.

Eliminating ϵ -Transitions

Let *E* be an ϵ -NFA and *D* the corresponding DFA.

Lemma: $\forall x \in \Sigma^*$. $\hat{\delta}_E(q_E, x) = \hat{\delta}_D(q_D, x)$.

Proof: By induction on *x*.

Proposition: $\mathcal{L}(E) = \mathcal{L}(D)$.

Proof: $x \in \mathcal{L}(E)$ iff $\hat{\delta}_E(q_E, x) \cap F_E \neq \emptyset$ iff $\hat{\delta}_E(q_E, x) \in F_D$ iff (by previous lemma) $\hat{\delta}_D(q_D, x) \in F_D$ iff $x \in \mathcal{L}(D)$.

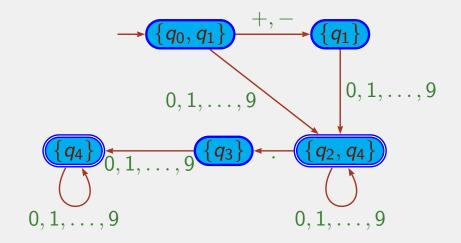
April 16th 2013, Lecture 6

TMV027/DIT321

Example: Eliminating ϵ -Transitions

Let us eliminate the ϵ -transitions in ϵ -NFA that recognises numbers in slide 8.

We obtain the following DFA:



Finite Automata and Regular Languages

We have shown that DFA, NFA and ϵ -NFA are equivalent in the sense that we can transform one to the other.

Hence, a language is *regular* iff there exists a finite automaton (DFA, NFA or ϵ -NFA) that accepts the language.

April 16th 2013, Lecture 6

TMV027/DIT32

Regular Expressions

Regular expressions (RE) are an "algebraic" way to denote languages.

RE are a simple way to express the strings we want to accept.

They serve as input language for certain systems.

Example: grep command in UNIX (K. Thompson) is given a (variation) of a RE as input

We will show that RE are as expressive as DFA and hence, they define all and only the *regular languages*.

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ , we inductively define the *regular expressions* over Σ as follows:

Base cases:

The constants Ø and ε are RE;
If a ∈ Σ then a is a RE.

Inductive steps: Given the RE R and S, we define the following RE:

R + S and RS are RE;
R* is RE.

The precedence of the operands is the following:

- The closure operator * has the highest precedence;
- Next comes concatenation;
- Finally, comes the operator +;
- We use parentheses (,) to change the precedence.

```
April 16th 2013, Lecture 6
```

TMV027/DIT32

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF (Backus-Naur Form), for $a \in \Sigma$:

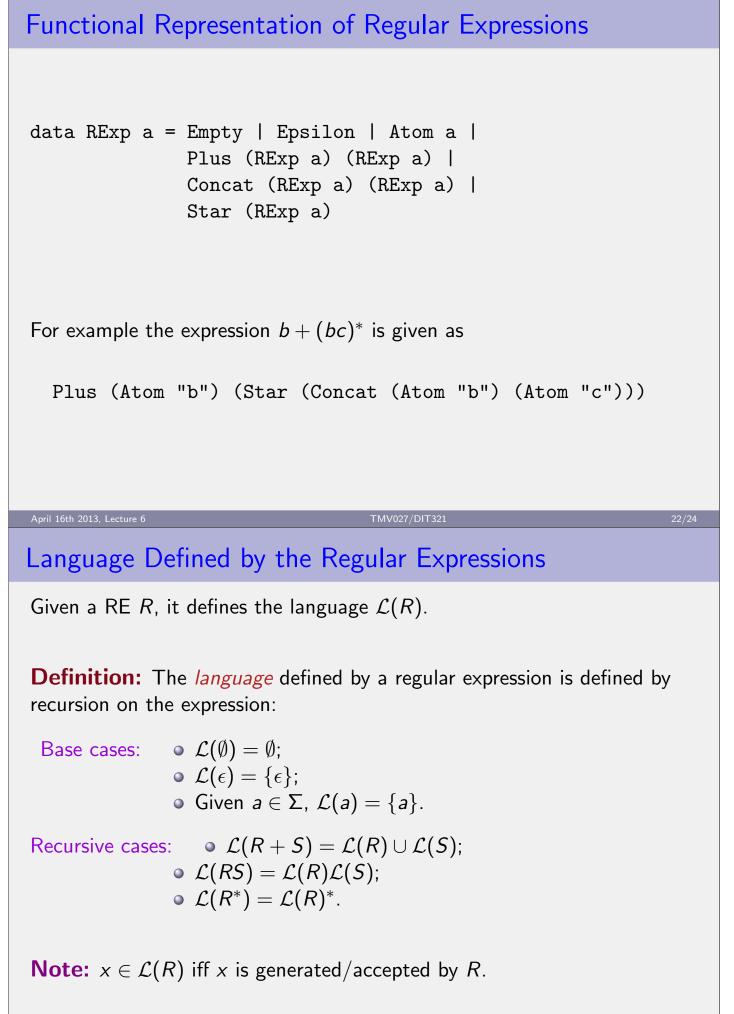
$$R ::= \emptyset \mid \epsilon \mid a \mid R + R \mid RR \mid R^*$$

alternatively

$$R, S ::= \emptyset \mid \epsilon \mid a \mid R + S \mid RS \mid R^*$$

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing *context-free grammars* and in particular the syntax of most programming languages.



Notation: We write $x \in R$ or $x \in \mathcal{L}(R)$ indistinctly.

TMV027/DIT32

Overview of Next Lecture

Sections 3.2, 3.4:

- More on RE;
- Equivalence between FA and RE;
- Algebraic laws for regular expressions.

April 16th 2013, Lecture 6

FMV027/DIT321

24/24