
Finite Automata and Formal Languages

TMV027/DIT321– LP4 2013

Lecture 6
Ana Bove

April 16th 2013

Overview of today’s lecture:

More on NFA;

NFA with ǫ-Transitions;

Equivalence between DFA and ǫ-NFA;

Regular expresssions.

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below
has at least 2n states:

q0 q1 q2 qn−1 qn

0, 1

1 0, 1 0, 1 0, 1 0, 1

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let Ln = {x1u | x ∈ Σ∗, u ∈ Σn−1} and D = (Q, Σ, δ, q0, F) a
DFA.

We want to show that if |Q| < 2n then L(D) 6= Ln.
April 16th 2013, Lecture 6 TMV027/DIT321 1/24

A Bad Case for the Subset Construction (Cont.)

Lemma: If Σ = {0, 1} and |Q| < 2n then there exists x , y ∈ Σ∗ and
u, v ∈ Σn−1 such that δ̂(q0, x0u) = δ̂(q0, y1v).

Proof: Let us define a function h : Σn → Q such that h(z) = δ̂(q0, z).

h cannot be injective because |Q| < 2n = |Σn|.
Hence, we have a1 . . . an 6= b1 . . . bn such that

h(a1 . . . an) = δ̂(q0, a1 . . . an) = δ̂(q0, b1 . . . bn) = h(b1 . . . bn)

Let us assume that ai = 0 and bi = 1.

Let x = a1 . . . ai−1, y = b1 . . . bi−1, u = ai+1 . . . an0
i−1, v = bi+1 . . . bn0

i−1.

Recall that for a DFA, δ̂(q, zw) = δ̂(δ̂(q, z), w) and hence:

δ̂(q0, x0u) = δ̂(q0, a1 . . . an0
i−1) = δ̂(δ̂(q0, a1 . . . an), 0

i−1) =

δ̂(δ̂(q0, b1 . . . bn), 0
i−1) = δ̂(q0, b1 . . . bn0

i−1) = δ̂(q0, y1v)

April 16th 2013, Lecture 6 TMV027/DIT321 2/24

A Bad Case for the Subset Construction (Cont.)

Lemma: If |Q| < 2n then L(D) 6= Ln.

Proof: Assume L(D) = Ln.

Let x , y ∈ Σ∗ and u, v ∈ Σn−1 as in previous lemma.

Then we must have that y1v ∈ L(D) but x0u /∈ L(D),

That is, δ̂(q0, y1v) ∈ F but δ̂(q0, x0u) /∈ F .

However, this contradicts the previous lemma that says that
δ̂(q0, x0u) = δ̂(q0, y1v).

April 16th 2013, Lecture 6 TMV027/DIT321 3/24

Product Construction for NFA

Definition: Given 2 NFA N1 = (Q1, Σ, δ1, q1, F1) and
N2 = (Q2, Σ, δ2, q2, F2) over the same alphabet Σ, we define the product
N1 × N2 = (Q, Σ, δ, q0, F) as follows:

Q = Q1 × Q2;

δ((p1, p2), a) = δ1(p1, a)× δ2(p2, a);

q0 = (q1, q2);

F = F1 × F2.

Lemma: (t1, t2) ∈ δ̂((p1, p2), x) iff t1 ∈ δ̂1(p1, x) and t2 ∈ δ̂2(p2, x).

Proof: By induction on x .

Proposition: L(N1 × N2) = L(N1) ∩ L(N2).

April 16th 2013, Lecture 6 TMV027/DIT321 4/24

Complement for NFA

OBS: Given NFA N = (Q, Σ, δ, q, F) and N ′ = (Q, Σ, δ, q, Q − F) we do
not have in general that L(N ′) = Σ∗ − L(N).

Example: Let Σ = {a} and N and N ′ as follows:

q0 q1
a L(N) = {a}

q0 q1
a L(N ′) = {ǫ} 6= Σ∗ − {a}

April 16th 2013, Lecture 6 TMV027/DIT321 5/24

NFA with ǫ-Transitions

Another useful extension of automata that does not add more power is the
possibility to allow ǫ-transitions, that is, transitions from one state to
another without reading any input symbol.

Example: The following ǫ-NFA searches for the keyword web and ebay:

q0

q1 q2 q3 q4

q5 q6 q7 q8 q9

a ∈ Σ
ǫ

w e b

ǫ

e b a y

April 16th 2013, Lecture 6 TMV027/DIT321 6/24

ǫ-NFA Accepting Words of Length Divisible by 3 or by 5

Example: Let Σ = {1}.

ǫ ǫ

1 1

1

1 1

1
1

1

April 16th 2013, Lecture 6 TMV027/DIT321 7/24

ǫ-NFA Accepting Decimal Numbers

Exercise: Define a NFA accepting number with an optional +/- symbol
and an optional decimal part.

q0 q1

q2

q3q4

ǫ, +,−

0, 1, . . . , 9

.

0, 1, . . . , 9

0, 1, . . . , 9

0, 1, . . . , 9

ǫ

+,- . 0,1,. . . ,9 ǫ

→ q0 {q1} ∅ ∅ {q1}
q1 ∅ ∅ {q2} ∅
q2 ∅ {q3} {q2} {q4}
q3 ∅ ∅ {q4} ∅
∗q4 ∅ ∅ {q4} ∅

The uses of ǫ-transitions represent the optional symbol +/- and the
optional decimal part.
April 16th 2013, Lecture 6 TMV027/DIT321 8/24

NFA with ǫ-Transitions

Definition: A NFA with ǫ-transitions (ǫ-NFA) is a 5-tuple (Q, Σ, δ, q0, F)
consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A transition function δ : Q × (Σ ∪ {ǫ}) → Pow(Q)
(“partial” function that takes as argument a state and a symbol or
the ǫ-transition, and returns a set of states);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

April 16th 2013, Lecture 6 TMV027/DIT321 9/24

ǫ-Closures

Informally, the ǫ-closure of a state q is the set of states we can reach by
doing nothing or by only following paths labelled with ǫ.

Example: For the automaton

q0

q1 q2 q3

q4 q5 q6

ǫ

ǫ

ǫ
ǫ

a ǫ

b

the ǫ-closure of q0 is {q0, q1, q2, q3, q4}.
April 16th 2013, Lecture 6 TMV027/DIT321 10/24

ǫ-Closures

Definition: Formally, we define the ǫ-closure of a set of states as follows:

If q ∈ S then q ∈ ECLOSE(S);

If q ∈ ECLOSE(S) and p ∈ δ(q, ǫ) then p ∈ ECLOSE(S).

Note: Alternative formulation

q ∈ S

q ∈ ECLOSE(S)

q ∈ ECLOSE(S) p ∈ δ(q, ǫ)

p ∈ ECLOSE(S)

Definition: We say that S is ǫ-closed iff S = ECLOSE(S).

April 16th 2013, Lecture 6 TMV027/DIT321 11/24

Remarks: ǫ-Closures

Intuitively, p ∈ ECLOSE(S) iff there exists q ∈ S and a sequence of
ǫ-transitions such that

q q1 qn pǫ ǫ ǫ ǫ

The ǫ-closure of a single state q can be computed as ECLOSE({q}).
ECLOSE(∅) = ∅.
S is ǫ-closed iff q ∈ S and p ∈ δ(q, ǫ) implies p ∈ S .

We can prove that ECLOSE(S) is the smallest subset of Q containing
S which is ǫ-closed.

April 16th 2013, Lecture 6 TMV027/DIT321 12/24

Extending the Transition Function to Strings

Definition: Given an ǫ-NFA E = (Q, Σ, δ, q0, F) we define

δ̂ : Q × Σ∗ → [Q]

δ̂(q, ǫ) = ECLOSE({q})
δ̂(q, ax) =

⋃
p∈∆(ECLOSE({q}),a) δ̂(p, x)

where ∆(S , a) = ∪p∈Sδ(p, a)

Remark: By definition, δ̂(q, a) = ECLOSE(∆(ECLOSE({q}), a)).

Remark: We can prove by induction on x that all sets δ̂(q, x) are
ǫ-closed.

This result uses that the union of ǫ-closed sets is also a ǫ-closed set.

April 16th 2013, Lecture 6 TMV027/DIT321 13/24

Language Accepted by a ǫ-NFA

Definition: The language accepted by the ǫ-NFA (Q, Σ, δ, q0, F) is the
set L = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

Example: Let Σ = {b}.
q0 q1 q2

q3 q4 q5

ǫ ǫ

ǫ ǫ
b b b

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a ǫ-NFA and
let the program tell us whether a certain string is accepted or not.

Exercise: Do it!
April 16th 2013, Lecture 6 TMV027/DIT321 14/24

Eliminating ǫ-Transitions

Definition: Given an ǫ-NFA E = (QE , Σ, δE , qE , FE) we define a DFA
D = (QD , Σ, δD , qD , FD) as follows:

QD = {ECLOSE(S) | S ∈ Pow(QE)};
δD(S , a) = ECLOSE(∆(S , a)) with ∆(S , a) = ∪p∈Sδ(p, a);

qD = ECLOSE({qE});
FD = {S ∈ QD | S ∩ FE 6= ∅}.

Note: This construction is similar to the subset construction but now we
need to ǫ-close after each step.

April 16th 2013, Lecture 6 TMV027/DIT321 15/24

Eliminating ǫ-Transitions

Let E be an ǫ-NFA and D the corresponding DFA.

Lemma: ∀x ∈ Σ∗. δ̂E (qE , x) = δ̂D(qD , x).

Proof: By induction on x .

Proposition: L(E) = L(D).

Proof: x ∈ L(E) iff δ̂E (qE , x)∩ FE 6= ∅ iff δ̂E (qE , x) ∈ FD iff (by previous
lemma) δ̂D(qD , x) ∈ FD iff x ∈ L(D).

April 16th 2013, Lecture 6 TMV027/DIT321 16/24

Example: Eliminating ǫ-Transitions

Let us eliminate the ǫ-transitions in ǫ-NFA that recognises numbers in
slide 8.

We obtain the following DFA:

{q0, q1} {q1}

{q2, q4}{q3}{q4}

+,−

0, 1, . . . , 90, 1, . . . , 9

.
0, 1, . . . , 9

0, 1, . . . , 90, 1, . . . , 9

April 16th 2013, Lecture 6 TMV027/DIT321 17/24

Finite Automata and Regular Languages

We have shown that DFA, NFA and ǫ-NFA are equivalent in the sense that
we can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA
or ǫ-NFA) that accepts the language.

April 16th 2013, Lecture 6 TMV027/DIT321 18/24

Regular Expressions

Regular expressions (RE) are an “algebraic” way to denote languages.

RE are a simple way to express the strings we want to accept.

They serve as input language for certain systems.

Example: grep command in UNIX (K. Thompson) is given a (variation)
of a RE as input

We will show that RE are as expressive as DFA and hence, they define all
and only the regular languages.

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ, we inductively define the regular
expressions over Σ as follows:

Base cases: The constants ∅ and ǫ are RE;
If a ∈ Σ then a is a RE.

Inductive steps: Given the RE R and S , we define the following RE:

R + S and RS are RE;
R∗ is RE.

The precedence of the operands is the following:

The closure operator ∗ has the highest precedence;

Next comes concatenation;

Finally, comes the operator +;

We use parentheses (,) to change the precedence.

April 16th 2013, Lecture 6 TMV027/DIT321 20/24

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following
BNF (Backus-Naur Form), for a ∈ Σ:

R ::= ∅ | ǫ | a | R + R | RR | R∗

alternatively
R, S ::= ∅ | ǫ | a | R + S | RS | R∗

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing context-free grammars and in particular
the syntax of most programming languages.

April 16th 2013, Lecture 6 TMV027/DIT321 21/24

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

For example the expression b + (bc)∗ is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

April 16th 2013, Lecture 6 TMV027/DIT321 22/24

Language Defined by the Regular Expressions

Given a RE R, it defines the language L(R).

Definition: The language defined by a regular expression is defined by
recursion on the expression:

Base cases: L(∅) = ∅;
L(ǫ) = {ǫ};
Given a ∈ Σ, L(a) = {a}.

Recursive cases: L(R + S) = L(R) ∪ L(S);
L(RS) = L(R)L(S);
L(R∗) = L(R)∗.

Note: x ∈ L(R) iff x is generated/accepted by R.

Notation: We write x ∈ R or x ∈ L(R) indistinctly.
April 16th 2013, Lecture 6 TMV027/DIT321 23/24

Overview of Next Lecture

Sections 3.2, 3.4:

More on RE;

Equivalence between FA and RE;

Algebraic laws for regular expressions.

April 16th 2013, Lecture 6 TMV027/DIT321 24/24

