
Finite Automata and Formal Languages

TMV027/DIT321– LP4 2013

Lecture 4
Ana Bove

April 9th 2013

Overview of today’s lecture:

Deterministic Finite Automata.

Deterministic Finite Automata

We have already seen examples of DFA:

p q r

X

10 kr

choc

big choc

5 kr 5 kr

choc, big choc
10 kr
big choc

5 kr , 10 kr , choc

Observe dead state X !

How is this formally defined?
How does it actually work?
April 9th 2013, Lecture 4 TMV027/DIT321 1/27

Deterministic Finite Automata

Definition: A deterministic finite automaton (DFA) is a 5-tuple
(Q, Σ, δ, q0, F) consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A transition function δ : Q × Σ → Q
(total function that takes as argument a state and a symbol and
returns a state);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

April 9th 2013, Lecture 4 TMV027/DIT321 2/27

Example: DFA

Let the DFA (Q, Σ, δ, q0, F) be given by:

Q = {q0, q1, q2}
Σ = {0, 1}
F = {q2}
δ : Q × Σ → Q

δ(q0, 0) = q1 δ(q1, 0) = q1 δ(q2, 0) = q2

δ(q0, 1) = q0 δ(q1, 1) = q2 δ(q2, 1) = q2

What does it do?

April 9th 2013, Lecture 4 TMV027/DIT321 3/27

How to Represent a DFA?

Transition Diagram: Helps to understand how it works.

q0 q1 q2
0 1

1 0

0, 1

Transition Table:

δ 0 1

→ q0 q1 q0

q1 q1 q2

∗q2 q2 q2

The start state is indicated with →.
The final states are indicated with ∗.

April 9th 2013, Lecture 4 TMV027/DIT321 4/27

When Does a DFA Accept a Word?

When reading the word the automaton moves according to δ.

Definition: If after reading the input it stops in a final state, it accepts
the word.

Example:

q0 q1 q2 q3 q4

q5

t h e n

6= t 6= h 6= e 6= n a ∈ Σ

a ∈ Σ

Only the word “then” is accepted.

We have a (non-accepting) stop or dead state q5.
April 9th 2013, Lecture 4 TMV027/DIT321 5/27

Example: DFA

Let us build an automaton that accepts the words that contain 010 as a
subword.

That is, given Σ = {0, 1} we want to accept words in
L = {x010y | x , y ∈ Σ∗}.

Solution: ({q0, q1, q2, q3}, {0, 1}, δ, q0, {q3}) given by

q0 q1 q2 q3

1

0

0

1 0

1

0, 1

δ 0 1

→ q0 q1 q0

q1 q1 q2

q2 q3 q0

∗q3 q3 q3

April 9th 2013, Lecture 4 TMV027/DIT321 6/27

Extending the Transition Function to Strings

How can we compute/determine what happens when we read a certain
word?

Definition: We extend δ to strings as δ̂ : Q × Σ∗ → Q.

We define δ̂(q, x) by recursion on x .

δ̂(q, ǫ) = q

δ̂(q, ax) = δ̂(δ(q, a), x)

Note: δ̂(q, a) = δ(q, a) since the string a = aǫ.

δ̂(q, a) = δ̂(q, aǫ) = δ̂(δ(q, a), ǫ) = δ(q, a)

Example: In the previous example, what are δ̂(q0, 10101) and
δ̂(q0, 00110)?
April 9th 2013, Lecture 4 TMV027/DIT321 7/27

Some Properties

Proposition: For any words x and y, and for any state q we have that
δ̂(q, xy) = δ̂(δ̂(q, x), y).

Proof: We prove P(x) = ∀q y .δ̂(q, xy) = δ̂(δ̂(q, x), y) by induction on x .

Base case: ∀q y .δ̂(q, ǫy) = δ̂(q, y) = δ̂(δ̂(q, ǫ), y).

Inductive step: Our IH is that ∀q y .δ̂(q, xy) = δ̂(δ̂(q, x), y). We should
prove that ∀q y .δ̂(q, (ax)y) = δ̂(δ̂(q, ax), y).

δ̂(q, (ax)y) = δ̂(q, a(xy)) by def of concat

= δ̂(δ(q, a), xy) by def of δ̂

= δ̂(δ̂(δ(q, a), x), y) by IH with state δ(q, a)

= δ̂(δ̂(q, ax), y) by def of δ̂

April 9th 2013, Lecture 4 TMV027/DIT321 8/27

Another Definition of δ̂

Recall that we have 2 descriptions of words: a(b(cd)) = ((ab)c)d .

We can define δ̂′ as follows:

δ̂′(q, ǫ) = q

δ̂′(q, xa) = δ(δ̂′(q, x), a)

Proposition: ∀x .∀q. δ̂(q, x) = δ̂′(q, x).

Proof: By induction on x .

Observe that xa is a special case of xy where y = a.

Base case is trivial.

The inductive step goes as follows:

δ̂(q, xa) = δ̂(δ̂(q, x), a) by previous prop

= δ(δ̂(q, x), a) by def of δ̂

= δ(δ̂′(q, x), a) by IH

= δ̂′(q, xa) by def of δ̂′
April 9th 2013, Lecture 4 TMV027/DIT321 9/27

Language Accepted by a DFA

Definition: The language accepted by the DFA (Q, Σ, δ, q0, F) is the set
L = {x | x ∈ Σ∗, δ̂(q0, x) ∈ F}.

Example: In the example on slide 6, 10101 is accepted but 00110 is not.

Note: We could write a program that simulates a DFA and let the
program tell us whether a certain string is accepted or not.

April 9th 2013, Lecture 4 TMV027/DIT321 10/27

Functional Representation of a DFA Accepting x010y

data Q = Q0 | Q1 | Q2 | Q3
data S = O | I

final :: Q -> Bool
final Q3 = True
final _ = False

delta :: Q -> S -> Q
delta Q0 O = Q1
delta Q0 I = Q0
delta Q1 O = Q1
delta Q1 I = Q2
delta Q2 O = Q3
delta Q2 I = Q0
delta Q3 _ = Q3

April 9th 2013, Lecture 4 TMV027/DIT321 11/27

Functional Representation of a DFA Accepting x010y

run :: Q -> [S] -> Q
run q [] = q
run q (a:xs) = run (delta q a) xs

accepts :: [S] -> Bool
accepts xs = final (run Q0 xs)

April 9th 2013, Lecture 4 TMV027/DIT321 12/27

Accepting by End of String

Sometimes we use an automaton to identify properties of a certain string.

Here, the important things is the state the automaton is in when we finish
reading the input.

Then, the set of final states is actually not needed and can be omitted.

Example: The following automaton determines whether a binary number
is even or odd.

even odd

0
1

0

1

April 9th 2013, Lecture 4 TMV027/DIT321 13/27

Product of Automata

Given an automaton that determines whether the number of p0’s is even
or odd

A B

p0

p0

p1

p1
State A: even number of p0’s
State B: odd number of p0’s

and an automaton that determines whether the number of p1’s is even or
odd

C D

p1

p1

p0

p0

State C : even number of p1’s
State D: odd number of p1’s

How can we combine them to keep track of the parity of both p0 and p1?
April 9th 2013, Lecture 4 TMV027/DIT321 14/27

Product Construction

Definition: Given two DFA D1 = (Q1, Σ, δ1, q1, F1) and
D2 = (Q2, Σ, δ2, q2, F2) with the same alphabet Σ, we can define the
product D = D1 × D2 as follows:

Q = Q1 × Q2;

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a));

q0 = (q1, q2);

F = F1 × F2.

Proposition: δ̂((r1, r2), x) = (δ̂1(r1, x), δ̂2(r2, x)).

Proof: By induction on x .

April 9th 2013, Lecture 4 TMV027/DIT321 15/27

Example: Product of Automata (from slide 14)

The product automaton that keeps track of the parity of both p0 and p1 is:

AC BC

AD BD

p0

p0

p0

p0

p1p1 p1p1

State AC : even nr. of p0’s and p1’s

State BC : odd nr. of p0’s and
even nr. of p1’s

State AD: even nr. of p0’s and
odd nr. of p1’s

State BD: odd nr. of p0’s and p1’s

April 9th 2013, Lecture 4 TMV027/DIT321 16/27

Example: Product of Automata

Consider a system where users have three states: idle, requesting and
using.

Let us assume we have 2 users.

Each user is represented by a simple automaton, for k = 1, 2:

rk

ik

uk

April 9th 2013, Lecture 4 TMV027/DIT321 17/27

Example: Product of Automata (cont.)

The complete system is represented by the product of these 2 automata
and it has 3 * 3 = 9 states.

i1i2 r1i2 u1i2

i1r2 r1r2 u1r2

i1u2 r1u2 u1u2

April 9th 2013, Lecture 4 TMV027/DIT321 18/27

Language Accepted by a Product Automaton

Proposition: Given two DFA D1 and D2, then
L(D1 × D2) = L(D1) ∩ L(D2).

Proof: δ̂(q0, x) = (δ̂1(q1, x), δ̂2(q2, x)) ∈ F iff δ̂1(q1, x) ∈ F1 and
δ̂2(q2, x) ∈ F2, that is, x ∈ L(D1) and x ∈ L(D2) iff x ∈ L(D1) ∩ L(D2).

Note: It can be quite difficult to directly build an automaton accepting
the intersection of two languages.

Exercise: Build a DFA for the language that contains the subword abb
twice and an even number of a’s.

April 9th 2013, Lecture 4 TMV027/DIT321 19/27

Variation of the Product

Definition: We define D1 ⊕ D2 similarly to D1 × D2 but with a different
notion of accepting state:

a state (r1, r2) is accepting iff r1 ∈ F1 or r2 ∈ F2

Proposition: Given two DFA D1 and D2, then
L(D1 ⊕ D2) = L(D1) ∪ L(D2).

Exercise: Define an automaton accepting strings with lengths multiple of
3 or of 5.

April 9th 2013, Lecture 4 TMV027/DIT321 20/27

Complement

Definition: Given the automaton D = (Q, Σ, δ, q0, F) we define the
complement D of D as the automaton D = (Q, Σ, δ, q0, Q − F).

Proposition: Given a DFA D we have that L(D) = Σ∗ − L(D) = L(D).

Note: We have that D1 ⊕ D2 = D1 × D2.

April 9th 2013, Lecture 4 TMV027/DIT321 21/27

Accessible Part of a DFA

Consider the DFA ({q0, . . . , q3}, {0, 1}, δ, q0, {q1}) given by

q0 q1 q2 q3

1

0

0

1

1

0

0

1

This is clearly equivalent to the DFA

q0 q1

1

0

0

1

which is the accessible part of the DFA. The states q2 and q3 are not
accessible/reachable from the start state and can be removed.
April 9th 2013, Lecture 4 TMV027/DIT321 22/27

Accessible States

Definition: The set Acc = {δ̂(q0, x) | x ∈ Σ∗} is the set of accessible
states (from the state q0).

Proposition: If D = (Q, Σ, δ, q0, F) is a DFA, then
D ′ = (Q ∩Acc, Σ, δ|Q∩Acc, q0, F ∩Acc) is a DFA such that L(D) = L(D ′).

Proof: Notice that D ′ is well defined and that L(D ′) ⊆ L(D).

If x ∈ L(D) then δ̂(q0, x) ∈ F . By definition δ̂(q0, x) ∈ Acc.
Hence δ̂(q0, x) ∈ F ∩ Acc and then x ∈ L(D ′).

April 9th 2013, Lecture 4 TMV027/DIT321 23/27

Regular Languages

Recall: Given an alphabet Σ, a language L is a subset of Σ∗, that is,
L ⊆ Σ∗.

Definition: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the
alphabet Σ such that L = L(D).

Proposition: If L1 and L2 are regular languages then so are L1 ∩ L2,
L1 ∪ L2 and Σ∗ − L1.

Proof: . . .

April 9th 2013, Lecture 4 TMV027/DIT321 24/27

Application of DFA: Automatic Theorem Proving

Assume Σ = {a, b}.
Let L be the set of x ∈ Σ∗ such that any a in x is followed by a b.

Let L′ be the set of x ∈ Σ∗ such that any b in x is followed by a a.

How to prove that L ∩ L′ = {ǫ}?

Intuitively:

if x 6= ǫ in L we have that if x = . . . a . . . then it should actually be
x = . . . a . . . b . . .

if x 6= ǫ in L′ we have that if x = . . . b . . . then it should actually be
x = . . . b . . . a . . .

Hence a non-empty word in L ∩ L′ should be infinite.

April 9th 2013, Lecture 4 TMV027/DIT321 25/27

Application of DFA: Automatic Theorem Proving (cont.)

Formally we can automatically prove that L∩L′ = {ǫ} with an automaton.

Define a DFA D such that L(D) = L.

Define a DFA D ′ such that L(D ′) = L′.

Now we can compute D × D ′ and check that

L ∩ L′ = L(D × D ′) = {ǫ}

April 9th 2013, Lecture 4 TMV027/DIT321 26/27

Overview of Next Lecture

Sections 2.3–2.3.5, brief on 2.4:

Non-deterministic Finite Automata (NFA);

Equivalence between DFA and NFA.

April 9th 2013, Lecture 4 TMV027/DIT321 27/27

