Finite Automata Theory and Formal Languages TMV027/DIT321 – LP4 2013

Turing Machines

Week 8

1. Given the alphabet $\Sigma = \{I\}$, the Natural number n can be represented in a tape as n consecutive occurrences of I.

Give both a high-level description and a state-transition diagram of a Turing machine computing the following operations on Natural numbers:

- (a) Successor and predecessor;
- (b) Addition and subtraction;
- (c) Multiplication.

Consider the input on the tape of the form $\sharp n$ or $\sharp n\sharp m$, with $n,m\in\Sigma^*$, depending on the problem.

2. For each of the below languages L_i , give both a high-level description and a state-transition diagram of a Turing machine for L_i .

In each case, state whether your Turing machine is also a Turing decider or not.

- (a) $L_1 = \{ \sharp w_1 \sharp w_2 \mid w_1, w_2 \in \{0, 1\}^* \text{ and } w_1 \neq w_2 \};$
- (b) $L_2 = \{ \sharp w_1 \sharp w_2 \mid w_1, w_2 \in \{0, 1\}^* \text{ and } \operatorname{length}(w_1) < \operatorname{length}(w_2) \};$
- (c) $L_3 = \{ \sharp w_1 \sharp w_2 \mid w_1, w_2 \in \{0, 1\}^* \text{ and } \operatorname{length}(w_1) = \operatorname{length}(w_2) \};$
- (d) $L_4 = \{ \sharp w \sharp w^r \mid w \in \{0,1\}^* \}$, where w^r stands for the reverse of w;
- (e) $L_5 = \{ \sharp 0^i \sharp 1^j \sharp 2^k \mid k = i * j \};$
- (f) $L_6 = \{ \sharp 0^i \sharp 1^j \mid j = i^2 \}.$