Finite Automata Theory and Formal Languages TMV027/DIT321 – LP4 2013

Formal Proofs, Alphabets and Words

Week 2

In these exercises, book sections and pages refer to those in the third edition of the course book.

Let \mathbb{N} be the set of all non-negative integers $\{0, 1, 2, \ldots\}$ (see page 22 of the text book: "Integers as recursively defined concepts").

1. If $\Sigma = \{0, 1\}$, find a counterexample to the following alleged theorem: $\forall x, y \in \Sigma^*$ we have (cf. section 1.3.4)

$$x^2y = xyx$$

- 2. Suppose we put infinitely many pigeons into two pigeonholes. Show that one of the pigeonholes contains infinitely many pigeons. *Hint:* Prove by contradiction!
- 3. Prove that $\sum_{0 \leq k}^{n} k = n(n+1)/2$.
- 4. Prove that $\sum_{1 \le k}^{n} (2k 1) = n^2$.
- 5. Prove that $\sum_{1 \leq k}^{n} k^2 = n(n+1)(2n+1)/6.$
- 6. Prove that $\forall n \ge 4.n^2 \le 2^n$.
- 7. Let $f : \mathbb{N} \to \mathbb{N}$ be defined by recursion as

$$f(0) = 0$$
 $f(n+1) = f(n) + n$

What are the values of f(2) and f(3)?

Use mathematical induction to show that for all $n \in \mathbb{N}$ we have

$$2f(n) = n^2 - n$$

- 8. Suppose that we have stamps of 4 kr and 3 kr. Show that any amount of postage over 5 kr can be made with some combinations of these stamps.
- 9. Let us define by recursion the following function:

$$0! = 1 \qquad (n+1)! = (n+1) \times n!$$

Show that $n! \ge 2^n$ for $n \ge 4$ by analogy with the proof of example 1.17, page 21 of the text book.

10. Let us define by recursion the following two functions $f, g: \mathbb{N} \to \mathbb{N}$

$$f(0) = 0 g(0) = 1 f(n+1) = g(n) g(n+1) = f(n)$$

What are the values of g(2) and f(4)? Show by mathematical induction that for all $n \in \mathbb{N}$ we have

$$f(n) + g(n) = 1$$
 $f(n)g(n) = 0$

Show by *mutual* induction that f(n) = 0 iff g(n) = 1 iff n is even, and that f(n) = 1 iff g(n) = 0 iff n is odd, in analogy to the proof in pages 26–28 in the text book.

11. Let us define the Fibonacci function:

$$f(0) = 0$$
 $f(1) = 1$ $f(n+2) = f(n+1) + f(n)$

We then define s(0) = 0, s(n+1) = s(n) + f(n+1).

Prove by induction that we have

$$\forall n.s(n) = f(n+2) - 1.$$

Now we define

$$l(0) = 2, \ l(1) = 1, \ l(n+2) = l(n+1) + l(n)$$

Prove by induction that we have l(n + 1) = f(n) + f(n + 2).

12. If $\Sigma = \{a, b, c\}$, what are Σ^1 , Σ^2 and Σ^0 ?

13. Let $\Sigma = \{0, 1\}$. We define $\phi : \Sigma^* \to \Sigma^*$ by recursion as follows

$$\phi(\epsilon) = \epsilon$$
 $\phi(w0) = \phi(w)1$ $\phi(w1) = \phi(w)0$

What are $\phi(1011)$ and $\phi(1101)$?

Show by induction on |w| that

$$|\phi(w)| = |w|.$$

14. Let $\Sigma = \{0, 1\}$. We define the reverse function on Σ^* by the equations

$$rev(\epsilon) = \epsilon$$
 $rev(ax) = rev(x)a$

What are rev(010) and rev(10)?

Show by induction on y that we have

$$rev(yx) = rev(x)rev(y).$$

Show by induction on $n \in \mathbb{N}$ that we have

$$rev(x^n) = (rev(x))^n.$$

15. Given a finite alphabet Σ , when can we have $x^2 = y^3$ with $x, y \in \Sigma^*$?