
Finite Automata and Formal Languages

TMV027/DIT321– LP4 2013

Lecture 9
Ana Bove

April 25th 2013

Overview of today’s lecture:

Decision Properties for RL;

Equivalence of RL;

Minimisation of automata.

Decision Properties of Regular Languages

We want to be able to answer YES/NO to questions such as

Is this language empty?

Is string w in the language L?

Are these 2 languages equivalent?

In general languages are infinite so we cannot do a “manual” checking.

Instead we should work with the finite description of the languages (DFA,
NFA. ǫ-NFA, RE).

Which description is the most convenient depends on the property and on
the language.

April 25th 2013, Lecture 9 TMV027/DIT321 1/22

Testing Emptiness of Regular Languages given FA

Given a FA for a language, testing whether the language is empty or not
amounts to checking if there is a path from the start state to a final state.

Let D = (Q, Σ, δ, q0, F) be a DFA.

Recall the notion of accessible states: Acc = {δ̂(q0, x) | x ∈ Σ∗} .

Proposition: Given D as above, then
D ′ = (Q ∩Acc, Σ, δ|Q∩Acc, q0, F ∩Acc) is a DFA such that L(D) = L(D ′).

In particular, L(D) = ∅ if F ∩ Acc = ∅.
(Actually, L(D) = ∅ iff F ∩ Acc = ∅ since if δ̂(q0, x) ∈ F then
δ̂(q0, x) ∈ F ∩ Acc.)

April 25th 2013, Lecture 9 TMV027/DIT321 2/22

Testing Emptiness of Regular Languages given FA

A recursive algorithm to test whether a state is accessible/reachable is as
follows:

Base case: The start state q0 is reachable from q0.

Recursive step: If q is reachable from q0 and there is an arc from q to p
(with any label, including ǫ) then p is also reachable from q0.

(This algorithm is an instance of graph-reachability.)

If the set of reachable states contains at least one final state then the RL
is NOT empty.

Exercise: Program this!

April 25th 2013, Lecture 9 TMV027/DIT321 3/22

Testing Emptiness of Regular Languages given RE

Given a RE for the language we can instead perform the following test:

Base cases: ∅ denotes the empty language while ǫ and a (any symbol
from the alphabet) do not.

Inductive step: Let R be our RE.

If R = R1 + R2 then L(R) is empty iff both L(R1) and
L(R2) are empty;
If R = R1R2 then L(R) is empty iff either L(R1) or
L(R2) is empty;
If R = R∗1 is never empty since it always contains the
word ǫ.

April 25th 2013, Lecture 9 TMV027/DIT321 4/22

Functional Representation of Testing Emptiness for RE

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

isEmpty :: RExp a -> Bool
isEmpty Empty = True
isEmpty (Plus e1 e2) = isEmpty e1 && isEmpty e2
isEmpty (Concat e1 e2) = isEmpty e1 || isEmpty e2
isEmpty _ = False

April 25th 2013, Lecture 9 TMV027/DIT321 5/22

Testing Membership in Regular Languages

Given a RL M and a word w over the alphabet of M, is w ∈M ?

When L is given by a FA we can simply run the FA with the input w and
see if the word is accepted by the FA.

We have seen an algorithm simulating the running of a DFA (and you have
implemented algorithms simulating the running of NFA and ǫ-NFA :-).

Using derivatives (see exercises 4.2.3 and 4.2.5) there is a nice algorithm
checking membership on RE.

Let M = L(R) and w = a1 . . . an.

Let a\R = DaR = {x | ax ∈M} (in the book
dM
da

).

DwR = Dan(. . . (Da1R) . . .).

It can then be shown that w ∈M iff ǫ ∈ DwR.
April 25th 2013, Lecture 9 TMV027/DIT321 6/22

Other Testing Algorithms on Regular Expressions

Tests if a RE contains ǫ.

hasEpsilon :: RExp a -> Bool
hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon _ = False

April 25th 2013, Lecture 9 TMV027/DIT321 7/22

Other Testing Algorithms on Regular Expressions

Tests if L(R) ⊆ {ǫ}.

atMostEps :: RExp a -> Bool
atMostEps Empty = True
atMostEps Epsilon = True
atMostEps (Atom _) = False
atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2
atMostEps (Concat e1 e2) = isEmpty e1 || isEmpty e2 ||

(atMostEps e1 && atMostEps e2)
atMostEps (Star e) = atMostEps e

April 25th 2013, Lecture 9 TMV027/DIT321 8/22

Other Testing Algorithms on Regular Expressions

Tests if a regular expression denotes an infinite language.

infinite :: RExp a -> Bool
infinite (Star e) = not (atMostEps e)
infinite (Plus e1 e2) = infinite e1 || infinite e2
infinite (Concat e1 e2) = (infinite e1 && notIsEmpty e2) ||

(notIsEmpty e1 && infinite e2)
where notIsEmpty e = not (isEmpty e)

infinite _ = False

April 25th 2013, Lecture 9 TMV027/DIT321 9/22

Testing Equivalence of Regular Languages

There is no simple algorithm for testing this.

We have seen how one can prove that 2 RE are equal, hence the languages
they represent are equivalent, but this is not an easy process.

We will see now how to test when 2 DFA describe the same language.

April 25th 2013, Lecture 9 TMV027/DIT321 10/22

Testing Equivalence of States in DFA

We shall first answer the question: do states p and q behave in the same
way?

Definition: We say that states p and q are equivalent if for all w ,
δ̂(p, w) is an accepting state iff δ̂(q, w) is an accepting state.

Note: We do not require that δ̂(p, w) = δ̂(q, w)!

Definition: If p and q are not equivalent, then they are distinguishable.

That is, there exists at least one w such that one of δ̂(p, w) and δ̂(q, w) is
an accepting state and the other is not.

April 25th 2013, Lecture 9 TMV027/DIT321 11/22

Table-Filling Algorithm

This algorithm finds pairs of states that are distinguishable.

Then, any pair of states that we do not find distinguishable are equivalent.

Let D = (Q, Σ, δ, q0, F) be a DFA. The algorithm is as follows:

Base case: If p is an accepting state and q is not, the (p, q) are
distinguishable.

Inductive step: Let p and q be states such that for some symbol a,
δ(p, a) = r and δ(q, a) = s with the pair (r , s) known to be
distinguishable. Then (p, q) are also distinguishable.

(If w distinguishes r and s then aw must distinguish p and q
since δ̂(p, aw) = δ̂(r , w) and δ̂(q, aw) = δ̂(s, w).)

April 25th 2013, Lecture 9 TMV027/DIT321 12/22

Example: Table-Filling Algorithm

For the following DFA, we fill the table with an X at distinguishable pairs.

a b

→ q0 q1 q2

∗q1 q3 q4

∗q2 q4 q3

q3 q5 q5

q4 q5 q5

∗q5 q5 q5

q0 q1 q2 q3 q4

q5 X X X X X
q4 X X X
q3 X X X
q2 X
q1 X

Let us consider the base case of the algorithm.

Let us consider the pair (q0, q4).

Let us consider the pair (q0, q3).

Finally, let us consider the pairs (q3, q4) and (q1, q2).

April 25th 2013, Lecture 9 TMV027/DIT321 13/22

Equivalent States

Theorem: Let D = (Q, Σ, δ, q0, F) be a DFA. If 2 states are not
distinguishable by the table-filling algorithm then the states are equivalent.

Proof: Let us assume there is a bad pair (p, q) such that p and q are
distinguishable but the table-filling algorithm doesn’t find them so.

If there are bad pairs, let (p′, q′) be a bad pair with the shortest string
w = a1a2 . . . an that distinguishes 2 states.

Note w is not ǫ otherwise (p′, q′) is found distinguishable in the base step.

Let δ(p′, a1) = r and δ(q′, a1) = s. States r and s are distinguished by
a2 . . . an since this string takes r to δ̂(p′, w) and s to δ̂(q′, w).

Now string a2 . . . an distinguishes 2 states and is shorter than w which is
the shortest string that distinguishes a bad pair. Then (r , s) cannot be a
bad pair and hence it must be found distinguishable by the algorithm.

Then the inductive step should have found (p′, q′) distinguishable.

This contradicts the assumption that bad pairs exist.
April 25th 2013, Lecture 9 TMV027/DIT321 14/22

Testing Equivalence of Regular Languages

We can use the table-filling algorithm to test equivalence of regular
languages.

Let M and N be 2 regular languages.
Let DM = (QM, Σ, δM, qM, FM) and DN = (QN , Σ, δN , qN , FN) be
their corresponding DFA.

Let us assume QM ∩ QN = ∅ (easy to obtain by renaming).

Construct D = (QM ∪ QN , Σ, δ,−, FM ∪ FN) (initial state irrelevant).
δ is the union of δM and δN as a function.

One should now check if the pair (qM, qN) is equivalent.
If so, a string is accepted by DM iff it is accepted by DN .
Hence M and N are equivalent languages.
April 25th 2013, Lecture 9 TMV027/DIT321 15/22

Equivalence of States: An Equivalence Relation

The relation “state p is equivalent to state q”, which we shall denote
p ≈ q, is an equivalence relation. (Prove it as an exercise!)

Reflexive: every state p is equivalent to itself

∀p, p ≈ p;

Symmetric: for any states p and q, if p is equivalent to q then q is
equivalent to p

∀p q, p ≈ q ⇒ q ≈ p;

Transitive: for any states p, q and r , if p is equivalent to q and q is
equivalent to r then p is equivalent to r

∀p q r , p ≈ q ∧ q ≈ r ⇒ p ≈ r .

(See Theorem 4.23 for a proof of the transitivity part.)

April 25th 2013, Lecture 9 TMV027/DIT321 16/22

Partition of States

Let D = (Q, Σ, δ, q0, F) be a DFA.

The table-filling algo. defines the “equivalence of states” relation over Q.

Since this is an equivalence relation we can define the quotient Q/≈.

This quotient gives us a partition of the states into classes/blocks of
mutually equivalent states.

Example: The partition for the example in slide 13 is the following (note
the singleton classes!)

{q0} {q1, q2} {q3, q4} {q5}

Note: Classes might also have more than 2 elements.

April 25th 2013, Lecture 9 TMV027/DIT321 17/22

Minimisation of DFA

Let D = (Q, Σ, δ, q0, F) be a DFA.

Q/≈ allows to build an equivalent DFA with the minimum nr. of states.

In addition, this minimum DFA is unique (modulo the name of the states).

The algorithm for building the minimum DFA D ′ = (Q ′, Σ, δ′, q′0, F
′) is:

1 Eliminate any non accessible state;

2 Partition the remaining states with the help of the table-filling
algorithm;

3 Use each block as a single state in the new DFA;

4 The start state is the block containing q0, the final states are all
those blocks containing elements in F ;

5 δ′(S , a) = T if given any q ∈ S , δ(q, a) = p for some p ∈ T .
(Actually, the partition guarantees that ∀q ∈ S . ∃p ∈ T . δ(q, a) = p.)

April 25th 2013, Lecture 9 TMV027/DIT321 18/22

Example

Example: The minimal DFA corresponding to the DFA in slide 13 is

q0 q1q2 q3q4 q5
a, b a, b a, b

a, b

Exercise: Program the minimisation algorithm!

April 25th 2013, Lecture 9 TMV027/DIT321 19/22

Does the Minimisation Algorithm Give a Minimal DFA?

Given a DFA D, the minimisation algorithm gives us a DFA D ′ with the
minimal number of states with respect to those of D.

Can you see why?

But, could there exist a DFA A completely unrelated to D, also accepting
the same language and with less states than those in D ′?

Section 4.4.4 in the book shows by contradiction that A cannot exist.

Theorem: If D is a DFA and D ′ the DFA constructed from D with the
minimisation algorithm described before, then D ′ has as few states as any
DFA equivalent to D.

April 25th 2013, Lecture 9 TMV027/DIT321 20/22

Can we Minimise a NFA?

One can of course find (in some cases) a smaller NFA, but the algorithm
we presented before does not do the job.

Example: Consider the following NFA
q0 q1

q2

0

1 0

0, 1

The table-filling algorithm does not find equivalent states in this case.

However, the following is a smaller and equivalent NFA for the language.

q0 q1
0

0, 1

April 25th 2013, Lecture 9 TMV027/DIT321 21/22

Overview of Next Lecture

Guest lecture by Martin Fabian

Supervisory Control Theory – A Practical Application of
Automata Theory

and sections 5–5.2:

Context free grammars;

Derivations and parse trees.

April 25th 2013, Lecture 9 TMV027/DIT321 22/22

