
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2013

Lecture 2
Ana Bove

March 19th 2013

Overview of today’s lecture:

Recap on logic;

Recap on sets, relations and functions;

Central Concepts of Automata Theory.

Propositional Logic

Definition: A proposition is an statement which is either true (T) or
false (F).

Example: My name is Ana.

I come from Uruguay.

I have 3 children.

I can speak 4 different languages.

It is not always easy to know what is the truth value of a proposition, that
is, whether it is true or false.

March 19th 2013, Lecture 2 TMV027/DIT321 1/43

Connective and Truth Tables

We can combine propositions by using connectives.:

¬: negation, or

∧: conjunction, and

∨: disjunction, or

⇒: conditional, if-then, →
⇔: equivalence, if-and-only-if, ↔

These are their truth tables (observe the conditional...):

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

T T F T T T T

T F F F T F F

F T T F T T T F

F F T F F T T T

March 19th 2013, Lecture 2 TMV027/DIT321 2/43

Conditionals

Example: Consider the statement if it rains then I take my umbrella.

Consider now all the cases in which the statement is true.

What happens when it doesn’t rain?
Does it matter whether I take the umbrella?

NO! The condition only says what must happen when it DOES rain!

Let p be “it rains”.
Let q be “I take the umbrella”.

Recall truth table for conditional:

p q p ⇒ q

T T T

T F F

F T T

F F T
March 19th 2013, Lecture 2 TMV027/DIT321 3/43

Combined Propositions

Example: Express either you pass the assignments and you pass the
course or you don’t pass the course with propositions and construct its
truth table.

Let p be “you pass the assignments”.
Let q be “you pass the course”.

Then the sentence is expressed by (p ∧ q) ∨ ¬q.

p q p ∧ q ¬q (p ∧ q) ∨ ¬q

T T T F T

T F F T T

F T F F F

F F F T T

March 19th 2013, Lecture 2 TMV027/DIT321 4/43

Tautologies and Logical Equivalence

Definition: A proposition that is always true is called a tautology.

Example: The law of the excluded middle is a tautology in classical logic

p ¬p p ∨ ¬p

T F T

F T T

Definition: Two propositions are logically equivalent (≡) if they have the
same truth table.

Example: p ⇒ q is logically equivalent to ¬p ∨ q:

p q p ⇒ q ¬p ¬p ∨ q

T T T F T

T F F F F

F T T T T

F F T T T

March 19th 2013, Lecture 2 TMV027/DIT321 5/43

Laws of (Classical) Logic

Equivalence: p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p)
Implication: p ⇒ q ≡ ¬p ∨ q

Double negation: ¬¬p ≡ p
Idempotent: p ∧ p ≡ p p ∨ p ≡ p

Commutative: p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
Associative: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributive: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
de Morgan: ¬(p ∧ q) ≡ ¬p ∨ ¬q ¬(p ∨ q) ≡ ¬p ∧ ¬q

Identity: p ∧ T ≡ p p ∨ F ≡ p
Annihilation: p ∧ F ≡ F p ∨ T ≡ T

Inverse: p ∧ ¬p ≡ F p ∨ ¬p ≡ T
Absorption: p ∧ (p ∨ q) ≡ p p ∨ (p ∧ q) ≡ p

Exercise: Construct the truth tables and check the logical equivalences!
March 19th 2013, Lecture 2 TMV027/DIT321 6/43

Statements with Variables

Example: Consider the following property on natural numbers

if x = 9i then x = 3j for i , j > 0

The property is clearly true for 0, 9, 18, 27, ...

Is the property true for 3, 6, 12, 15, ...? YES!

Is the property true for 2, 4, 8, 10? YES!

Is there any x which is multiple of 9 but x is NOT multiple of 3? NO!

Then we have that

∀x .if x = 9i then x = 3j for i , j > 0

Note: When statements have variables we are actually working on
predicate logic.
March 19th 2013, Lecture 2 TMV027/DIT321 7/43

Predicate Logic

Definition: A predicate is a statement with one or more variables.

If values are assigned to all variable in a predicate it becomes a proposition.

Definition: The expressions for all (∀) and exists (∃) are called
quantifiers.

Reasoning in predicate logic is more complicated since variables can range
over an infinite set of values.

Example: Express the following 2 statements in predicate logic:

For every number x there is a number y such that x = y
∀x .∃y .x = y

There is a number x such that for every number y then x = y
∃x .∀y .x = y

Are they the same statement?
March 19th 2013, Lecture 2 TMV027/DIT321 8/43

More Laws of (Classical) Logic

We have that
¬∀x .P(x) ≡ ∃x .¬P(x)

and
¬∃x .P(x) ≡ ∀x .¬P(x)

March 19th 2013, Lecture 2 TMV027/DIT321 9/43

Sets

Definition: A set is a collection of well defined and distinct objects or
elements.

A set might be finite or infinite.

Sets can be described/defined in different ways:

Enumeration: (only finite sets).
{Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

Characteristic Property: {x | x is an odd natural Number}.
Operations on Other Sets: A ∪ B, A ∩ B, ...

Inductive Definitions: More on this later ...

...

March 19th 2013, Lecture 2 TMV027/DIT321 10/43

Membership on Sets

Definition: We denote that x is an element of set A by x ∈ A.

It is important to determine whether x ∈ A or x /∈ A.
However this is not always possible.

Example: Let P be the set of programs that always terminate.

Can we always be sure if a certain program pgr ∈ P, that is, terminates?

Example: Let A = {x | x /∈ A}.
Does x ∈ A or x /∈ A?

March 19th 2013, Lecture 2 TMV027/DIT321 11/43

Some Operations and Properties on Sets

Union: A ∪ B = {x | x ∈ A or x ∈ B}.
Intersection: A ∩ B = {x | x ∈ A and x ∈ B}.
Cartesian Product: A× B = {(x , y) | x ∈ A and y ∈ B}.

Observe this is a collection of ordered pairs! (x , y) 6= (y , x).

Difference: S − A = {x | x ∈ S and x /∈ A}.
When the set S is known, S − A is written A and is called
the complement.
S − A is sometimes denoted S\A and A is sometimes
denoted A′.

Subset: A ⊆ B if for all x ∈ A then x ∈ B.

Equality: A = B if A ⊆ B and B ⊆ A.

Proper Subset: If A ⊆ B but A 6= B then A ⊂ B.
March 19th 2013, Lecture 2 TMV027/DIT321 12/43

Some Particular Sets

Empty set: ∅ is the set with no elements.
We have ∅ ⊆ S for any set S .

Singleton sets: Sets with only one element: {p0}, {p1}.

Finite sets: Set with a finite number n of elements:
{p1, . . . , pn} = {p1} ∪ . . . ∪ {pn}.

Power sets: Pow(S) the set of all subsets of the set S .
Pow(S) = {A | A ⊆ S}.
Observe that ∅ ∈ Pow(S) and S ∈ Pow(S).
Also, if |S | = n then |Pow(S)| = 2n.

March 19th 2013, Lecture 2 TMV027/DIT321 13/43

Algebraic Laws for Sets

Idempotent: A ∪ A = A A ∩ A = A
Commutative: A ∪ B = B ∪ A A ∩ B = B ∩ A

Associative: (A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Distributive: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

de Morgan: (A ∪ B) = A ∩ B (A ∩ B) = A ∪ B
Laws for ∅ : A ∪ ∅ = A A ∩ ∅ = ∅

Laws for Universe: A ∪ U = U A ∩ U = A

Complements: A = A A ∪ A = U A ∩ A = ∅
U = ∅ ∅ = U

Absorption: A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A

Exercise: Prove the equality of the sets by showing the double inclusion!

March 19th 2013, Lecture 2 TMV027/DIT321 14/43

Relations

Definition: A (binary) relation R between two sets A and B is a subset
of A× B, that is, R ⊆ A× B.

Notation: (a, b) ∈ R, a R b, R(a, b), (a, b) satisfies R.

Definition: A relation R over a set S , that is R ⊆ S × S , is

Reflexive if ∀a ∈ S . a R a;

Symmetric if ∀a, b ∈ S . a R b ⇒ b R a;

Transitive if ∀a, b, c ∈ S . a R b ∧ b R c ⇒ a R c .

Definition: If S has an equality relation =⊆ S × S and R ⊆ S × S then
R is Antisymmetric if ∀a, b ∈ S . a R b ∧ b R a⇒ a = b.

March 19th 2013, Lecture 2 TMV027/DIT321 15/43

Example of Relations

Let S = {1, 2, 3} and let =⊆ S × S be as expected.
Which of these relations are reflexive, symmetric, antisymmetric,
transitive?

R1 = ∅ Symmetric, Antisymmetric, Transitive

R2 = {(1, 2)} Antisymmetric, Transitive

R3 = {(1, 2), (2, 3)} Antisymmetric

R4 = {(1, 2), (2, 3), (1, 3)} Antisymmetric, Transitive

R5 = {(1, 2), (2, 1)} Symmetric

R6 = {(1, 2), (2, 1), (1, 1)} Symmetric

R7 = {(1, 2), (2, 1), (1, 1), (2, 2)} Symmetric, Transitive

R8 = {(1, 2), (2, 1), (1, 1), (2, 2), (3, 3)} Reflexive, Symm, Trans

March 19th 2013, Lecture 2 TMV027/DIT321 16/43

Equivalent Relations and Partial Orders

Definition: A relation R over a set S that is reflexive, symmetric and
transitive is called an equivalence relation over S .

Example: = is an equivalence over the Natural numbers N.

Definition: A relation R over a set S that is reflexive, antisymmetric and
transitive is called a partial order over S .

Example: 6 is a partial order over N.

Definition: A relation R over a set S is called a total order over S if:

R is a partial order;

∀a, b ∈ S , a R b ∨ b R a.

Example: 6 is a total order over N.

March 19th 2013, Lecture 2 TMV027/DIT321 17/43

Partitions

Definition: A set P is a partition over the set S if:

Every element of P is a non-empty subset of S

∀C ∈ P, C 6= ∅ ∧ C ⊆ S ;

Elements of P are pairwise disjoint

∀C1,C2 ∈ P, C1 6= C2 ⇒ C1 ∩ C2 = ∅;

The union of the elements of P is equal to S⋃
C∈P

C = S .

March 19th 2013, Lecture 2 TMV027/DIT321 18/43

Equivalent Classes

Let R be an equivalent relation over S .

Definition: If a ∈ S , then the equivalent class of a in S is the set defined
as [a] = {b ∈ S | a R b}.

Lemma: ∀a, b ∈ S , [a] = [b] iff a R b.

Theorem: The set of all equivalence classes in S with respect to R form
a partition over S.

Note: This partition is called the quotient and it is denoted as S/R.

Example: The rational numbers Q can be formally defined as the
equivalence classes of the quotient set Z× Z+/ ∼, where ∼ is the
equivalence relation defined by (m1, n1) ∼ (m2, n2) iff m1n2 =Z m2n1.

March 19th 2013, Lecture 2 TMV027/DIT321 19/43

Functions

Definition: A function f from A to B is a relation f ⊆ A× B such that,
given x ∈ A and y , z ∈ B, if x f y and x f z then y = z .

If f is a function from A to B we write f : A→ B.

That x and y are related by f is usually written as f (x) = y .

Example: sq : Z→ N such that sq(n) = n2.

Observe that sq(2) = 4 and sq(−2) = 4.

March 19th 2013, Lecture 2 TMV027/DIT321 20/43

Domain, Codomain, Range and Image

Let f : A→ B.

Definition: The sets A and B are called the domain and the codomain of
the function, respectively.

Definition: The set Dom(f) or Domf for which the function is defined is
given by {x ∈ A | f (x) is defined} ⊆ A.

We will also refer to Dom(f) as the domain of f .

Definition: The set {y ∈ B | ∃x ∈ A.f (x) = y} ⊆ B is called the range
or image of f and denoted Im(f) or Imf . .

Example: The image of sq is NOT all N but {0, 1, 4, 9, 16, 25, 36, . . .}.

March 19th 2013, Lecture 2 TMV027/DIT321 21/43

Total and Partial Functions

Let f : A→ B.

Definition: If Dom(f) = A then f is called a total function.

Example: sq is a total function.

Definition: If Dom(f) ⊂ A then f is called a partial function.

Example: The square root function sqr : N→ N is a partial function.

Note: In some cases it is not known is a function is partial or total.

Example: It is not known if collatz : N→ N is total or not.

collatz(0) = 1
collatz(1) = 1

collatz(n) =

{
n/2 if n even
3n + 1 if n odd

March 19th 2013, Lecture 2 TMV027/DIT321 22/43

Injective or One-to-one Functions

Let f : A→ B.

Definition: f is called an injective or one-to-one function if
∀x , y ∈ A.f (x) = f (y)⇒ x = y .

Alternatively:

Definition: f is called an injective or one-to-one function if
∀x , y ∈ A.x 6= y ⇒ f (x) 6= f (y).

Exercise: Prove that double : N→ N such that double(n) = 2n is
injective.

March 19th 2013, Lecture 2 TMV027/DIT321 23/43

The Pigeonhole Principle

“If you have more pigeons than pigeonholes and each pigeon flies into
some pigeonhole, then there must be at least one hole with more than one
pigeon.”

More formally: if f : A→ B and |A| > |B| then f cannot be injective
and there must exist at least 2 different elements with the same image,
that is, there must exist x , z ∈ A such that x 6= y and f (x) = f (y).

This principle is often used to show the existence of an object without
building this object explicitly.

Example: In a room with at least 13 people, at least 2 of them are born
the same month (maybe on different years).

We know the existence of these 2 people, maybe without being able to
know exactly who they are.

March 19th 2013, Lecture 2 TMV027/DIT321 24/43

Surjective or Onto Functions

Let f : A→ B.

Definition: f is called an surjective or onto function if
∀y ∈ B.∃x ∈ A.f (x) = y .

Note: If f is surjective then Im(f) = B.

Exercise: Prove that f : R→ R such that f(n) = 2n + 1 is surjective.

March 19th 2013, Lecture 2 TMV027/DIT321 25/43

Bijective and Inverse Functions

Definition: A function that is both injective and surjective is called a
bijective function.

Definition: If f : A→ B is a bijective function, then there exists and an
inverse function f −1 : B → A such that ∀x ∈ A.f −1(f (x)) = x and
∀y ∈ B.f (f −1(y)) = y .

Exercise: Which is the inverse of f : R→ R such that f(n) = 2n + 1?

Exercise: Is g : Z→ Z such that g(n) = 2n + 1 bijective?

Lemma: If f : A→ B is a bijective function, then f −1 : B → A is also
bijective.

March 19th 2013, Lecture 2 TMV027/DIT321 26/43

Composition and Restriction

Definition: Let f : A→ B and g : B → C . The composition
g ◦ f : A→ C is defined as g ◦ f (x) = g(f (x)).

Note: It is actually enough that Im(f) ⊆ Dom(g) for the composition to
be defined.

Example: If f : Z→ Z is such that f(n) = 3n− 2 and g : R→ R is such
that g(m) = m/2, then g ◦ f : Z→ R is g ◦ f(x) = (3x − 2)/2.

Definition: Let f : A→ B and S ⊂ A. The restriction of f to S is the
function f|S : S → B such that f|S(x) = f (x), ∀x ∈ S .

March 19th 2013, Lecture 2 TMV027/DIT321 27/43

Monoids

Definition: A monoid is a set M with an associative binary operation
· : M ×M → M and an identity element ε:

Closure: ∀a, b ∈ M. a · b ∈ M;

Associativity: ∀a, b, c ∈ M. (a · b) · c = a · (b · c);

Identity element: ∃ε ∈ M. ∀a ∈ M. ε · a = a · ε = a.

Example: (Z,+, 0) is a monoid.

Example: (R, ∗, 1) is a monoid.

March 19th 2013, Lecture 2 TMV027/DIT321 28/43

Homomorphisms

Definition: A homomorphism is a structure-preserving function between
sets.

Let (M, ·M , εM) and (N, ·N , εN) be monoids.

h : M → N is a homomorphism if:

h(εM) = εN
h(x ·M y) = h(x) ·N h(y)

Exercise: Are b c, d e : R→ N homomorphisms between (R,+, 0) and
(N,+, 0)?

Exercise: Is | | : Z→ N a homomorphism between (Z, ∗, 1) and
(N, ∗, 1)?

March 19th 2013, Lecture 2 TMV027/DIT321 29/43

Central Concepts of Automata Theory: Alphabets

Definition: An alphabet is a finite, non-empty set of symbols, usually
denoted by Σ.

The number of symbols in Σ is denoted as |Σ|.

Type convention: We will use a, b, c , . . . to denote symbols.

Note: Alphabets will represent the observable events of the automata.

Example: Some alphabets:

on/off-switch: Σ = {Push};
simple vending machine: Σ = {5 kr , choc};
complex vending machine: Σ = {5 kr , 10 kr , choc, big choc};
parity counter: Σ = {p0, p1}.

March 19th 2013, Lecture 2 TMV027/DIT321 30/43

Strings or Words

Definition: Strings/Words are finite sequence of symbols from some
alphabet.

Type convention: We will use w , x , y , z , . . . to denote words.

Note: Words will represent the behaviour of an automaton.
Example: Some behaviours:

on/off-switch: Push Push Push Push;

simple vending machine: 5 kr choc 5 kr choc 5 kr choc;

parity counter: p0p1 or p0p0p0p1p1p0.

Note: Some words do NOT represent behaviour though . . .
Example: simple vending machine: choc choc choc.

March 19th 2013, Lecture 2 TMV027/DIT321 31/43

Inductive Definition of Σ∗

Definition: Σ∗ is the set of all words for a given alphabet Σ.

This can be described inductively in at least 2 different ways:

1 Base case: ε ∈ Σ∗;
Inductive step: if a ∈ Σ and x ∈ Σ∗ then ax ∈ Σ∗.
(We will usually work with this definition.)

2 Base case: ε ∈ Σ∗;
Inductive step: if a ∈ Σ and x ∈ Σ∗ then xa ∈ Σ∗.

We can (recursively) define functions over Σ∗ and (inductively) prove
properties about those functions.
(More on induction next lecture.)

March 19th 2013, Lecture 2 TMV027/DIT321 32/43

Concatenation

Definition: Given the strings x and y , the concatenation xy is defined as:

εy = y
(ax)y = a(xy)

Example: Observe that in general xy 6= yx .

If x = p0p1p1 and y = p0p0 then xy = p0p1p1p0p0 and yx = p0p0p0p1p1.

Lemma: If Σ has more than one symbol then concatenation is not
commutative.

Terminology: Given x and y words over a certain alphabet Σ:

x is a prefix of y iff there exists z such that y = xz

x is a suffix of y iff there exists z such that y = zx

March 19th 2013, Lecture 2 TMV027/DIT321 33/43

Length and Reverse

Definition: The length function | | : Σ∗ → N is defined as:

|ε| = 0
|ax | = 1 + |x |

Example: |p0p1p1p0p0| = 5

Definition: Formally we can define the reverse function rev(x) as:

rev(ε) = ε
rev(ax) = rev(x)a

Intuitively, rev(a1 . . . an) = an . . . a1.

March 19th 2013, Lecture 2 TMV027/DIT321 34/43

Power

Of a string: We define xn as follows:

x0 = ε
xn+1 = xxn

Example: (p0p1p0)3 = p0p1p0p0p1p0p0p1p0

Of an alphabet: We define Σn, the set of words over Σ with length n, as
follows:

Σ0 = {ε}
Σn+1 = {ax | a ∈ Σ, x ∈ Σn}

Example:
{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}.

Note: Σ∗ = Σ0
⋃

Σ1
⋃

Σ2 . . . and Σ+ = Σ1
⋃

Σ2
⋃

Σ3 . . .

March 19th 2013, Lecture 2 TMV027/DIT321 35/43

Some Properties

The following properties can be proved by induction:
(More on induction next lecture.)

Lemma: Concatenation is associative: ∀x , y , z . x(yz) = (xy)z.
(We shall simply write xyz .)

Lemma: ∀x , y . |xy | = |x |+ |y |.
Lemma: ∀x . xε = εx = x.

Lemma: ∀x . |xn| = n|x |.
Lemma: ∀Σ. |Σn| = |Σ|n.

Lemma: ∀x , rev(rev(x)) = x.

Lemma: ∀x , y . rev(xy) = rev(y)rev(x).

March 19th 2013, Lecture 2 TMV027/DIT321 36/43

Languages

Definition: Given an alphabet Σ, a language L is a subset of Σ∗, that is,
L ⊆ Σ∗.

Note: If L ⊆ Σ∗ and Σ ⊆ ∆ then L ⊆ ∆∗.

Note: A language can be either finite or infinite.

Example: Some languages:

Swedish, English, Spanish, French, . . . ;

Any programming language;

∅, {ε} and Σ∗ are languages over any Σ;

The set of prime natural numbers {1, 3, 5, 7, 11, . . .}.

March 19th 2013, Lecture 2 TMV027/DIT321 37/43

Some Operations on Languages

Definition: Given L, L1 and L2 languages, we define the following
languages:

Union, Intersection, ... : As for any set.

Concatenation: L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}.
Closure: L∗ =

⋃
n∈N Ln where L0 = {ε}, Ln+1 = LnL.

Note: We have then that ∅∗ = {ε} and
L∗ = L0 ∪ L1 ∪ L2 ∪ . . . = {ε} ∪ {x1 . . . xn | n > 0, xi ∈ L}

Notation: L+ = L1 ∪ L2 ∪ L3 ∪ . . . and L? = L ∪ {ε}.
Example: Let L = {aa, b}, then
L0 = {ε}, L1 = L, L2 = LL = {aaaa, aab, baa, bb}, L3 = L2L, . . .
L∗ = {ε, aa, b, aaaa, aab, baa, bb, . . .}.
March 19th 2013, Lecture 2 TMV027/DIT321 38/43

How to Prove the Equality of Languages?

Given the languages L and M, how can we prove that L =M?

A few possibilities:

Languages are sets so we prove that L ⊆M and M⊆ L;

Transitivity of equality: L = L1 = . . . = Lm =M;

We can reason about the elements in the language:
Example: {a(ba)n | n > 0} = {(ab)na | n > 0} can be proved by
induction on n.
(More on induction next lecture.)

March 19th 2013, Lecture 2 TMV027/DIT321 39/43

Algebraic Laws for Languages

All laws presented in slide 14 are valid.

In addition all these laws on concatenation:

Associativity: L(MN) = (LM)N
Concatenation is

not commutative: LM 6=ML
Distributivity: L(M∪N) = LM∪LN (M∪N)L =ML∪NL

Identity: L{ε} = {ε}L = L
Annihilator: L∅ = ∅L = ∅

Other Rules: ∅∗ = {ε}∗ = {ε}
L+ = LL∗ = L∗L
(L∗)∗ = L∗

March 19th 2013, Lecture 2 TMV027/DIT321 40/43

Algebraic Laws for Languages (Cont.)

Note: While

L(M∩N) ⊆ LM∩LN and (M∩N)L ⊆ML∩NL

both hold, in general

LM∩LN ⊆ L(M∩N) and ML∩NL ⊆ (M∩N)L

don’t.

Example: Consider the case where

L = {ε, a}, M = {a}, N = {aa}

Then LM∩LN = {aa} but L(M∩N) = L∅ = ∅.

March 19th 2013, Lecture 2 TMV027/DIT321 41/43

Functions between Languages

Definition: A function f : Σ∗ → ∆∗ between 2 languages should be such
that it satisfies

f (ε) = ε
f (xy) = f (x)f (y)

Intuitively, f (a1 . . . an) = f (a1) . . . f (an).

Note: Such an f is a homomorphism...

Note: f (a) ∈ ∆∗ if a ∈ Σ.

Definition: f is called coding iff f is injective.

Definition: f (L) = {f (x) | x ∈ L}.

March 19th 2013, Lecture 2 TMV027/DIT321 42/43

Overview of Next Lecture

Sections 1.2–1.4 in the book and MORE:

Formal Proofs;

Inductively defined sets;

Proofs by (structural) induction.

DO NOT MISS THIS LECTURE!!!

March 19th 2013, Lecture 2 TMV027/DIT321 43/43

