UNCERTAINTY

Chapter 13, Sections 1–6

Outline

- \Diamond Uncertainty
- \Diamond Probability
- ♦ Syntax and Semantics
- ♦ Inference
- ♦ Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight departure Will A_t get me there on time?

Problems:

- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (traffic reports)
- 3) uncertainty in action outcomes (flat tire, out of fuel, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

- 1) risks falsehood: " A_{25} will get me there on time", or
- 2) leads to conclusions that are too weak for decision making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport . . .)$

Making decisions under uncertainty

Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time}|\ldots) = 0.04 P(A_{90} \text{ gets me there on time}|\ldots) = 0.70 P(A_{120} \text{ gets me there on time}|\ldots) = 0.95 P(A_{1440} \text{ gets me there on time}|\ldots) = 0.9999
```

Which action should I choose?

That depends on my preferences for missing the flight vs. sleeping at the airport, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Probability basics

We begin with a set Ω —the sample space

- e.g., 6 possible rolls of a die.
- $-\Omega$ can be infinite

 $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ such that:

$$0 \leq P(\omega) \leq 1 \\ \Sigma_{\omega} P(\omega) = 1 \\ \text{e.g., } P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.$$

An event A is any subset of Ω :

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$
 e.g., $P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$

Random variables

A random variable is a function from sample points to some range – e.g., Odd(1) = true, has a boolean-valued range.

P induces a probability distribution for any r.v. X:

$$P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$$

e.g.,
$$P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$$

Propositions

Given Boolean random variables A and B:

- event a= set of sample points where $A(\omega)=true$
- event $\neg a = \text{set of sample points where } A(\omega) = false$
- event $a \wedge b = \text{points}$ where $A(\omega) = true$ and $B(\omega) = true$

Often in Al applications, the sample points are **defined** by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

Proposition = disjunction of atomic events in which it is true

$$\begin{array}{l} \textbf{-e.g., } (a \vee b) \equiv (\neg a \wedge b) \vee (a \wedge \neg b) \vee (a \wedge b) \\ \Rightarrow P(a \vee b) = P(\neg a \wedge b) + P(a \wedge \neg b) + P(a \wedge b) \end{array}$$

Why use probability?

The definitions imply that certain logically related events must have related probabilities

E.g.,
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

Propositional or Boolean random variables

e.g., Cavity (do I have a cavity?) Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)

e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition

Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6 and Temp < 22.0 are propositions

Arbitrary Boolean combinations of basic propositions

Prior probability

Prior or unconditional probabilities of propositions

e.g.,
$$P(Cavity = true) = 0.1$$
 and $P(Weather = sunny) = 0.72$ correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

$$\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$$
 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $\mathbf{P}(Weather, Cavity) = \mathbf{a} \ 4 \times 2 \ \text{matrix}$ of values:

$$Weather = | sunny | rain | cloudy | snow | Cavity = true | 0.144 | 0.02 | 0.016 | 0.02 | Cavity = false | 0.576 | 0.08 | 0.064 | 0.08 | 0.08$$

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Conditional probability

Conditional or posterior probabilities

- e.g., P(cavity|toothache) = 0.8
- this means "P(cavity) = 0.8, given that toothache is all I know"
- it does **NOT** mean "if toothache then 80% chance of cavity"

(Notation for conditional distributions:

 $\mathbf{P}(Cavity|Toothache) = 2$ -element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

$$P(a|b) = \frac{P(a \land b)}{P(b)}$$

The product rule gives an alternative formulation:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for whole distributions, e.g.,

 $\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$

(View as a 4×2 set of equations, **not** matrix multiplication)

The chain rule is derived by successive applications of the product rule:

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n-1}|X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= ...
= \P(X_{i}|X_{1},...,X_{i-1})$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega : \omega \models \phi} P(\omega)$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

We can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Normalization

	toothache		¬ toothache		
	catch	¬ catch		catch	¬ catch
cavity	.108	.012		.072	.008
$\neg cavity$.016	.064		.144	.576

The denominator 1/P(toothache) can be viewed as a normalization constant α :

```
\mathbf{P}(Cavity|toothache) = \alpha \mathbf{P}(Cavity, toothache)
= \alpha \left[\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch)\right]
= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle\right]
= \alpha \left\langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle
```

Inference by enumeration, contd.

Let **X** be all the variables. Typically, we want the posterior joint distribution of the query variables **Y** given specific values **e** for the evidence variables **E**

Let the hidden variables be $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y, E=e) = \alpha \Sigma_h P(Y, E=e, H=h)$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???

Independence

Definition: A and B are independent iff

 $\mathbf{P}(Toothache, Catch, Cavity, Weather)$ = $\mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$ 32 entries reduced to 12

For n independent biased coins, 2^n entries reduces to n — absolute independence is very powerful but very rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2)
$$P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$$

Catch is conditionally independent of Toothache given Cavity:

$$\mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity)$$

Equivalent statements:

 $\mathbf{P}(Toothache|Catch,Cavity) = \mathbf{P}(Toothache|Cavity)$

 $\mathbf{P}(Toothache, Catch|Cavity) = \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)$

Conditional independence contd.

Write out the full joint distribution using the chain rule:

 $\mathbf{P}(Toothache, Catch, Cavity)$

- $= \mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch, Cavity)$
- $= \mathbf{P}(Toothache|Catch,Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

The product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y) \ \mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \ \mathbf{P}(X|Y) \ \mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|\textit{Effect}) = \frac{P(\textit{Effect}|Cause)P(Cause)}{P(\textit{Effect})}$$

Bayes' Rule example

E.g., let M be meningitis (hjärnhinneinflammation), S be stiff neck.

$$P(m) = 1/50000$$

 $P(s) = 0.01$
 $P(s|m) = 0.7$

What is the probability of meningitis given that I have a stiff neck?

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times 1/50000}{0.01} = 0.0014$$

Note: the posterior probability of meningitis is still very small!

Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity|toothache \land catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity) \mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity) \mathbf{P}(catch|Cavity) \mathbf{P}(Cavity)$

This is an example of a naive Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \Pi_i \mathbf{P}(Effect_i | Cause)$$

The total number of parameters is **linear** in n

Example: The wumpus world

 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit }$

 $B_{ij} = true \ {
m iff} \ [i,j]$ is breezy we include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Wumpus: Specifying the probability model

The full joint distribution is $P(P_{1,1}, ..., P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4})$ $P(P_{1,1}, \dots, P_{4,4})$

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

Wumpus: Observations and query

We know the following facts:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} known = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$$

Query is $P(P_{1,3}|known,b)$

Define $Unknown = P_{ij}$ s other than $P_{1,3}$ and Known

For inference by enumeration, we have

$$\mathbf{P}(P_{1,3}|known,b) = \alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$$

Grows exponentially with number of squares!

Wumpus: Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define $Unknown = Fringe \cup Other$ $\mathbf{P}(b|P_{1,3}, Known, Unknown) = \mathbf{P}(b|P_{1,3}, Known, Fringe)$

Now we manipulate the query into a form where we can use this!

Using conditional independence contd.

Now we manipulate the query into a form where we can use this!

$$\begin{split} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3})P(known)P(fringe)P(other) \\ &= \alpha P(known)\mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \sum_{other} P(other) \\ &= \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \end{split}$$

Using conditional independence contd.

$$\mathbf{P}(P_{1,3}|known,b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle$$

 $\approx \langle 0.31, 0.69 \rangle$

$$\mathbf{P}(P_{2,2}|known,b) \approx \langle 0.86, 0.14 \rangle$$

Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies the probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools for that