
Uncertainty

Chapter 13, Sections 1–6
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Uncertainty

Let action At = leave for airport t minutes before flight departure
Will At get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (traffic reports)
3) uncertainty in action outcomes (flat tire, out of fuel, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “A25 will get me there on time”, or
2) leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .)
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Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

Which action should I choose?

That depends on my preferences for missing the flight vs. sleeping at the
airport, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Probability basics

We begin with a set Ω—the sample space
– e.g., 6 possible rolls of a die.
– Ω can be infinite

ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space
with an assignment P (ω) for every ω ∈ Ω such that:

0 ≤ P (ω) ≤ 1
ΣωP (ω) = 1

e.g., P (1) =P (2) =P (3) =P (4) =P (5) =P (6) = 1/6.

An event A is any subset of Ω:
P (A) = Σ{ω∈A}P (ω)

e.g., P (die roll < 4) = P (1) + P (2) + P (3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables

A random variable is a function from sample points to some range
– e.g., Odd(1) = true, has a boolean-valued range.

P induces a probability distribution for any r.v. X :

P (X = xi) = Σ{ω:X(ω)= xi}P (ω)

e.g., P (Odd= true) = P (1) + P (3) + P (5) = 1/6 + 1/6 + 1/6 = 1/2
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Propositions

Given Boolean random variables A and B:
– event a = set of sample points where A(ω) = true
– event ¬a = set of sample points where A(ω) = false

– event a ∧ b = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined by the values of a
set of random variables, i.e., the sample space is the Cartesian product of
the ranges of the variables

Proposition = disjunction of atomic events in which it is true
– e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)

⇒ P (a ∨ b) = P (¬a ∧ b) + P (a ∧ ¬b) + P (a ∧ b)
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Why use probability?

The definitions imply that certain logically related events must have related
probabilities

E.g., P (a ∨ b) = P (a) + P (b)− P (a ∧ b)

>A     B

True

A B

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 13, Sections 1–6 8



Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity= true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉
Weather= rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp=21.6 and Temp < 22.0 are propositions

Arbitrary Boolean combinations of basic propositions
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Prior probability

Prior or unconditional probabilities of propositions
e.g., P (Cavity= true) = 0.1 and P (Weather= sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4× 2 matrix of values:

Weather= sunny rain cloudy snow
Cavity= true 0.144 0.02 0.016 0.02
Cavity= false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint

distribution because every event is a sum of sample points
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Conditional probability

Conditional or posterior probabilities
– e.g., P (cavity|toothache) = 0.8
– this means “P (cavity) = 0.8, given that toothache is all I know”
– it does NOT mean “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P (cavity|toothache, cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache, 49ersWin) = P (cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 13, Sections 1–6 11



Conditional probability

Definition of conditional probability:

P (a|b) =
P (a ∧ b)

P (b)

The product rule gives an alternative formulation:
P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix multiplication)

The chain rule is derived by successive applications of the product rule:
P(X1, . . . , Xn) = P(X1, . . . , Xn−1) P(Xn|X1, . . . , Xn−1)

= P(X1, . . . , Xn−2) P(Xn−1|X1, . . . , Xn−2) P(Xn|X1, . . . , Xn−1)
= . . .
= Πn

i=1P(Xi|X1, . . . , Xi−1)
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

We can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

The denominator 1/P (toothache) can be viewed
as a normalization constant α:

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) +P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]

= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X−Y− E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Independence

Definition: A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A,B) =P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch, Cavity)P(Weather)
32 entries reduced to 12

For n independent biased coins, 2n entries reduces to n
– absolute independence is very powerful but very rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

(1) P (catch|toothache, cavity) = P (catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P (catch|toothache,¬cavity) = P (catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out the full joint distribution using the chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust

form of knowledge about uncertain environments.
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Bayes’ Rule

The product rule P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

⇒ Bayes’ rule P (a|b) =
P (b|a)P (a)

P (b)

or in distribution form

P(Y |X) =
P(X|Y ) P(Y )

P(X)
= α P(X|Y ) P(Y )

Useful for assessing diagnostic probability from causal probability:

P (Cause|Effect) =
P (Effect |Cause)P (Cause)

P (Effect)
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Bayes’ Rule example

E.g., let M be meningitis (hjärnhinneinflammation), S be stiff neck.

P (m) = 1/50 000

P (s) = 0.01

P (s|m) = 0.7

What is the probabilitiy of meningitis given that I have a stiff neck?

P (m|s) =
P (s|m)P (m)

P (s)
=

0.7× 1/50 000

0.01
= 0.0014

Note: the posterior probability of meningitis is still very small!
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Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity) P(Cavity)

= αP(toothache|Cavity) P(catch|Cavity) P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause) ΠiP(Effect i|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

The total number of parameters is linear in n
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Example: The wumpus world

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Pij = true iff [i, j] contains a pit

Bij = true iff [i, j] is breezy
we include only B1,1, B1,2, B2,1 in the probability model
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Wumpus: Specifying the probability model

The full joint distribution is P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)

Apply product rule: P(B1,1, B1,2, B2,1 |P1,1, . . . , P4,4) P(P1,1, . . . , P4,4)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . , P4,4) = Π4,4
i,j=1,1P(Pi,j) = 0.2n× 0.816−n

for n pits.
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Wumpus: Observations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1
known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = αΣunknownP(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Wumpus: Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN
FRINGE

QUERY
OTHER

Define Unknown = Fringe ∪Other
P(b|P1,3, Known, Unknown) = P(b|P1,3, Known, Fringe)

Now we manipulate the query into a form where we can use this!
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Using conditional independence contd.

Now we manipulate the query into a form where we can use this!

P(P1,3|known, b) = α
∑

unknown
P(P1,3, unknown, known, b)

= α
∑

unknown
P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
∑

fringe

∑

other
P(b|known, P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
∑

fringe

∑

other
P(b|known, P1,3, fringe)P(P1,3, known, fringe, other)

= α
∑

fringe
P(b|known, P1,3, fringe)

∑

other
P(P1,3, known, fringe, other)

= α
∑

fringe
P(b|known, P1,3, fringe)

∑

other
P(P1,3)P (known)P (fringe)P (other)

= αP (known)P(P1,3)
∑

fringe
P(b|known, P1,3, fringe)P (fringe)

∑

other
P (other)

= α′P(P1,3)
∑

fringe
P(b|known, P1,3, fringe)P (fringe)
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Using conditional independence contd.

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉

≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies the probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools for that
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